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Abstract— Accurate estimation of what a day in a hospital 

costs and what the hospital charges is of high interest to many 

parties, including health care providers, medical insurance 

companies, health researchers, and uninsured patients. The 

problem is complex, as the cost-to-charge ratio varies greatly 

from hospital to hospital and over time. In addition, the cost-to-

charge ratio is often not reported, and in such cases group 

average values from similar hospitals are used. In this study we 

address the problem of estimating the cost-to-charge ratio at the 

hospital level by utilizing structured regression on a temporal 

graph of more than 4,000 hospitals, observed over 8 years, 

constructed from the National Inpatient Sample database. In the 

proposed approach, the cost-to-charge estimates at individual 

hospitals for a certain month obtained by an artificial neural 

network were used as unstructured components in the Gaussian 

Conditional Random Fields (GCRF) model. The diagnosis codes 

of treatments in each hospital were used to create a similarity 

metric that represents correlation among hospital specializations. 

The estimates of cost-to-charge ratio obtained using convex 

optimization of the GCRF parameters on the constructed graph 

were much better than those relying on group average based 

cost-to-charge estimates. In addition, cost-to-charge ratio 

estimates by our GCRF model outperformed regression by 

nonlinear artificial neural networks.   
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I. INTRODUCTION  

Hospital costs and charges have been in the spotlight the 
last few years. Several researchers have undertaken the task of 
identifying patterns in hospital billing policies [1,2,3]. Most of 
the research done is focused on estimating the actual value of 
the expenses incurred by a hospital in providing care, since the 
values usually made publicly available are the hospital charges. 
The relation between hospital costs and charges is usually 
described by the Cost-to-Charge ratio (CtCR) which is defined 
as the ratio of the costs divided by the charges. In this study we 
will focus on all payers and all patients Hospital level CtCR.  

The information carried by CtCRs is broadly used by 
Medicare, private insurance companies, hospitals and 
researchers and is therefore of vital importance. Payment rates 
for Medicare and Medicaid, are set by law that incorporates the 
CtCRs rather than through a negotiation process as with private 
insurers. Also Medicare uses CtCRs to determine outlier 
payments, while private insurance companies use this ratio in 
their negotiation process with hospitals. Finally researchers use 
CtCRs as a method to convert charges to costs. The values of 

CtCRs are often unreported and in researchers typically have to 
use average values of a group of hospitals as an estimate. 

Cost-to-Charge Ratio reflects the billing policy, and 
consequently it is highly correlated with several characteristics 
of each hospital, such as the hospital size, ownership and 
location. At the same time, the Cost-to-Charge Ratio has been 
shown to strongly correlate with the Diagnosis Related Groups 
DRGs [4], so in this study we will try to estimate the CtCR by 
taking into account its dependencies on the specialization of 
the hospital, represented by the diagnosis codes most 
frequently treated. Our focus is the estimation of hospital level 
CtCRs, using yearly attributes of 2003 to 2009 data. The 
proposed Gaussian Conditional Random Fields (GCRF) model 
uses the hospital information to build an unstructured predictor 
and utilizes the diagnosis codes to create a similarity metric 
amongst the hospitals. The accuracy of our method is shown to 
significantly surpass the accuracy gained using the group 
average values typically used. 

II. DATA  

   The data source for this study is the Nationwide Inpatient 
Sample (NIS) which is an archive that stores US hospital 
inpatient stays. It is provided by the Agency for Healthcare 
Research and Quality and is included in the Healthcare Cost 
and Utilization Project (UCUP). The NIS is the largest all-
payer, uniform and multi-State inpatient care database that is 
publicly available in the United States [5]. The archive is 
designed to approximate a 20-percent stratified sample of U.S. 
community hospitals and all the discharges from the sampled 
hospitals are included in the database. Each year the NIS 
provides information on approximately 5 to 8 million inpatient 
stays from about 1,000 hospitals. The utilized portion of the 
database, years 2003 to 2009, contains 14,317 records of 
hospitals per year and over 56 million hospitalizations.  

The NIS database contains clinical and resource use 
information, included in a typical discharge abstract. It also 
contains data on total charges for each hospital. The 
information of how much hospital services actually cost is 
made available to the users by an additional element of the 
database, the Cost-to-Charge Ratio files. Additionally a group 
average CtCR is provided, the values of which are frequently 
used as estimates of CtCRs for hospitals with missing 
information. In the 2003-2009 dataset, used in this study there 
are a total of 4057 missing CtCR values, a number that 
corresponds to approximately 28% of the cases. 



