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Abstract

Conditional probabilistic graphical models provide a power-

ful framework for structured regression in spatio-temporal datasets

with complex correlation patterns. However, in real-life appli-

cations a large fraction of observations is often missing, which

can severely limit the representational power of these models. In

this paper we propose a Marginalized Gaussian Conditional Ran-

dom Fields (m-GCRF) structured regression model for dealing with

missing labels in partially observed temporal attributed graphs.

This method is aimed at learning with both labeled and unlabeled

parts and effectively predicting future values in a graph. The

method is even capable of learning from nodes for which the re-

sponse variable is never observed in history, which poses problems

for many state-of-the-art models that can handle missing data. The

proposed model is characterized for various missingness mecha-

nisms on 500 synthetic graphs. The benefits of the new method

are also demonstrated on a challenging application for predicting

precipitation based on partial observations of climate variables in a

temporal graph that spans the entire continental US. We also show

that the method can be useful for optimizing the costs of data col-

lection in climate applications via active reduction of the number of

weather stations to consider. In experiments on these real-world and

synthetic datasets we show that the proposed model is consistently

more accurate than alternative semi-supervised structured models,

as well as models that either use imputation to deal with missing

values or simply ignore them altogether.

1 Introduction

Learning and inference with partially observed data is

a challenge experienced in many real-world domains. Data

is often missing due to sensor failure, reluctance for shar-

ing sensitive information, high cost of collecting the data, or

failure of any part of the database. This problem is particu-

larly serious in longitudinal studies when observations on the

same units are made repeatedly over time, which is the situa-

tion considered in our article. In particular, as shown in Fig-

ure 1, we address the problem of structured regression in a

temporal graph (prediction of continuous node states in time

step t + 1), where the dependent variable (label) y is miss-

ing in a large fraction (up to 80%) of the training data (time
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points 1, 2, ..., t − 1, t). This constitutes a semi-supervised

learning (parameter estimation) problem, which is distinct

from approaches that try to infer the labels of the unlabeled

nodes of a graph [22, 24]. In our study, an even more chal-

lenging problem is considered, where labels at some nodes

are missing at all time steps. In addition, each node of a

graph is described through a set of explanatory variables X

(also called input variables or input attributes), which makes

graph attributed. The graph is also temporal and weighted

and is observed in discrete snapshots over time, as also ex-

hibited by Figure 1.

Figure 1: Attributed weighted temporal partially observed graph

in which input variables are observed and dependent variables are

missing in a large fraction of training data (in blue nodes). The

goal is to learn parameters of the model on training data and predict

continuous target values of test examples (yellow nodes).

The nodes in a graphical model are not independent, so

ignoring training data with missing labels might disregard

too much information. In Figure 1, one can see that if nodes

with missing labels are ignored, in this simple example the

entire graph structure would be lost and modeling would be

limited to unstructured regression or time-series prediction

on individual nodes. Utilizing the graph structure may there-

fore make better use of unlabeled data, especially when lots

of nodes have missing labels. In this study, we are con-

sidering a discriminative continuous probabilistic graphical

model called Gaussian Conditional Random Fields (GCRF)

[17]. Our goal is to extend the GCRF model to naturally

handle missing labels, rather than expecting the missing data

to be treated in a preprocessing stage. We propose an ex-

tended marginalized GCRF method in which we address the

missing label instances by marginalizing out their effect on

labeled data, and thus utilizing the information of all obser-

vations and preserving the observed graph structure.

The motivating application that we address in this study

is the climate problem of precipitation prediction at the level

of individual stations, observed spatially as a graph over

time. At some stations measurements of precipitation are
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missing, but lower resolution predictions of some related

climate attributes are provided by climate models. An

additional challenge is to estimate future precipitation at

additional sites where precipitation is never measured.

