Zoran Obradovic - DARPA-GRAPHS, AFOSR FA 9550-12-1-0406

Home       Bio/CV       Research       Publications       Teaching       Lab       Heritage       Contact

Prospective Analysis of Large and Complex Partially Observed Temporal Social Networks

Principal Investigator:

Prof. Obradovic Zoran

Co-investigators:

Prof. Emily Fox, University of Washington Statistics Department

Prof. Katya Scheinberg, Lehigh University Industrial and Systems Engineering Department.

Abstract

The analysis of social networks often assumes a time invariant scenario, while in practice actor attributes and links in such networks evolve over time and are inextricably dependent on each other. In addition, the temporal graph is just partially observed, multiple kinds of links exist among actors, various actors have different temporal dynamics and environmental influence can be both positive and negative. This project is closely examining the hypothesis that a unified approach of jointly modeling these and related problems is beneficial for prospective analysis of large-scale partially observed temporal hypergraphs. Novel methods for analyzing large and evolving graphs developed on the project are evaluated on high impact applications related to predictive modeling of information networks, climate and human health.

© 2001-2013 Center for Data Analytics and Biomedical Informatics, Temple University