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Abstract

Sepsis is a medical condition characterized as
a systemic inflammatory response to an infec-
tion. The high level of heterogeneity among
sepsis patients is one of the main reasons of
unsuccessful clinical trials. A more careful
targeting of specific therapeutic strategies to
more biologically homogeneous groups of pa-
tients is essential to developing effective sep-
sis treatment. We propose a kernel-based
approach to characterize dynamics of inflam-
matory response in a heterogeneous popula-
tion of septic patients. Our method utilizes
Linear State Space Control (LSSC) models
to take into account dynamics of inflamma-
tory response over time as well as the ef-
fect of therapy applied to the patient. We
use a similarity measure defined on kernels
of LSSC models to find homogeneous groups
of patients. An application of the proposed
method to analysis of dynamics of inflamma-
tory response to sepsis therapy in 64 virtual
patients identified four biologically relevant
homogeneous groups providing the initial ev-
idence that patient-specific sepsis treatment
based on several treatment protocols is feasi-
ble.

1. Introduction

One of the most challenging problems in clinical prac-
tice is planning of personalized therapy regimens and
durations. Personalized therapy is especially critical in
rapid progression medical conditions like sepsis, a sys-
tematic inflammatory response syndrome triggered by
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infection. Sepsis is the leading cause of death in crit-
ically ill patients in the United States (Hotchkiss &
Karl, 2003). It is often diagnosed too late and the pa-
tient is then treated with broad-spectrum antibiotics
and/or intravenous fluids with dosages adjusted man-
ually even though more specific therapy would be far
more effective. The high level of heterogeneity among
sepsis patients is one of the main causes of failed clin-
ical trials (Hotchkiss & Karl, 2003). A more careful
targeting of specific therapeutic strategies to more bio-
logically homogeneous groups of patients is essential to
developing effective sepsis treatment (Marshall, 2005).

Systems that cluster heterogeneous patient popula-
tions have proven to be extremely useful to the de-
velopment of multimodal treatment for cancer (Mar-
shall, 2005). In this study our main objective is to
cluster a heterogeneous population of septic patients
into groups with biologically similar responses to med-
ications and similar systemic reactions to an infec-
tion (homogenous groups with similar dynamics). To
achieve this objective we will represent the dynamic
of each patient by a linear state space control (LSSC)
model where sequence of medication dosages is con-
sidered as a control signal. Then, similarity between
dynamics of patients inflammatory responses can be
defined through the similarity of LSSC models. There-
fore, our main focus becomes: (1) to define an appro-
priate measure of similarity between two LSSC mod-
els with medications as control signals; (2) to cluster
LSSC models according to a similarity measure de-
fined in (1); and (3) to validate biological relevancy of
obtained clusters.

The problem of comparisons of dynamical models has
been studied in the past decade. Different metrics are
utilized for comparing Autoregressive Models (AR).
In (Martin, 2000) AR models are compared based on
cepstrum coefficients. This concept is extended to
state-space models by considering the subspace angles
between subspaces that are derived from AR mod-
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els (Cock & Moor, 2002). The unifying framework
for comparisons of state-space models is presented in
(Vishwanathan et al., 2006). On the other hand, these
approaches do not take into account control signals
and thus they are not directly applicable to LSSC mod-
els.

In this paper we propose a metric for measuring sim-
ilarity between two LSSC models. Our approach is
based on kernels designed for state-space models which
are initially considered in (Vishwanathan et al., 2006).
We expanded work proposed in (Vishwanathan et al.,
2006) to obtain kernels for LSSC models and we de-
fined similarity between models based on calculated
kernels. Finally, we showed how the proposed similar-
ity measure can be deployed in the spectral clustering
algorithm to find homogenous clusters. Besides being
used for clustering patients with respect to their ex-
pected response to a therapy, the proposed similarity
measure can also be used to detect unusual patients
dynamics.