The paper is structured as follows. First, in Section 2

we give a brief overview of the existing approaches for han-

dling missing labels. In Section 3 we present a marginalized-

GCRF model as an extension to the existing GCRF model

for handling missing data. The datasets used for evalua-

tion of our method are described in Section 4. In Sec-

tion 5 the experimental setup, factors that influence the per-

formance of the models, the results on synthetic and real-

world problems, and their interpretations are presented. Fi-

nally, the conclusion is given in Section 6. A supplemen-

tary file is provided for this paper to elaborate certain topics

more in–depth and we refer to it in the following text as Ap-

pendix. This file, as well as the m-GCRF code are provided

at http://www.dabi.temple.edu/∼zoran/code/sdm15 .

2 Related Work

Treatment of missing data is an old theme in machine

learning and statistics literature, and is important because

this problem occurs in many real-world datasets. Strategies

proposed to address this problem are described in the rich

literature on this topic [10]. In this study we are focused on

missing continuous labels in structured regression problems.

One of the standard ways of handling missing values is

imputing values based on some predictive model, and then

applying the analysis on a fully observed dataset. To exploit

the graph structure, previous studies have proposed impu-

tation of missing values based on the exponential random

graph model [15]. The limitation of such an approach is that

it is slow, as it requires Gibbs sampling, and so it cannot

handle large graphs. Imputation of missing values can also

be accomplished using matrix (or tensor) factorization meth-

ods. These methods can impute missing values with high

accuracy even when large percentages (up to 95%) of values

are missing [1]. They are also quite fast, allowing the ap-

plication on dense tensors with a million entries, and sparse

tensors with dimensions 1000x1000x1000. However, these

methods are not suited for the case when a variable (or node

of a graph) is never observed in the dataset, since they can-

not recover the factors because there is no enough informa-

tion [1], which is a challenging problem we are considering

in this paper. Furthermore, imputation-based methods use

only point estimates of the missing values, effectively ignor-

ing the prediction uncertainty when learning with imputed

values. Techniques known as Multiple Imputation (MI) try

to correct for this drawback, by sampling from the posterior

distribution of missing values. On the other hand, these tech-

niques can be less effective when a larger fraction of data is

missing [8], and can be computationally very demanding.

Some methods do not require a complete (or imputed)

dataset, since they can handle unlabeled data intrinsically.

For structured prediction, generative probabilistic models

have a natural way for using unlabeled data, since they

model the joint distribution of both explanatory and de-

pendent variables. However such approaches have certain

drawbacks[14], which is why discriminative models are of-

ten used in practice. On the other hand, with discrimina-

tive models it is more difficult to make use of the unlabeled

data. Some related studies have approached this problem by

creating hybrid discriminative-generative models [9]. How-

ever, in such hybrid models the number of parameters that

need to be estimated is usually large. In addition, these re-

lated studies are focused on classification, while our problem

of interest is regression [21]. Efficient Conditional Random

Fields-based methods were also proposed for treating miss-

ing labels on graphs [5]. However, published methods of that

type are applicable only to classification problems [2, 5].

In [24] the authors aim to address the semi-supervised

setting that can be used for regression, where the goal

was to infer the unknown labels of nodes in a graph, by

utilizing a structure derived from the Radial Basis Functions

(we compared our approach to this method experimentally).

Another approach that models Gaussian Fields (GF) defined

over nearest neighbor graphs in semi-supervised fashion was

described in [22]. In [22], authors aim to infer the unknown

labels of nodes in a graph, by optimizing parameters using

marginal log-likelihood induced from the joint GF density

they model. In the experiments, our proposed model is also

compared to this model. However, since the authors did not

provide the code and our implementation according to the

paper [22] produced poor results, we will not show them in

experimental section.

There also exist variants of the conditional graphical

CRF models for regression (e.g. the CCRF [16], or GCRF

[17] models). However, these structured regression models

are not designed to cope with unlabeled data, other than

ignoring the portion of data with missing labels.

