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A grand challenge in the proteomics and structural genomics era is the prediction of protein

structure, including identification of those proteins that are partially or wholly unstructured.

A number of predictors for identification of intrinsically disordered proteins (IDPs) have been

developed over the last decade, but none can be taken as a fully reliable on its own. Using a

single model for prediction is typically inadequate because prediction based on only the most

accurate model ignores model uncertainty. In this paper, we present an empirical method to

specify and measure uncertainty associated with disorder predictions. In particular, we analyze the

uncertainty in the reference model itself and the uncertainty in data. This is achieved by training a

set of models and developing several meta predictors on top of them. The best meta predictor

achieved comparable or better results than any other single model, suggesting that incorporating

different aspects of protein disorder prediction is important for the disorder prediction task. In

addition, the best meta-predictor had more balanced sensitivity and specificity than any individual

model. We also assessed the effects of changes in disorder prediction as a function of changes in

the protein sequence. For collections of homologous sequences, we found that mutations caused

many of the predicted disordered residues to be flipped to be predicted as ordered residues, while

the reverse was observed much less frequently. These results suggest that disorder tendencies are

more sensitive to allowed mutations than structure tendencies and the conservation of disorder is

indeed less stable than conservation of structure. Availability: five meta-predictors and four single

models developed for this study will be publicly freely accessible for non-commercial use.

1 Introduction

Proteins that do not fold into stable 3-D structures, called

Intrinsically Disordered Proteins (IDPs), play an important

role in a number of biological functions1–4 and provide

relatively unexplored targets for drug discovery.5 More speci-

fically, IDPs have vital roles in cell signaling and regulation.6–9

Bioinformatics approaches suggest that the amount of disorder

follows the trend archaea E bacteria o eukaryotes, with about

30%–50% of the proteins in higher eukaryotes containing at

least one long region of disorder.10

Traditionally, the 3-D structures of the proteins are deter-

mined by using costly experimental methods such as X-ray

crystallography, Overhauser Effect Enhanced Nuclear Magnetic

Resonance (NMR) spectroscopy and Circular Dichroism (CD)

spectroscopy. The first IDP predictor11 was developed in 1997 in

our laboratory, and this event was followed by development of

numerous additional disorder predictors by our group and

others. The current state of protein disorder predictors with their

advantages and drawbacks has been summarized recently.12–15

Each disorder predictor uses different concepts, different

physico-chemical properties, or even different machine learning

algorithms. For example, some protein disorder predictors

assume that the prediction for each residue is independent of

the prediction for other residues while taking into consideration

that the predicted disorder tendency of neighboring positions

could be beneficial to the disorder prediction task. On the other

hand, some other predictors are specific to one type of disorder

only, represented by missing residues from X-ray structures. So

that, relying on a single disorder predictor is not necessarily the

best strategy.

Two sources of uncertainty in disorder prediction are model

uncertainty and data uncertainty. Although model uncertainty

in disorder prediction depends on the selected model, the

relationship between model uncertainty and model selection
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has not been systematically investigated. Usually, from a space of

models, one is selected that is more accurate than several

alternatives when tested on a given set of sequences. A limitation

of this kind of selection process is that problems arising from

model uncertainty are not considered in sufficient depth.

To study the above discussed effects, we developed several

protein disorder predictors to analyze uncertainty in disorder

prediction. Each of the implemented predictors uses a different

machine learning algorithm and/or was trained on a different

dataset. Based on the individual predictors, we built five meta-

predictors.

In the first part of this study, the aim was to analyze the

uncertainty in the disorder prediction. For that purpose, CASP 8

(122 protein sequences)16 and CASP 9 (117 protein sequences)17

sequences were used to evaluate the performance of multiple

models with respect to accuracy of protein disorder prediction.

Our results showed that more than one model deserves conside-

ration in making inferences of disorder prediction and integrating

multiple predictors with different flavors is better than using

individual components and relying on one predictor.

In the second part of the paper, which to the best of our

knowledge has not been done before, the uncertainty in the

protein sequence data is analyzed. We analyzed disorder

prediction as a function of the effect of change in the data

provided to the predictors. We applied our method to 29 489

CASP 8 and 27 450 CASP 9 homologous sequences and

studied the effect of change in the sequence similarity on the

disorder predictions. Although protein structure is generally

more conserved than sequence,18–20 we found that the regions

that are predicted as disorder are sensitive to the changes

(mutation) in the sequence unlike the regions that are predicted

as structure, suggesting that the disorder predictions are more

sensitive to changes in the sequences than structure predictions

and the conservation of disorder is indeed less stable than

conservation of structure.