2. Methodology

2.1. Linear state-space control models (LSSC)

One important class of dynamical systems are discrete
linear state-space control models known as Kalman fil-
ters. We use them to represent dynamics of each pa-
tient in the form

zpp1 = Axy + Bug +wy,  we ~ N(0,Q), (1)

v~ N(O,R), (2
n~ N(07 Q0)7 (3)

where the noise terms wy, vy, 77 are assumed to be zero
mean i.i.d. normal random variables, y; is observed
vector at time ¢t (¢ =1,2,...,T), x; is the hidden state
vector and wu; is control signal. T is the length of the
observed sequence. Vector xg (initial state) and ma-
trices A, B,C,Q, R, Qo are parameters of the model,
which we will refer to as ©. As the model has hid-
den vectors, learning parameters will be achieved by
the expectation-maximization (EM) algorithm. Pa-
rameter learning is derived similarly to the technique
shown in (Bishop, 2006) and only final equations are
presented here. We denote

Elzi|ly1,- -,y (4)
E[(ﬂﬁt - 56t|t)($t - -i‘t|t)T|y17 e 7yt}- (5)

Having that all distributions in the model are multi-
variate Gaussians we can write forward propagation

Yit1 = Cryp1 + vy,
T1 = To + 1N,

Tyt =
Pt|t =

Ai‘ﬂt + Buta (6)
APy A (7)

Tiq1t =

Pt+1\t =

When observation y;11 becomes available measure-
ment update equations are

Tey1)t41 Zy + K(Yer1 — CZpap), (8)
Pt+1\t+1 = (I - KO)Pt+1|t7 (9)
K = P CT(CPy CT + R)™, (10)

Eip = 2o+ Ki(yr — Cuo), (11)
Py = (I-KCO)Q, (12)

Ki = QuC"(CQuC" +R)™. (13)

Backward recursion known as smoothing is obtained
considering that the entire sequence of length T is
available and is in the form

Ty = Do+ S (@ — Tegipe)s (14)
Pyr = Py + Ji(Pgar _Pt+1|t)']],£a (15)
T = PpATPL, (16)

EM algorithm is applied on logarithm of complete like-
lihood

T
p(y7x|6) = p(xl) Hp(wtll‘ttha Ba Qvutfl)
t=2
T
X Hp(yt|xta 07 R)

t=1

(17)

Forward, update and smoothing steps are executed at
first in the E-step. Afterwards, following expectations
are calculated

Elzyr] = &yr, (18)
Jt—1Pt|T+§7t|T§3£1|Ta (19)

Pyr + 9ACt|T9AU£T- (20)

=)

E[xﬂszlHT]

E[:I:t‘TxaT] =

The M-step is defined by minimizing expectation over
hidden state vectors of complete log-likelihood with
respect to © as

© = argmaxFE,, .. [logp(y, z|©)]. (21)
e

2.2. Binet-Cauchy kernel on LSSC models

In order to find patients with similar inflammatory re-
sponses, we utilize an algebraic approach to compare
two LSSC models. The novelty of our work is that
our models include control signal u, which was not ad-
dressed in related approaches for time-series modeling.
As a first step in defining similarity, we introduce ker-
nel between two LSSC models M; and M. Kernel is
computed as a discounted dot-product of corespond-
ing trajectories y; and ys generated using models M;
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and M5 that have the same initial conditions and use
the same control sequences, similar to (Vishwanathan
et al., 2006)

oo

- E%,uZe Myl (OWys(t),  (22)

t=1

K (M, Ms)

where A is discounting factor that down-weights sam-
ples as t increases, and W is a weight matrix that puts
different emphasis on different components of trajecto-
ries. Trajectory y is found from (7) following forward
propagation process
t—2
Yyt = C(At_lxo-l-z AN Bug—1—i+vi—1-:))+wy. (23)
i=0