3 The Model

3.1 Gaussian Conditional Random Fields (GCRF) We

are using the class of discriminative models called Gaussian

conditional random fields (GCRF) [17] for regression in at-

tributed weighted temporal graphs, where explanatory vari-

ables X are observed in each node i and a dependent con-

tinuous variable y corresponds to the state of the nodes. The

GCRF models the conditional distribution P (y|X) over all

outputs y given all inputs X:

(3.1) P (y|X) =
1

Z
exp(−

N∑
i=1

K∑
k=1

αk(yi −Rk(X))2

−

L∑
l=1

∑
i∼j

βlSij
(l)(yi − yj)

2)
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where α and β are parameters of the association and the

interaction potential, respectively and the normalization term

Z(X,α, β) is an integral over y of the term in the exponent.

In order to enable efficient training and inference of

the GCRF model, association (3.2) and interaction (3.3)

potentials are modeled as quadratic functions of y:

(3.2) A(α, yi, X) = −
N∑

i=1

K∑

k=1

αk(yi −Rk(X))2

(3.3) I(β, yi, yj , X) = −
L∑

l=1

∑

i∼j

βlSij
(l)(yi − yj)

2

where Rk(X) are unstructured models (functions that map

X → yi for each node in a graph, and are learned as classical

regression functions taking only X into account; as a special

case, only Xi can be used as X) and K is the number of those

predictors. The interaction potential is modeled to mark

the similarity of two nodes’ target values according to user

defined measure S
(l)
ij (that defines the weighted undirected

graph structure between labels), where the user is allowed to

provide multiple (L) similarity measures [17].

This choice of feature functions enables us to represent

this distribution as a multivariate Gaussian, which results in

the Gaussian conditional random fields (GCRF) model [17]:

(3.4) P (y|X) =
1

(2π)
N

2 | Σ |
1

2

exp

(

−
1

2
(y − µ)TQ(y − µ)

)

where Q is the inverse covariance (precision) matrix:

(3.5) Q =

{

2
∑K

k=1 αk + 2
∑

h

∑L

l=1 βlS
(l)
ih , i = j

−2
∑L

l=1 βlS
(l)
ij , i 6= j

In our experiments, Q is a block-diagonal precision matrix

of NTxNT dimension, where N is the number of nodes in

the graph and T is the number of time steps over which the

graph is observed. This way of building a large Q matrix,

consisting of blocks of adjacency matrices corresponding to

individual time steps, allows capturing evolving structural

changes of the temporal graph (as shown in Figure 1, the

structure of the graph changes from time step to time step).

Since the modeled distribution is multivariate Gaussian,

the inference is done by computing the expectations in the

matrix form µ = Q−1b , where bi = 2
(
∑K

k=1 αkRk(X)
)

.

The learning task is to optimize parameters α and β by max-

imizing the conditional log–likelihood, which is a convex ob-

jective, and can be optimized using quasi-newton optimiza-

tion techniques. To ensure the distribution is Gaussian, the

Q matrix must be positive definite. To achieve this, expo-

nential transformation of parameters is used, as suggested

in [16], to make the optimization unconstrained. The pa-

rameters are learned by the gradient based methods, and the

partial derivatives of the conditional log–likelihood are [17]:
.

(3.6)
∂P

∂αk

= −
1

2
(y − µ)T

∂Q

∂αk

(y − µ)+

(
∂b

∂αk

− µ
T ∂Q

∂αk

)(y − µ) +
1

2
Tr(Q−1 ∂Q

∂αk

)

(3.7)
∂P

∂βl

= −
1

2
(y + µ)T

∂Q

∂βl

(y − µ) +
1

2
Tr(Q−1 ∂Q

∂βl

)

The inference task is straightforward, since GCRF is

represented by the multivariate Gaussian distribution. The

maximum posterior estimate of y is obtained by computing

the expected value µ: y∗ = argmax
︸ ︷︷ ︸

y

P (y|X) = µ.