2 Related work

The first machine learning method developed for protein

disorder prediction, called PONDR VL-XT21 and developed

in our lab, is based on feed-forward neural networks. It is an

enhanced model composed of two separate predictors developed

for the N- and C-terminal regions trained on terminal disordered

regions characterized by X-ray22 and a specific predictor for

middle regions trained on variously characterized long dis-

ordered regions. The inputs of these predictors are specific

sequence features, including the coordination number, net

charge, hydropathy, and the fraction of various amino acid

groups, calculated within a given window.

DISOPRED223 is the first method using support vector

machine (SVM) for the protein disorder prediction.

DISOPRED2 was trained on a dataset of missing residues of

solved structures, separately for N-, C- and middle regions.

The input was constructed from PSI-BLAST generated profiles

of position specific scoring matrices.24 The main reason for the

low false positive rate of DISOPRED2 is one of the advantages

of SVM, namely that it can incorporate greater cost of

misclassification for one of the classes, therefore it can compensate

for unbalanced datasets.

In the case of feed-forward neural networks and SVM the

prediction for each residue is independent of the prediction for

other residues. On the other hand, DISpro25 uses recurrent

networks that can propagate data from later processing stages

to earlier stages. DISpro involves the use of evolutionary information

in the form of predicted secondary structure and solvent accessibility,

and 1D-recursive neural network. In DISpro, the prediction at each

position depends on the entire sequence through a recursive network

of neighboring positions instead of using a fixed window size. The

recently published method OnD-CRF26 uses conditional random

fields (CRF) for accurately predicting the transition between struc-

tured and disordered regions in proteins. The input was constructed

from the amino acid sequence and secondary structure prediction.

Both methods, DISpro and OnD-CRF, have the ability to take into

account the disorder prediction of neighboring residues.

All aforementioned methods are specific to one type of protein

disorder only, represented either by missing residues of X-ray

structures or DisProt database.27 Their performance tested on

the other dataset resulted in significantly lower efficiencies. This

problem was first addressed by the PONDR VSL2 method.28,29 It

is composed of two specialized predictors optimized for short (r30

residues) and long (>30 residues) disordered regions that are

integrated by an independent linear SVM meta-predictor using

the inner-product kernel. The inputs of all three methods are

composed of various amino acid propensities, sequence complexity,

and optionally sequence profiles and secondary-structure predic-

tions, calculated within a sliding fixed local window. At the first

level, the two methods predict short and long disordered segments,

respectively. The meta-predictor then determines the optimal

weight to combine the output of these two composite predictors.

This architecture ensured that PONDRVSL2 has a more balanced

performance on disordered segments of various lengths.

PONDR-FIT30 is another meta-predictor based on a consensus

artificial neural network (ANN). It was developed by combining

the outputs of six individual disorder predictors. For each residue

along the sequence, the prediction results of the six individual

predictors on a sliding window of 21 residues centered at that

residue were fed into a single layer artificial neural network

(ANN) with 20 hidden units. The single output at the output

layer is the disorder score of the meta-predictor for that centered

residue. The meta-predictor (MD)31 is developed by combining a

set of several orthogonal methods that capture many types of

disorder without sacrificing the distinction of the type of disorder

that is detected. A simple arithmetic average over different

methods slightly improved over the best method. Many other

meta-predictors32–35 have been developed to improve the accuracy

of disorder prediction.

To the best of our knowledge, no work has been done before to

study uncertainty in protein disorder prediction models and data.

3 Methods

3.1 Datasets

In our experiments two datasets were used for training the

predictors. The oneside dataset, derived from PDBSelect36

with pairwise sequence identity r 25%, was used. In this

dataset, all residues that lack coordination in the PDB file were

considered to be disordered residues. The product that we call
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oneside dataset contains 389 286 structured residues and

14 908 disordered residues.

The formation of protein complexes often involves segments

that undergo disorder-to-order transitions upon formation of

the complexes. Then a dataset reduced in such segments, a

second dataset, which we will call monomeric dataset, was

assembled from single chain PDB structures. This set contains

102 636 ordered and 95 156 disordered residues. Also included

in this set were all of the disordered protein segments from the

DisProt database.27

3.2 Feature extraction

The quality of the predictor depends on the features to be

used. In our predictors, three types of features were used,

consisting of amino acid (AA) frequencies, various properties11,22

and local sequence patterns.