We need to find expectation E over xg and u as we
would like to define similarity that is independent of
the initial conditions and the specific control sequence.
We are assuming that (1) noises between models are
uncorrelated; (2) two LSSC models are compared on
the same random control sequences with zero-mean
Gaussian distribution with covariance U. In order to
have kernel independent on initial conditions we will
assume that both models have the same initial val-
ues sampled from the zero-mean Gaussian distribution
with covariance Xy. Using relevant term from (22) ex-
pectation over xg is calculated

Er (Y e Myl () Wis(t) =

t=1

= B, (D e H(C1 AT ) "W (Co AL o))

=1 (24)
_ Ero 7)\ T Zef)\t At)TWAt)ICo)
t=0
= Ewo(e_’\ngxo) = e_ATr(MXO),

where M is a solution of Sylvester’s equation M =
e MATMAy, + W and W = CTWC,. Convergence
of the infinite sum is achived for e=*||A1]|[|A2|] < 1
(Vishwanathan et al., 2006). Similarly, relevant term
to calculate expectation over u is obtained from (22).
After some rearrangement and taking expectation it is
obtained
E,(Y e Myl (Wys(t)) =
t=1
co t—2
BQUBTZ e M (A])TW AY)
o (25)

= Tr(BQUBlTZ Z e M(ANTW 4))
5=0t=j+2
6—2>\ .

Finally, kernel can be written as

K (M, My) =e ™ Tr(MXo)+
e 2N T (26)
+ mT?”(BQUBl M)

2.3. Spectral clustering for state-space models

We utilize spectral clustering to group the LSSC mod-
els based on similarity between them. Clustering
methods which require calculating cluster representa-
tives are not applicable on this problem as it is not
trivial to find the representatives in the case of LSSC
models (Vishwanathan et al., 2006). Spectral cluster-
ing overcomes this by permitting the illustration of
complex clusters of arbitrary shapes without calculat-
ing their representatives.

To determine clusters via spectral clustering, we need
to (1) define a proper similarity measure based on ker-
nels and (2) determine the appropriate number of clus-
ters for a set of LSSC models.

2.3.1. SIMILARITY BETWEEN STATE-SPACE MODELS

For the spectral clustering task we need to define sim-
ilarity between two models M; and M; which has to
be in the 0-1 range. In order to define any similarity
measure, kernels between models have to be normal-
ized. Normalized kernels (Ah-Pine, 2010) are usually
obtained using cosine measure, which does not carry
information about norms of trajectories. The norms
cannot be neglected in the sepsis application so cosine
measure has to be modified for a use in the cluster-
ing of patients dynamics. Very useful modification to
cosine normalization is proposed in (Ah-Pine, 2010)
where a kernel is normalized using

K(Ml-, Mj)
F,, ’
1
Fy = (5 (K™(Ms, My) + K™ (M, M),

k(Mi’Mj) = (27)

and K denotes un-normalized kernels obtained from
(26) and m > 0 is the parameter which has to be
set. It is shown in (Ah-Pine, 2010) that by increas-
ing parameter m, the impact of norms to similarity
is increasing. Therefore, we will use this way of nor-
malization in our experiments. Similarity between two
models is defined as

wi j = e~ (M), (28)
where d is commonly used distance measure defined

by
V2(1 — k(

d(My, M) = (M, My)). (29)
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Algorithm 1 Spectral Clustering
1: Define a set of LSSC models (vertices) M =
{M, ..., M,,} and specify number of clusters ¢

2: Compute affinity matrix G

3: Make diagonal matrix D whose (4,7) element is the
sum of G’s i-th row

4: Compute normalized version of G
L=D"3:GD 2

5: Find vy, v9, ..., v, the ¢ largest eigenvectors of L
and create matrix V' = [v1 vg ... v;] where v; is i-th
column in V

6: Find a matrix Y from V such that Y;; =

Vi

7: Treating each row of Y as a point, cluster all rows
into ¢ clusters via K-means clustering algorithm
which attempts to minimize distortion

8: Assign LSSC model M; to particular cluster if and
only if row ¢ of the matrix Y is assigned to that
cluster