III. MODEL DESCRIPTION 

Given the NIS archive, a machine learning model can be 
trained to estimate the yearly CtC Ratios of each hospital. 
Assuming N hospitals for a given year, our problem can be 
stated as the estimation of the CtCR output y = (y1, … , yN) 
given the input x = (x1, … , xN), i.e. the extracted hospital 
attributes for which details are given in the experimental setup 
section. Both the hospital level attributes and the similarity that 
the hospitals present based on their specialization, can be taken 
into account with a structured model approach. In this 
framework our problem can be seen as a graph, were the nodes 
correspond to hospitals with attributes x. The links of this 
graph are weighted and undirected and the values are given by 
the similarity measures described in a later section. In the 
following we first describe our unstructured predictor. Then we 
introduce the GCRF model and the details of the similarity 
measures. 

A. Unstructured Predictor 

The complexity of our problem requires the selection of a 
predictive algorithm that can capture many kinds of non linear 
relationships. Artificial Neural Networks (ANNs) are a good 
candidate since the addition of hidden nodes and layers can 
lead to networks that can address problems of high complexity. 
In our case the feed forward Multilayer Network with one 
hidden layer [6], was used as the unstructured predictor. The 
number of hidden nodes was set to a value that maximized the 
accuracy of the predictor. The activation function of the hidden 
layer was chosen to be a sigmoid, while a linear function was 
assigned to the output layer. Finally the learning algorithm 
used was Resilient Backpropagation [7]. The various extracted 
attributes are used as input x in our unstructured predictor 
while the output, R(x), can be used as a standalone predictor 
and also incorporated in the proposed Gaussian Conditional 
Random Field model as an unstructured predictor.  

B. Structured Learning 

A structured learning approach attempts to simultaneously 
predict all the outputs, given all inputs and the dependencies 
between the outputs. In other words, while traditional, 
unstructured models use information contained in xi to predict 
yi, structured learning models will use the additional 
information stored in yj for all j that is related to i. This prior 
knowledge about relationships among the outputs y is usually 
application-specific and is in our case the similarity of the 
hospitals, in respect to their specialization. 

C. Gaussian Conditional Random Field 

Introduced by [8], Conditional Random Fields (CRF) are 
probabilistic models for computing the probability P(y|x) of a 
possible output y = (y1, … , yN) given the input x = (x1, …, xN). 
In the continuous case the conditional distribution  P(y|x) of the 
output can be represented by an equation of the form [12]: 
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where i~j denotes the correlation of the outputs yi and yj, 

A(α,yi,x) and I(β,yi,yj,x) are real valued functions that are 

known in CRF literature as association and interaction potential. 

The larger the value of A, the more yi is related to x and the 

larger the value of I the more yi is related to yj.. Z is a 

normalization constant, given by:  
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In CRF applications, A and I are in general defined as 
linear combinations of a set of feature functions in terms of the 
K and L-dimensional parameters α and β [8]. If the feature 
functions are defined as quadratic functions of y, then P(y|x) is 
a multivariate Gaussian distribution, which allows efficient 
learning and inference [9]. Assuming that we are given K 
unstructured predictors Rk(x) that predict a single output yi and 
L graphical models that represent the dependencies among the 
nodes, then the potentials can be written as: 
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=1 if i and j nodes are connected in the graph Gl and 

eij
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=0 otherwise. Sij
(l)

(x) represents the similarity between 

outputs yi and yj and in general depends on inputs x. The 

larger the value of Sij
(l)

(x) is, the more similar the outputs yi 

and yj are. Then the CRF model of (1) can be written as:  
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This way the exponent E of the probability distribution P(y|x) 

is a quadratic function in terms of y. Therefore we can 

determine appropriate mean μ and covariance Σ that transform 

P(y|x) to the Gaussian Conditional Random Fields (GCRF) 

[9]:  
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The learning task is to choose the parameters α and β to 
maximize the conditional log-likelihood of the set of training 
examples: 
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In the GCRF case it can be shown [9] that imposing the 
constraint that all the elements of the parameters α and β are 
greater than 0 can ensure the feasibility of the learning task. 
Adopting the technique used in [10] that applies the 
exponential transformation on α and β parameters to guarantee 
that they are positive we can convert the learning task to an 
unconstrained optimization problem and use standard gradient 
descent to solve it. 