AA frequency-based features are the numbers of the

indicated amino acids in a given window of a prespecified length

centered at the current residue. For example, FWC means the

number of amino acid F plus the number of amino acid W plus

the number of amino acid C over a window centered at the

current residue. The list of all AA frequency-based features used

in our model is shown in Table 1.

Property-based features37 are the sum of the residue’s

property-values. Following previous studies28,29 a window of

length L = 41 centered at each residue in the sequence was

used. Since the window has varying sizes at the N-, C-terminal

regions,38 we use s and e to adjust the start and the end of the

window as follows:

s = max{1,i � (L � 1)/2}

and

e = min{M,i + (L � 1)/2}

where M is the length of the sequence and i is the current

position of the residue in the sequence.

Four features were calculated from the properties of the

amino acids. The first property, hydrophobicity, which is an

important determinant of protein chain folding, was calcu-

lated as follows:

HðiÞ ¼ 1

s� eþ 1

Xe
j¼s

hydropathyðjÞ

There are different scales for hydropathy. We based our

calculations on Kyte–Doolittle’s scale.39

The second property-based feature that was used is the

flexibility.40 It was calculated as follows:

FðiÞ ¼ 1

s� eþ 1

Xe
j¼s

flexibilityðjÞ

Since disordered proteins characterized by different experi-

ments exhibit similar complexity distributions,21 which are

shifted to lower values compared to, but significantly over-

lapping with, the distributions for ordered proteins, the com-

plexity of the sequence was used as the third property-based

feature in our model. The sequence complexity as measured by

Shannon’s entropy was calculated as:

CðiÞ ¼ �
X20
n¼1

PiðanÞ log2 PiðanÞ

where an is the amino acid and Pi is the probability of the

amino acid residue and was calculated as follows:

PiðaÞ ¼
1

s� eþ 1

Xe
n¼s

dxðjÞa

dab ¼
1 a ¼ b
0 otherwise

�
:

Finally, we also used amino acid propensities,41 which is a

scale to measure how likely an amino acid is to be unfolded,

which was calculated as:

PropðiÞ ¼ 1

s� eþ 1

Xe
j¼s

propensityðjÞ

Sequence pattern-based features were used to capture the

local sequence similarity associated with disordered and struc-

tured proteins.42 For each sequence, we slid a window of

length 15 centered at each residue. Then, we measured the

similarity between this window and each subsequence of

length 15 in the dataset. The score of aligning two subse-

quences s1 and s2 of the same length was measured as:

Disðs1; s2Þ ¼ 1� 1

s� eþ 1

Xe
j¼s

Simðs1ðjÞ; s2ðjÞÞ

where Sim(i,j) is the normalized BLOSUM62 score similarity

between the corresponding residues in both sequences. The

features were constructed by computing the fraction of the

disordered subsequences in all k nearest subsequence neighbors

to the query subsequence. The subsequence was marked as

disordered if it contains a fraction of disordered residues. This

disordered residue fraction was determined based on the fraction

of the total disordered residues in the training dataset. The

fraction of the disordered residues in the oneside dataset was

1% while that in the monomeric dataset was 48%. Five features

were constructed out of the sequence pattern features for different

values of k = 0.25%, 0.5%, 1%, 2%, and 4% of the training

dataset. Therefore, a total of 29 features were constructed for each

predictor.

Table 1 Amino acid frequency-based features used in our predictors

Features Features Features

WFYC VILM WCFIYVLHM
WYFEDH VIYFW D
E H I
M N P
R S T
V K PEVK
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3.3 Disorder prediction models

To model the uncertainty represented by the predictors, the

goal was to build a set of models using different datasets such

that they capture different information regarding the disorder

predictions. Moreover, we chose different machine learning

methods of various properties so as to capture various

information about the relationship between protein sequence

and the disorder prediction. In particular, in our experiments,

Conditional Random Field (CRF), Support Vector Machine

(SVM), Neural Network (NN) and Logistic Regression

(Logit) classifiers were trained for protein disorder prediction.