3.2 m-GCRF for learning with missing values Our ob-

jective is to utilize the entire observed graph structure in

cases with missing labels in data. Ignoring nodes that have

missing values with GCRF would mean a loss of information

from graph structure and building a conditional distribution

on labeled data only. If we decompose the original model

based on the availability of the labels, we would have:

(3.8) P

([
yL
yU

] ∣
∣
∣
∣

[
XL

XU

])

∼ N

([
µL

µU

]

,

[
QLL QLU

QUL QUU

]−1
)

where subscript L denotes the labeled part of the dataset, and

U the unlabeled. GCRF that ignores missing data (i-GCRF)

would therefore have the model based only on labeled data:

(3.9) P (yL|XL) ∼ N (µL, Q
−1
LL)

where QLL is a precision matrix of exclusively labeled data,

excluding the influence of unlabeled graph nodes.

Instead of ignoring nodes with missing labels, we want

to include the information from xU that is available for those

nodes. Marginalization is a challenging task for regression

in general graphical models since it requires integration over

hidden nodes’ values. A standard approach would be to

use the EM algorithm which optimizes the lower bound of

the likelihood, but since our model is Gaussian, we can

use matrix calculations to express the true gradient of the

marginal likelihood over the labeled data. EM is also shown

not to perform well when a large chunk of information is

missing [19], as it is using only point estimates of the missing

labels. Methods for Multiple Imputation (MI) address this

problem, but they are computationally demanding as they

use sampling to approximate marginal distributions [18],

which we can tackle directly in the Gaussian framework.

We define a GCRF model that marginalizes over the

unlabeled examples as:

(3.10) p(yL|XL, XU ) =

∫

yU

p(yL, yU |XL, XU )du

As the original distribution is Gaussian, marginalizing over a
subset of variables yields another Gaussian distribution [3]:

(3.11) p(yL|XL, XU ) ∼ N (µ∗
L, Q

∗−1
L )
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with parameters defined as:

(3.12) µ
∗
L = µL, Q

∗−1
L =

(
QLL −QLUQ

−1
UUQUL

)−1

The total derivative of the precision matrix is given by:

(3.13) dQ
∗
L = dQLL − dQLUQ

−1
UUQUL+

QLUQ
−1
UUdQUUQ

−1
UUQUL −QLUQ

−1
UUdQUL

By calculating gradients of (3.11) with respect to the pa-

rameters α and β, we obtain equations (3.6) and (3.7) with

precision matrix defined as Q∗

L (3.12) and its derivatives cal-

culated as in (3.13), and we can optimize the marginal like-

lihood over the labeled nodes. This yields a straightforward,

but an effective method for using both labeled and unlabeled

data, as will be shown in the experimental part of the paper.

With this marginalization model (called m-GCRF) informa-

tion on all links is retained, and the observed attributes of

nodes (xU ) with missing labels are also included in learn-

ing process. This can be inferred by observing the preci-

sion matrix definition (3.12) which takes into account the

inverse covariance between labeled and unlabeled data QUL

and the covariance of unlabeled nodes Q−1
UU . Both are cal-

culated with dependency on node attributes (X), and carry

necessary information on the complete graph structure. The

influence that spreads over some highly connected, but unla-

beled, nodes is also conserved.

Moreover, marginalizing takes the whole distribution

over the missing values into account and, unlike point es-

timates, will produce different effects when the uncertainty

of the missing variables under the model is high. This can be

seen from the equation (3.10), that can be rewritten as:

(3.14) p(yL|XL, XU ) =

∫
yU

p(yL|yU , XL, XU )p(yU |XL, XU )du

The second term under the integral is the modeled distribu-

tion of the unlabeled nodes, and can be seen as a prior for the

observed likelihood. If the uncertainty of the label estimates

for the unlabeled part is very high, this prior acts effectively

as a uniform prior and does not affect the distribution over

the labeled part.