2.3.2. SPECTRAL CLUSTERING ALGORITHM

Spectral clustering is solving graph cut problem. We
represent the set of LSSC models M = {M,...M,}
as vertices, while similarities between models represent
edge weights. The adjacency matrix G associated with
this weighted undirected graph used in the spectral
clustering algorithm is defined as

Wi
6= {

We follow algorithm proposed in (Ng et al., 2001) to
cluster models, see Algorithm 1.

if i#j and (i,7) is in the edge set
otherwise

2.3.3. NUMBER OF CLUSTERS

Our objective is to find stable clusters effectively. In
the method proposed in (Ben-Hur et al., 2002), stable
clusters are discovered based on sub-samples, following
the intuition that cluster partitions are stable when
similar partitions are found on different subsamples
obtained by random sampling without replacement of
70-90% of the original dataset. In short, we firstly de-
cide on a possible range for a number of clusters (c)
and then apply the following algorithm. For each ¢
from the possible range we: (1) generate and cluster
pair of subsamples of the data; (2) compute the simi-
larity between clusters obtained in (1) using the points
common to both subsamples; and (3) repeat steps (1)
and (2) multiple times to obtain distribution of simi-
larities.

The number of stable clusters is determined by ob-
serving distributions of similarity for different values
of k. We stop the process when distribution is changes

from being skewed to 1. For more details see (Ben-Hur
et al., 2002) and Section 4.2.

3. Experiments
3.1. Virtual patient

To significantly reduce chance of a clinical failure
and to save the costs of clinical trials, biomedical re-
searchers use computer simulations of body processes
(often called virtual patients) to perform preliminary
tests of hypotheses before they prove them in real pa-
tient studies (Day, 2010). An important advantage of
having a virtual patient model for experiments is the
possibility of testing large number of hypotheses on
same virtual patients, comparing the outcomes and fil-
tering out possibly unnecessary tests on animal models
and later on real patients. Virtual patients are gener-
ated using a carefully determined parametric mathe-
matical model to simulate the process of interest. To
follow a real-life scenario, virtual patient models are
accompanied with well-defined constraints on parame-
ter ranges that are specified in accordance with clinical
practice.

3.1.1. PATIENT MODEL

We will use a mathematical model recently proposed
in (Day, 2010) that is capable of simulating: (1) an
evolution of a bacterial pathogen population (P) that
initiates the cascade of inflammation; (2) dynamics of
pro-inflammatory mediators (N); (3) markers of tissue
damage/dysfunction (D); and (4) evolution of anti-
inflammatory mediators (C'A) which are all controlled
by doses of pro-inflammatory (PIDOSE) and anti-
inflammatory (AIDOSE) therapies. This mathemat-
ical model is based on the system of ordinary differen-
tial equations (ODE):

dP P kpmsSmP
= 1— — | pmomz N)P
dt kl)g ( Poo> /Jm + kmpP kpnf( ) )
dN Spr R
— = —"— —uN+ PIDOSE(t
@ " aoa B MVH OSE(t),
dD kanf(N)S
==l D,
at a5 + f(N)s M
dCA Eenf(N + kenaD)
= — u.CA+ AIDOSE(t),
At " T+ (Nt kD) HeC2T ®)
where

T

R = f(kppP + kpnN + kpaD) —.
1+ (%)
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Figure 1. Evolution of pathogen population (P), pro-inflammatory mediators (N), tissue damage (D), and anti-
inflammatory mediators (C'A) of three virtual patients with healthy (blue), aseptic (green), and septic (red) outcomes in

the absence of therapy.