In addition, we used VSL2B developed previously in our lab as

an additional predictor that was the most accurate model at

CASP 6 and CASP 7 evaluations and overall is still one of the

most cited disorder predictors. More recent predictors devel-

oped previously were not included in our experiments since we

used CASP 8 and CASP 9 proteins for evaluation and we

wanted to make sure that these and similar sequences were not

considered when training the models that we compared in

this study.

Logit is a statistical linear model that makes no assumption

about the distribution of the independent variables. NN is a

non-linear representational classifier that has the ability to

capture the non-linear relationship between the input and the

output. SVM is a mathematical model that maps the original

finite-dimensional space into a much higher-dimensional

space, presumably making the separation easier in that space

by finding the hyperplane that maximizes the margin between

the two classes. Finally, CRF is a discriminative undirected

probabilistic graphical model that captures the correlation

between the neighboring residues.

3.4 Testing accuracy

To assess the significance of the results, we performed a

10-fold cross validation on the training dataset. The accuracy

of the predictor was measured using a hinge loss error function

as follows:

lðy; fðxÞÞ ¼ 0 y ¼ fðxÞ
1 otherwise

�

where y is the true prediction value and f(x) is the classifier

prediction. To assess the balance between the ordered and

disordered amino acids, we calculated sensitivity and specificity.

Sensitivity and specificity are statistical measures of the perfor-

mance of a binary classification test. Sensitivity measures the

proportion of actual positives which are correctly identified as

such. Specificity measures the proportion of negatives which are

correctly identified.

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TNþ FP

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives, and FN is the

number of false negatives. In addition, the balanced accuracy

was calculated as the average between sensitivity and specificity.

To compare multiple classifiers, we used ROC and the area

under the curve (AUC) measures. The ROC curve is a graphical

plot of true positive rate vs. false positive rate. ROC is used for a

binary classifier system as its discrimination threshold is varied.

3.5 Meta-predictors and model uncertainty

Model selection is usually performed to identify the model that

achieves the highest performance on any given dataset. This

selection is a source of uncertainty in the prediction so that no

predictor is fully reliable on its own. To mitigate this problem,

a set of different models were trained on different datasets and

then a meta-predictor was built on top of the five models

described in the previous section. The meta-predictor was built

not to compete with the state-of-the-art disorder predictors

but the aim is to analyze the uncertainty associated with the

disorder prediction.

A common approach for meta-predictors is to use a voting

scheme. The prediction for each residue was computed based

on the votes from all models on that particular residue. The

question is what happens if there is disagreement among the

models. One way to handle this issue is based on the weighted

average of the votes. In this method, each model is assigned a

weight for its vote. The weights are assigned in the training

process. Unfortunately, this method requires that all models

be trained on the same dataset. Therefore, this strategy cannot

be used in our framework. Another simple and commonly

used approach is majority voting. Normally, the majority

voting is considered to be the best voting scheme in the

meta-predictor framework. Here we show that, for disorder

prediction using these data and these models, majority voting

does not give the best results.

The voting scheme depends on how many votes from the

individual models are considered. Five voting schemes for

disorder prediction were tested in this paper. For each residue,

if at least x= {1,2,. . .,5} predict disorder (positive), the overall

prediction by the given meta-predictor for that residue is that

it is in a disordered region and the residue-specific prediction is

called Positive Voter x (PVx). The results for the different

voting schemes are explained in Section 4.3 and in Table 2.

3.6 Data uncertainty

A protein’s structure is more evolutionarily conserved than its

amino acid sequence.18 The evolution of disordered proteins is

driven by their structure and function just as the evolution of

ordered proteins.19,20 We studied to what extent of sequence

similarity the conservation of disorder prediction is persistent.

To this end, we applied all 10 predictors (five individual

models and five meta-predictors) to CASP 8 and CASP 9

homologous sequences and analyzed the relationship between

protein disorder prediction and the sequence similarity.

First, for each CASP 8 and CASP 9 sequence, all-against-all

BLAST was performed to search in a non-redundant protein

database for all homologous sequences. Default parameters of

BLAST were used except that a high E-value was used to

avoid bias in local similarity search. We removed all homo-

logous sequences that are either more than 10% longer or

shorter than the CASP sequence.
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A follow-up step was performed to compute the global

similarity between homologous sequences, derived from

BLAST, and the CASP sequences. The identity between the

CASP sequence and its homologous sequence was computed

as the percentage of the perfect match. Hereafter, the sequence

similarity and identity are used interchangeably.