The inference task is to find the outputs y for a given set of 
observations x and estimated parameters α and β such that the 
conditional probability P(y|x) is maximized. In the case of 
GCRF, since the model is Gaussian, the prediction will simply 
be the expected value of the distribution which is equal to the 
mean μ. Therefore: 
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D. Similarity Measures 

In structured learning the similarity matrix S quantifies the 
connection among the nodes of the graph, in the sense that the 
larger the value of Sij the more similar the values of the outputs 
yi and yj. In the context of this paper the nodes of the graphical 
model are hospitals and the similarity measure should describe 
the resemblance of the specializations of two hospitals. In the 
following we introduce two similarity metrics.  

1) Specialization Similarity: The specialization of each 

hospital can be represented by the distinct diagnosis codes 

assigned to each treated patient. This information can be 

extracted per hospital and year from the NIS database. Then 

the similarity between two hospitals can be defined as: Let N1 

and N2 be the number of distinct diagnosis codes treated in 

each of the hospitals H1 and H2. Also let n be the number of 

the diagnosis codes of H1 that have also been treated by H2. 

We can then define the similarity between the two hospitals as 

the normalized count of the diagnosis codes that H1 and H2 

have in common: 
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This definition of hospital similarity allows three major 
properties to be true. First the value of the similarity does not 
depend on the actual values of N1 and N2, but on the ratio of 
common and total diagnosis codes. Therefore hospitals with 
large or small values of Ni are treated by the similarity measure 
equally. Furthermore the value of this measure always ranges 
between 0 and 1 nicely representing a percentage. Finally, the 
measure is symmetric in the sense that hospital H1 is as similar 
to hospital H2 as H2 is similar to H1. 

2) Kullback–Leibler Divergence Similarity:The similarity 

of two hospitals can also be defined by comparing the actual 

distributions of treated diagnosis codes in the two hospitals. 

The Kullback–Leibler Divergence is commonly used to 

compare two distributions as it a measure of the information 

lost when one of the distributions is used to approximate the 

other. However it does not have the property of symmetry that 

a distance/similarity measure should have. Therefore we first 

calculate a matrix that contains the values for every pair of 

hospitals and then we add to the matrix its transpose. An 

additional normalization can transform the values and restrict 

them between 0 and 1. This way we get a similarity metric 

with all the desired properties. 

 
The existence of the distance metric properties is not a 

complete evaluation criterion. We have adopted the method of 
variogram plots for the verification of similarity metric 
relevance [11]. In these plots the similarity values between 
nodes are plotted against the variance of the output values yi. 
The smaller the variance of the values y, the more similar the 
values are. Therefore a similarity metric that is relevant is one 
whose variogram depicts a trend in which the variance of the 
values is dropping as the similarity is increasing.  

IV. EXPERIMENTAL SETUP 

Although the focus of this study is the estimation of 
hospital level CtCRs, there is a large part of variability in these 
values that originates from standard inflation of hospitalization 
costs. This information, although vital, is easily predictable and 
is not a focal point of this study. Therefore we obtain a 
transformed output variable y by subtracting from each CtC 
Ratio value the yearly average.  

For the input variables x, we use several characteristics of 
each hospital with which the value of CtC ratio is expected to 
be highly correlated, such as the hospital type, size, ownership 
and location. Additional attributes have also been included in 
the model: the hospital teaching status and multi-hospital 
system membership. Furthermore, CtCR is expected to be 
correlated with attributes that describe the hospitalization 
trends of each hospital, such as the number of hospitalizations, 
the number of major operating room procedures, the average 
total charges or the percentage of the various payer groups. 
Also included in the model are the area wage index, average 
number of distinct procedures in each hospitalization, average 
number of patient’s chronic diseases, average length of stay, 
average income quartile, and average number of external 
causes of injury diagnosis codes per hospitalization. Finally, 
since a large variation of CtC ratio with hospital states was 
observed, we separated the states into five groups based on 
their average CtC ratio values. 

These attributes are used as input x in our unstructured 
predictor, a feed forward artificial neural network with one 
hidden layer. The number of nodes in the hidden layer was 
chosen to be 4. For the selection of this free parameter, we 
trained a neural network on the data of 2003 and we tested it on 
2004 data. We repeated this process for several values of the 
number of hidden nodes and the architecture that returned the 
best results in terms of R

2
 and RMSE was chosen. 