All variables used in the mathematical model except
output signals P, N, D, CA are parameters with
valid ranges specified in (Day, 2010). Population of
virtual patients was generated by random sampling
from uniform distribution on valid ranges of the ini-
tial conditions for P and CA (while N and D were
set to 0) and three parameters in ODE: k,,, - growth
rate of pathogen P; k., - maximum production rate
of anti-inflammatory mediator CA; and k,q - acti-
vation of phagocytes N by tissue damage D. Since
many molecules are produced by the same biological
processes, parameters k.,q - relative effectiveness of
damaged tissue D in inducing production of the anti-
inflammatory mediator C'A, k,,, - activation of resting
phagocytes N by already activated phagocytes IV, and
knp - activation of phagocytes IV by pathogen P were
chosen to co-vary with k., and k.4 (Day, 2010). If two
parameters k; and ko co-vary that means if ky is ran-
domly generated and it is 7% relatively different from
its reference value ki,ef, then the value for ks should
also be 1% relatively different from its reference value

k2ref

In (Day, 2010) the variability in k.,q was specified to
co-vary with k¢,, and k,, and k,, were specified to
co-vary with k, 4 so that the rates at which body were
producing C'A and N were balanced. Variability of
immune response in the population of virtual patients
is obtained by changing parameter values and initial
conditions. All other parameters were fixed to referent
values as in (Day, 2010).

Although conceptual, ODE is capable of modeling dif-
ferent complex dynamics of a patients immune system
response to infection induced by pathogen P. From
ODE, large P leads to the development of a pro-
inflammatory response N. When the growth rate kpg
of the pathogen P is low, activated phagocytes N are
capable of clearing the pathogen in normal individu-
als. However, if the growth rate kp, is high, then a
sufficiently large level of pathogen can induce a per-
sistent infection despite the immune system response

10
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w
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Figure 2. A patient response (P and D at top panel) on
non-ideal treatment sequence (AIDOSE at middle panel;
PIDOSE at bottom panel) with healthy outcome (blue
at top panel) that would be septic otherwise (red at top
panel).

by activated phagocytes V. Large N indicates faster
elimination of pathogen P. However, large N dam-
ages tissue D and therefore mobilizes a negative feed-
back, or anti-inflammatory response C'A, which lowers
N (Day, 2010). Also, C'A inhibits damage to tissue
D that may be caused by N. The rate and dynamics
of immune system response are completely governed
by parameters of the mathematical model which vary
among virtual patient population representing the het-
erogeneity among real patients.

In simulations t is an hourly step that starts from 0.
At t = 0, outputs and parameters are set to initial
conditions. Then, all four outputs evolve according
to ODE through the simulation time ¢t. According to
(Day, 2010) there are three possible outcomes at the
end of simulation time, which are shown in Figure 1. A
patient is in healthy state if P =0, N =0, D = 0, and
CA > 0 at the end of simulation. The aseptic death
state of the patient is defined as P =0, N > 0, D > 0,
and CA > 0. The third possible outcome is septic
death, where all outputs are non-zero. Leading the
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Figure 3. Histograms of similarity distributions for different #clusters (#clusters=2 most left up to #clusters=6 most

right)

virtual patient to healthy state is a difficult challenge
of maintaining a balance between objectives P = 0 and
D = 0 (if these conditions are satisfied Nwill eventu-
ally be 0 so there is no need to have N = 0 as an
objective).

3.1.2. HETEROGENOUS VIRTUAL PATIENTS’ DATA

The critical aspect of the virtual patient analysis is
the availability of representative data. Our objective
was to address a real-life scenario in which data come
from clinical trials done on a small group of hetero-
geneous patients observed in time. Accordingly, a set
of Npatients Virtual patients with hourly observations
over one week (168 hours) was generated from ODE
equations. To generate a sequence of observations for
a virtual patient we need to know parameters of the,
initial conditions and a therapy sequence. Initial con-
ditions and parameters are randomly generated fol-
lowing allowable ranges while a therapy sequence was
carefully chosen.