We applied all 10 disorder predictors, consisting of five

individual predictors described in Section 3.3 and five meta-

predictors described in Section 3.5, on both CASP 8 and

CASP 9 sequences and their homologous sequences. For each

predictor, we computed the percentage of flips from disorder

to order and from order to disorder predictions. We then

analyzed the conservation of the disordered predictions at

multiple levels of similarity for all 10 predictors. The results

are summarized in Section 4.4.

4 Results and discussion

4.1 Training disorder predictors

Logit was trained on the monomeric dataset using all three

feature sets. NN, consisting of one hidden layer with 10 hidden

neurons and a log sigmoid activation function, was trained on

the monomeric dataset using the property and sequence

pattern features. SVM, with a radial basis kernel function,

was trained on the monomeric dataset using the property and

sequence pattern features. Finally, CRF was trained on the

oneside dataset using property and sequence pattern features.

Fig. 1 elucidates the training data for each model. The training

dataset, feature set and the parameters for each classifier were

optimized using 10 cross validation processes. A widely used

disorder predictor VSL2B was added to our set of predictors.

Four individual models SVM, NN, Logit and VSL2B use

0.5 as the cut-off value between the disorder and structure

predictions. CRF uses 0.03 as the cut-off value.

4.2 Evaluation of models on CASP sequences

In order to compare the performance of the five models

described in Section 3.3, CASP 8 and CASP 9 sequences were

used. None of the CASP 8 or CASP 9 sequences were used for

training any of our five disorder prediction models. The ROC

curves of these five models are presented in Fig. 2 and 3, and

their accuracies on CASP 8 and CASP 9 are shown in Table 2

and Fig. 4 and 5, respectively.

Upon comparing our 5 predictors on CASP 8 and CASP 9

data, the CRF was the best model among five individual

predictors in terms of accuracy and AUC. This provides

evidence that exploiting the correlation between disorder

predictions at neighboring residues is beneficial to the disorder

prediction task as CRF is the only one of the five models that

takes advantage of these correlations. VSL2B and CRF were

quite similar on CASP 8. VSL2B had the best sensitivity rate

on both CASP 8 and CASP 9 among the five individual

models. However, although the VSL2B predictor is applicable

to disordered regions of any length and can accurately identify

the short disordered regions, it performed worse than CRF on

CASP 9. SVM and NN were quite similar on CASP 9.

However, SVM had higher sensitivity on CASP 8. All these

Table 2 Evaluation of the 10 predictors on CASP 8 and CASP 9. CRF= Conditional Random Field, SVM= Support Vector Machines, NN=
Neural Network, Logit = Logistic Regression and PVx = x Positive Voters meta-predictors

CASP 8 CASP 9

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

CRF 0.758 � 0.060 0.850 � 0.010 0.804 � 0.030a,b 0.879 � 0.031 0.543 � 0.041 0.847 � 0.012 0.695 � 0.021a 0.773 � 0.023
SVM 0.572 � 0.087 0.862 � 0.010 0.717 � 0.044 0.760 � 0.053 0.492 � 0.035 0.848 � 0.011 0.670 � 0.017 0.721 � 0.021
NN 0.519 � 0.107 0.877 � 0.010 0.698 � 0.054 0.755 � 0.058 0.468 � 0.037 0.865 � 0.011 0.666 � 0.018 0.729 � 0.019
Logit 0.599 � 0.108 0.877 � 0.013 0.738 � 0.054 0.798 � 0.054 0.338 � 0.032 0.845 � 0.015 0.591 � 0.017 0.613 � 0.026
VSL2B 0.767 � 0.070 0.828 � 0.010 0.798 � 0.035 0.867 � 0.039 0.557 � 0.036 0.797 � 0.012 0.677 � 0.018 0.709 � 0.026
PV1 0.860 � 0.045 0.664 � 0.015 0.762 � 0.024 — 0.776 � 0.028 0.631 � 0.017 0.704 � 0.015 —
PV2 0.787 � 0.064c 0.803 � 0.012c 0.795 � 0.033c — 0.643 � 0.035c 0.779 � 0.014c 0.711 � 0.018b,c —
PV3 0.648 � 0.091 0.901 � 0.009 0.774 � 0.046 — 0.474 � 0.038 0.882 � 0.010 0.678 � 0.019 —
PV4 0.523 � 0.106 0.949 � 0.006 0.736 � 0.053 — 0.315 � 0.031 0.937 � 0.008 0.626 � 0.015 —
PV5 0.397 � 0.124 0.978 � 0.003 0.687 � 0.062 — 0.188 � 0.026 0.972 � 0.005 0.580 � 0.013 —

a Best accuracy across all individual models. b Best accuracy across all 10 predictors. c Best balance between sensitivity and specificity.