Finally, we studied the corresponding variogram plots and 
noticed that the simple specialization similarity is closer to the 
ideal similarity, as this variogram has a clear and stable 
monotonic fall-off. However the KL-similarity will also be 
evaluated in our experiments. Furthermore we set a threshold 
value of 0.7, below which the similarity is set to zero following 
[11] and also [9] that showed that sparse similarity measures 
outperform dense metrics. This value was chosen since both 
similarity measures have started their monotonic decrease at 
this point. Notice however, that small alterations in this 
threshold value do not change our experimental results. 

V. RESULTS 

Utilizing the unstructured predictor and similarity measures 
described in the previous section we run a series of 
experiments. Using the attributes extracted from the NIS 
database for years 2004 to 2009, we train the unstructured 
predictor in year N-1, for N=2005,...2009. Then we use this 
model to estimate the CtCR of year N. Combining these results 
with the similarity measures we have constructed for year N 
we can get a final estimate of the CtCR. The results, for 
various values of N are shown in TABLE I. For completeness 
we are reporting the accuracy of the unstructured predictor as a 
standalone model as well as the accuracy of a model that takes 



TABLE I.  GCRF ACCURACY RESULTS FOR VARIOUS VALUES OF YEAR OF ESTIMATION N.  

 

Group Average 

CtCR 
Neural Networks  GCRF 

 
 

Specialization 

Similarity 

KL Divergence 

Similarity 
Both 

 R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

2005 0.583 0.135 0.652 0.124 0.691 0.117 0.680 0.119 0.691 0.117 

2006 0.605 0.142 0.663 0.131 0.681 0.128 0.676 0.129 0.678 0.128 

2007 0.609 0.140 0.739 0.114 0.757 0.110 0.753 0.111 0.757 0.110 

2008 0.571 0.196 0.681 0.169 0.686 0.168 0.663 0.174 0.681 0.169 

2009 0.590 0.199 0.616 0.193 0.674 0.180 0.631 0.189 0.674 0.178 

 

TABLE II.  GCRF ACCURACY RESULTS FOR HOSPITALS THAT HAVE 

HAVE BEEN SEEN IN THE PREVIOUS YEAR AND HOSPITALS THAT HAVE NOT  

 
Seen 

Hospitals/ 

All 

Hospitals 

Group 

Average 

CtCR 

GCRF GCRF 

Unseen 

Hospitals 

Unseen 

Hospitals 
Seen Hospitals 

  R
2
 RMSE R

2
 RMSE R

2
 RMSE 

2005 82/303 0.588 0.134 0.648 0.124 0.803 0.092 

2006 84/407 0.625 0.141 0.660 0.134 0.756 0.102 

2007 117/422 0.709 0.118 0.733 0.114 0.801 0.101 

2008 123/436 0.658 0.187 0.662 0.187 0.792 0.109 

2009 107/381 0.571 0.209 0.646 0.190 0.760 0.142 
a. The number of hospitals reported here is after removal of undefined and unreported values  

 

into account both of the similarity measures. Finally we 
compare the results of our experiments with a predictor that 
uses the estimated value for the CtCRs as provided by the NIS 
database, the group average CtCR. Notice that in order to 
transform the reported group average into a CtCR predictor we 
applied the same yearly adjustment as we did in the CtCR 
values, by subtracting from each value the yearly average. 

The results reported here, clearly indicate that the method 
applied in this study provides a much more accurate estimate 
of the CtCRs than the values of the group average, as evaluated 
by the NIS. In addition the structured GCRF predictor clearly 
outperforms the unstructured NN predictor even with the KL –
Divergence similarity measure. This is a strong indication that 
the similarity in the specialization of the hospitals carries 
valuable information that should not be ignored. 

For further evaluation of our model we compare the 
resulted accuracy of GCRF, with the simple specialization 
similarity, for two distinct categories of hospitals: hospitals that 
existed in the previous year of NIS data and were therefore 
used by our unstructured predictor during training phase, and 
hospitals that did not exist. The results are reported in TABLE 
II. For comparison we also report the accuracy of the NIS 
reported group average for the hospitals that did not exist in the 
previous year. It is clear that our method outperforms the 
commonly used one in a systematic way. 

VI. DISCUSSION AND FUTURE WORK 

In this study we have proposed a method for the estimation 
of yearly, hospital level CtC Ratio that outperforms the 
commonly used method of the group average. We have also 
identified two similarity measures that are able to offer 
significant improvement in the resulting accuracy. However, 
the information carried by the two similarity measures is not 

always fully utilized. We could have seen higher improvements 
if the model was able to identify the ‘certainty’ of each 
similarity for each node. This would be an interesting future 
topic with broad applications. 
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