In industrial applications, control sequences are usu-
ally generated randomly so that they span the whole
operational range and adequately characterize the re-
sponse of the system. Random generation of treat-
ments is not a clinically relevant scenario. Instead
we propose the following approach. For each of the
Npatients we used its own mathematical model as a
predictive model in model predictive control (MPC)
scenario (Day, 2010). Such predictive models give per-
fect prediction of the patients future states, as their
predictions are identical to future observations at ev-
ery time point (ideal predictive models). The ideal
control sequences for each virtual patient would be ob-
tained by minimizing the objective function as in (Day,
2010). The ideal control sequences are not realistic
in clinical practice and are also unsuitable for learn-
ing data-driven models because they do not contain
enough dynamics to sufficiently represent the system
response. Therefore, we used a more clinically realis-
tic scenario, such that for an observed patients state at
time point ¢, therapy dosages at t may not bethe ideal
but it should be reasonably close to the ideal. This is

modeled such that at each time point ¢ random Gaus-
sian noise is added to AIDOSE and PIDOSE values
found by the MPC with the ideal predictive control.
Then, instead of treating patients with the ideal ther-
apy sequences we treated patients with non-ideal ones,
which gave a wider range of system response (Fig 2).
From the clinical aspect, where data are limited and
expensive, it is important to follow a real life scenario
and perform analysis on a relatively small number of
patients. We generated a population of 100 virtual pa-
tients by randomly choosing parameters of the math-
ematical model. The total simulation time was 168
hours (1 week) with hourly measurements of outputs
P, N, D, and CA. State of the patient was deter-
mined based on the values of the outputs at the end
of the simulation time of 168 hours. Npgtients = 64
were selected to receive therapy according to the cri-
terion that their value of N exceeded 0.05 at certain
point in time (Day, 2010). Non-ideal control sequences
were generated for each of Npgtients. Among Npgtients
= 64 patients there were 8 with septic, 14 with asep-
tic, and 42 with healthy outcomes after application of
non-ideal control.

3.2. Design of LSSC models

Each of 64 patients is modeled with the same model
structure. For our experiments we consider LSSC
models having time lags p and ¢ for both hidden states
and control sequence respectfully. Model is designed
as

Tip1 = A1y + -+ ApTipat
+ Biug + -+ + Byug_g41 + vy, (30)

Y1 = Loep1 + wy,

where y = [PNDCA|] and u = [AIDOSEPIDOSE].
Defined this way models could be easily transformed in
augmented equations in the form from (1) and trained
accordingly. Lag values are experimentally selected
using the BIC criterion which providedp =2and ¢ =1
as the best choice. Further experiments are performed
using the model with the lag operators set to these
values.
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Table 1. Cluster statistics.

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4
# HEALTHY 13 12 0 17
# ASEPTIC 2 4 4 3
# SEPTIC 0 0 8 0
Po 0.754+0.18 0.65+0.21 0.7440.19 0.65+0.16
CAyp 0.12040.020 0.12140.016 0.12940.150 0.11940.016
KPG 0.4240.09 0.424+0.07 0.5340.06 0.4540.09
KND 0.02140.003 0.02240.003 0.02040.003 0.02040.002
KCN 0.04340.004 0.0384+0.007 0.03940.005 0.04040.006
KCND 51.44+5.4 46.0+8.6 47.1+6.1 47.448.0
KNN 0.010440.0015 0.0109£0.0017  0.0098+0.0014 0.00984+0.0013
KNP 0.10440.015 0.10940.017 0.0984+0.014 0.0984+0.013

3.3. Kernels

Once the LSSC model is set, we need to determine
parameters for model similarity calculation. The im-
portant factors that influence the value of the kernel
are the initial state of LSSC given by zq, the sequence
of control signals given by u, and the value of param-
eter A. As we focus on similarities between dynam-
ics we will use identical initial states sampled from a
multivariate Gaussian distribution covariance matrix
which is equal to identity matrix I in our applica-
tion. We assume that control signals u are sampled
from a multivariate Gaussian distribution N (0, Up)
with mean 0 and covariance matrix equal to oI where
o is set to 0.25 in accordance to levels of AIDOSE and
PIDOSE from the previous section. Another param-
eter that we need to set is A. The larger the values of
A are the heavier attenuation of output y when time
increases. On the other hand, small values of A al-
low for analysis of long term interactions. Since we
would like to find similar inflammatory responses over
the long range we used small value of A\. The smallest
possible value of A is limited by existence of kernel.
Therefore, we set A\ to 0.15. Parameter m is set to
100 because we want to take into account both cosine
distance and norms with strict penalties on both (see
(Ah-Pine, 2010)). Also, similarities between models
with kernel distances d greater than 1.4 are set to 0.
(normalized kernel is not positive).