Fig. 1 Training dataset and feature set for each model.

Fig. 2 ROC for five disorder predictors on CASP 8.
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results suggest that relying on only one predictor is not fully

reliable and different datasets have different flavors of dis-

ordered proteins.43

It is worth mentioning that, according to the evaluation of the

disorder predictions on CASP 816 and CASP 9,17 our CRF

predictor also compared well with respect to those disorder

predictors that participated in CASP 8 and CASP 9. The CRF

predictor was one of the best 6 and 10 predictors with respect to

accuracy on CASP 8 and CASP 9, respectively, and was one of

the best 11 predictors with respect to AUC on CASP 8. Our CRF

model achieved comparable balanced accuracy with OnD-CRF26

on CASP 9 but was superior with respect to AUC.

The power of each of the five single predictors is demon-

strated by their application to one of the target proteins from

CASP 9. The disorder predictions for all 10 models on the

experimentally determined T0631 target sequence are shown in

Fig. 6. The C-terminal region (residues 165–168) was predicted

correctly by CRF and VSL2B and was predicted incorrectly by

the rest of the models. The region in the middle (residues

56–64) was predicted incorrectly by CRF while the rest of the

models were in a close agreement on that region. However,

VSL2B predicted other regions like residues 102–107 incorrectly.

For those cases, no predictor was fully reliable on its own which

demonstrated that there is a need to integrate multiple

predictors.44

4.3 Meta-predictors and model uncertainty

As suggested in Section 4.2, the outcome prediction of each

protein disorder predictor is not fully reliable on its own. For

example, Logit achieved very good results on CASP 8 but

performed barely better than random on CASP 9. Therefore

choosing the best predictor among a list of predictors and relying

on one predictor is typically a source of uncertainty in the

disorder prediction. So, integrating several aspects of protein

disorder predictors is indeed necessary for this task. A meta-

predictor was then built using the five models. Two schemes

could be used to integrate the individual components. Since each

predictor was trained on different datasets, weights cannot be

assigned for each predictor. Therefore, the voting scheme was

used to integrate the components of the meta-predictors.

First, we looked at the agreement among the five models

described in Section 3.3 in both positive (disordered) and negative

(structured) predictions. As illustrated in Fig. 7, the agreement

among the models could result either in true or false prediction.

The percentage of true agreement is high, especially in regions

predicted to be structured. In contrast, the percentage of false

prediction is fairly small. These results suggest that the meta-

predictor is the most reliable especially for structured regions.

To further analyze the agreement, we tested five integration

methods on CASP 8 and CASP 9. For each integration method,

a certain number of models were used for the voting on the

disorder (positive) prediction. For example, in the case of PV2

meta-predictor, the overall prediction is disorder if any two of the

underlying models predict disorder. Otherwise, the prediction is

that the residue is in a structured region. Please observe that PV3

is the commonly used majority voting algorithm. The five meta-

predictors were applied to CASP 8 and CASP 9 sequences and

the results are reported in Table 2. It reveals that the most

accurate model of five meta prediction models is PV2. Consistent

results were obtained on CASP 8 and CASP 9. In CASP 9, the

meta-predictor PV2 outperformed the CRF, while in CASP 8

CRF outperformed the PV2. However, the meta-predictor PV2

is the only predictor that has a good balance between sensitivity

and specificity which is a very desirable property for any protein

disorder predictor.

In addition, according to the evaluation17 of the disorder

prediction on CASP 9, the meta-predictor PV2 is one of the best

8 disorder predictors with respect to the balanced accuracy.

4.4 Data uncertainty

In this experiment, the objective was to study the effects of

changes in the protein sequences on disorder prediction.

Fig. 3 ROC for five disorder predictors on CASP 9.

Fig. 4 Evaluation of 10 predictors on CASP 8.