4. Results
4.1. Outlier detection

We used kernels to find unusual dynamics. From the
top panel of Fig 4, top panel, we see that dynam-
ics of the patient #48 is different from dynamics of
remaining 63 patients according to kernel similarity.
Therefore, we exclude the model for the patient #48

proceed with analysis of the remaining 63 models.

4.2. Number of clusters

In the experiments conducted to discover the num-
ber of stable clusters we changed the possible number
of clusters ¢ from 2 to 15. For each ¢ we generated
100 pairs of model subsamples with sampling rate 0.9
and measured similarity between each pair of models.
Histograms of the resulting similarity distributions are
shown in Fig 3 (for ¢ > 6 histograms are omitted be-
cause they are following a similar pattern as that for
¢ = 6). Following procedure suggested at (Ben-Hur
et al., 2002) we noticed enormous change in the simi-
larity distribution between ¢ = 4 and ¢ = 5. Therefore
our selection is ¢ = 4 clusters.

4.3. Cluster analysis

Properties of four identified clusters are summarized
in Table 1. Clusters 1, 2 and 4 contain a number of
healthy patients along with aseptic ones. Cluster 3
contains 12 patients, among whom 8 were with septic
outcome while 4 were with aseptic outcome. All sep-
tic patients from the virtual population were grouped
into this cluster. In order to characterize each cluster,
we provide average and standard deviation of patients
parameters within the cluster. To identify statistically
significant differences among clusters, we ran a paired
one-tailed t-test of the null hypothesis that patients
parameters have equal means with unequal variances,
against the alternative that the mean of one patient
is greater than the mean of other patient with signifi-
cance a = 0.05. In the case of Py the null hypothesis
is rejected between cluster 1 and cluster 4, meaning
that cluster 1 has significantly larger initial value of
Py than cluster 4. In terms of k4, cluster 3 (all sep-
tic and aseptic patients) has significantly larger value
than other clusters. As kp, corresponds to the rate of



Title Suppressed Due to Excessive Size

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 4. Similarity matrices obtained using kernel with
Lambda = 0.15. The top plot shows similarity among 64
non clustered patients, red box designates an outlier (pa-
tient #48) not similar to others. The bottom plot shows
similarity among 63 patients (without an outlier) grouped
into four clusters.

pathogen development this means that cluster 3 con-
tains patients who had more serious pathogen infec-
tions than patients in other clusters. When looking at
kna (and related k,, and k,,) we found that signifi-
cantly higher values are in cluster 2 when comparing
to cluster 3 and 4. Therefore, the difference between
cluster 2 and cluster (mostly healthy patient) is in dif-
ferent dynamics of production of phagocytes V. Clus-
ter 1 is significantly different from the other cluster in
the rate of production of anti-inflammatory mediator
CA (k¢ and related kepq).

5. Conclusion

We have developed a kernel-based approach to char-
acterize dynamics of inflammatory response in a het-
erogeneous population of septic patients. Our method
utilizes Linear State Space Control (LSSC) models to
take into account the dynamic of inflammatory re-
sponse over time as well as the effect of therapy applied
to the patient. An application of the proposed method

to analysis of dynamics of inflammatory response to
sepsis therapy in 64 virtual patients identified four bi-
ologically relevant homogeneous groups. Our research
in progress is aimed at developing prototypes trained
separately on homogeneous groups of patients in or-
der utilize them in model predictive control strategy
for defining patient-specific sepsis treatments.
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