Fig. 5 Evaluation of 10 predictors on CASP 9.
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Collections of protein sequences similar to those of the CASP

target sequences were obtained and our 10 disorder predictors

were applied to the CASP target sequences and their identified

homologous sequences. As pairs of sequences became less

identical, regions predicted to be disordered in one sequence

flipped to be predicted to be structured in the other and,

similarly, regions predicted to be structured in one sequence

flipped to be predicted to be disordered in the other. Thus, an

analysis was performed on the fraction of flips of prediction

from disordered to ordered and flips from ordered to disordered

as a function of the sequence identities of the pairs of sequences

being compared. By organizing these fractions that flip their

order/disorder predictions according to their levels of sequence

identities, we end up with a correlation between level of sequence

identity and degree of conservation of disorder prediction,

providing evidence that protein structure is more evolutionarily

conserved than amino acid sequence.18 Since this analysis was

performed for all of the predictors, the various predictors can be

evaluated in terms of this measure of their conservation of

disorder prediction. Fig. 8 and 9 summarize these data.

The most interesting finding is that the fraction of flips from

disordered to ordered was larger than that from ordered to

disordered. This suggests that a small change in sequence in a

disordered region could easily flip prediction to a structured

region while regions predicted to be structured were more

robust to mutation. As shown in Fig. 8 and 9, the fractions of

flips varied a lot among predictors although some of the

models, such as SVM and NN, behaved quite similar on both

CASP 8 and CASP 9. This supports that the disorder predic-

tion is affected by the changes in the sequence. However, the

most accurate predictors PV2, CRF and VSL2B appeared to

be also the most stable with respect to changes in sequence.

Two recent studies compared evolutionary models of struc-

tured protein regions versus disordered regions. The first study

showed that disordered regions have a greater chance of

changing and that the sequence changes are structurally non-

conservative.19 In the second study, predictions of secondary

structure and predictions of disorder were compared for three

evolutionary models, which differed in their choice of amino

acid substitution matrices for assignment of the mutations,

Fig. 6 Prediction of the five models on the T0632 target sequence from CASP 9. The top part shows the prediction score of each individual model.

The horizontal red line is the threshold used for each classifier. All thresholds are aligned together to simplify the plot. The bottom parts are the

final predictions for each model. The top bar, labeled as Obs, represents the true classifications while the other five bars represent the predictions of

the five models. The red points represent the disordered residues while the blue points represent the ordered residues.

Fig. 7 Fraction of full agreement among five disorder prediction models CRF, SVM, NN, Logit and VSL2B on CASP 8 and CASP 9.
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with the finding that secondary structure predictions are

conserved while disorder predictions are not.45 Since all three

substitution matrices were biased towards the substitutions

found in structured proteins, the observed result might result

in part from the bias towards structure of the substitution

matrices.46 Here we did not use evolutionary models but

directly compared related sequences for the tendency of order

and disorder predictions to be conserved. The greater conservation

of predicted order as compared with predicted disorder supports

the view that conservation of disorder is indeed less stable than

conservation of structure, as suggested,45 and that, when conserva-

tion of disorder does occur, such an event is highly nontrivial.47

Assuming that order and disorder predictions indicate the

relative sensitivity of these two types of structures to mutation,

how can we understand the bias that mutations flip disorder to

order more frequently than the reverse? There is a long history

of reports indicating that residues on the surfaces of proteins

are much more subject to mutational change as compared to

buried residues48,49 including recent interesting developments

showing that there is a quantitative relationship between the

degree of conservation and the inverse of the local packing

density.50 Thus, given that disordered regions are poorly

packed if there is any packing at all, it is understandable that

the residues in such regions are subject to rapid nonconservative

changes just as those recently reported.19 On the other hand, the

packing of structured regions leads to preferences for conserved

amino acid changes in order to maintain both the structure and

the function of the protein.48–50 Given the relative lack of

constraint regarding mutations in disordered regions and given

the strong constraints regarding mutations in structured regions,

it is no wonder that mutations are more likely to change

structural tendencies from disorder to order compared to the

reverse.

Does this tendency for mutations to flip sequences from

disorder to order have biological implications? As already

suggested, when disorder tendencies are conserved for particular

regions, this likely indicates that important functions are being

carried out by such regions.47 Mutations that increase the

Fig. 8 Breakdown of the fraction of flips between disorder and structure into multiple levels of similarity on CASP 8 sequences. X-axis is the

sequence similarity. Y-axis is the percentage of flips. Number in parentheses is the number of homologous sequences that fall in the corresponding

sequence similarity category. Red bar represents the fraction of disorder to disorder predictions. Blue bar represents the fraction of disorder to

structure predictions. Yellow bar represents the fraction of structure to structure predictions. Green bar represents the fraction of structure to

disorder predictions.
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tendency for order could also provide a mechanism for disordered

regions to evolve into order while gaining structure-dependent

functions along the way. In this regard, in two recent studies, the

creation of new proteins was studied. In one case, new protein

loops were created by mutations leading to intron-to-exon

conversion.51 In the second case, new viral proteins arose by a

process called overprinting, in which a coding region of RNA was

translated into a new reading frame.52 In both cases, the newly

created protein was highly polar and disordered. We surmise that

if newly created sequences were hydrophobic, then such sequences

would be very unlikely to fold into 3D structure and instead

would be massively prone to non-specific aggregation and inter-

action, thus leading to cell death. However, as just mentioned,

such newly created disordered sequences could evolve both

structure and structure-dependent functions due to the tendency

of random mutations to increase structure-forming propensity.

Another interesting related observation is that IDPs are often

associated with complex diseases such as cancer, neurodegenerative

diseases, cardiovascular diseases, and diabetes,5,53 likely because

errors in signaling and regulation arising from IDPs are important

for these disease associations. These associations of IDPs with

disease led us to suggest the ‘‘disorder in disorders’’ or the D2

concept.54 Analysis of disease-inducing mutations in such IDPs

reveals that mutations that cause disorder tendencies to flip to

structure tendencies are the most likely mutations in disordered

regions to be disease-causing.55 Another recent paper provides

additional support for this idea.56

5 Software

LibSVM57 is used for SVM implementation. crChain58 is a set

of Matlab functions for chain-structured conditional random

fields. Matlab R2010b is used for all other implementations.

6 Conclusion

Two sources of uncertainty, model uncertainty and data

uncertainty, lead to inaccurate predictions. Model uncertainty

Fig. 9 Breakdown of the fraction of flips between disorder and structure into multiple levels of similarity on CASP 9 sequences. X-axis is the

sequence similarity. Y-axis is the percentage of flips. Number in parentheses is the number of homologous sequences that fall in the corresponding

sequence similarity category. Red bar represents the fraction of disorder to disorder predictions. Blue bar represents the fraction of disorder to

structure predictions. Yellow bar represents the fraction of structure to structure predictions. Green bar represents the fraction of structure to

disorder predictions.
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follows from the collection of models being compared, the

method of selection of the ‘‘best model’’ and, ultimately, the

model that is selected. We showed that relying on one predictor is

not necessarily the best choice. For example, Logit behaved quite

well on CASP 8 but it was nearly random on CASP 9. Therefore,

relying on one predictor is a way of inducing uncertainty in

disorder prediction. To reduce the model uncertainty, we built a

set of meta-predictors using five individual models trained on

different datasets. The meta-predictors were tested on CASP 8

and CASP 9 sequences no part of which was used for training

our models. The meta-predictor PV2 achieved either higher or

comparable accuracy on both CASP 8 and CASP 9 sequences. In

addition, the meta-predictor PV2 was the only predictor among

models used in our experiments that had a good balance between

sensitivity and specificity. The PV2 meta-predictor was also

reliable on the structured domains predictions.

Another source of uncertainty is data uncertainty. We analyzed

the effects of changes in the protein sequence on the disorder

prediction. We showed that protein disorder predictions were

affected by the changes in the sequence. Changes in the sequence

result in different behavior for the disorder prediction. For

example, SVM and NN were quite similar on CASP 8 and CASP

9. However, they behaved very differently on similar sequences as

shown in Fig. 8 and 9. This provides an evidence that the disorder

predictions are quite sensitive to mutations and that mutations

often cause regions with predictions indicating disorder to shift to

predictions indicating structure.

Recent studies compared evolutionary models of structured

protein regions versus disordered regions.19,45 The observed

result might result in part from the bias towards structure of

the substitution matrices used in the evolutionary models. In

this study, we directly compared related sequences for the

tendency of order and disorder predictions to be conserved.

The findings support that conservation of disorder is indeed

less stable than conservation of structure.

Still, the most accurate predictors were found to be the most

stable with respect to changes in the sequence suggesting that

research should be aimed at developing accurate models that

also have low uncertainty.
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