4 Data

In this section we will describe data-generation process

of synthetic graphs and introduce data set from climate do-

main we will use in Section 5.2 to characterize effectiveness

of our method and alternative approaches.

4.1 Synthetic data In total, 494 synthetic datasets were

generated to evaluate our proposed model and the benchmark

models. Experiments aimed to characterize the accuracy of

prediction with missing data for various mechanisms were

conducted on a 1600 node graph embedded in a 40x40 grid

observed in 5 time steps, where 4 independent time steps

were used for training and 1 for testing. In addition, bigger

graphs (with 50x50=2500, 70x70=4,900, 100x100=10,000

and 120x120=14,400 nodes) were used to characterize scale

up properties of the methods as reported in Appendix C.

Each dataset is constructed using GCRF as a generative

process. The unstructured model in this GCRF was a Feed-

forward Neural Network (NN) with 30 input variables (in the

range 0.01 to 0.1), 60 hidden nodes with sigmoid activation,

and a single output. This NN with 10% additive noise

in input is applied to a set of unlabeled examples (30-

dimensional tuples) and these examples were distributed on

a grid structure based on the value of the NN output, with a

tendency for growth of the output values from the lower left

to the upper right corner of the grid, as shown at Figure 2.

Figure 2: Heatmap of the

values of response variable

y in the grid

The reason for the described

data generation process is an as-

sumption that similar values will

be closer positioned in the space

(grid). A data similarity ma-

trix containing weights of links

between nodes is also generated

randomly with weight values in

a range from 0.5 to 1. Although

GCRF method enables modeling evolving structural changes

(as explained in Section 3.1), in this paper we assume a static

structure since the interconnection patterns among nodes

in the climate forecasting problem motivating our study is

static. This similarity matrix S is used together with the de-

scribed neural network R to construct a GCRF model (3.1).

The dependent variable y is generated by this GCRF model

and is used to label all nodes in all datasets (values of y fell

in the range from 19 to 23).

Experiments on the synthetic 40x40 grid data were con-

ducted with 7 different missingness mechanisms: Random,

Weakly connected, Strongly connected, Strongly connected

excluding neighbors, Mid-range y values, Remote neighbor-

hood, Extreme y values (detailed descriptions of missingness

mechanisms are given in Section 5.1). For each missingness

mechanism, seven kinds of data products were constructed

with 0 to 80% of labels missing. In all experiments, a label

removed from a node was removed at all training time steps.

For each type of data and each fraction of missing labels, 10

such data sets were constructed, to account for the sample

variance. Therefore, a total of 490 synthetic datasets were

used in the experiments reported in section 5.1 (7 types of

missingness x 7 fractions of missing values x 10 repeats).

4.2 Precipitation data A dataset of precipitation records

from meteorological stations across the USA has been ac-

quired from NOAA’s National Climate Data Center (NCDC)

[11]. Most of these stations are U.S. Cooperative Observing

Network stations generally located in rural locations, while

some are National Weather Service First-Order stations that

are often located in more urbanized environments. A tem-

poral graph is constructed such that nodes at each time slice
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represent 1218 stations. The spatial information is used for

calculating similarities (correlations) between stations, but

the graph is constructed such that only stations within certain

diameter are connected, thus the graphs structure is sparse.

In addition to precipitation, there are 6 more variables

at each node which we use as input attributes for each

station. These variables are acquired from the NCEP/NCAR

Reanalysis 1 project [6], which is using a state-of-the-

art analysis/forecast system to predict climate parameters

using past data from 1948 to the present (data available on

NOAA website: http://www.esrl.noaa.gov/psd/). These 6

variables are omega (Lagrangian tendency of air pressure),

precipitable water, relative humidity, temperature, u-wind,

and w-wind (zonal and meridional components of the wind,

respectively). Our goal is to make use of these variables and

try to exploit inter-dependencies between stations in order

to improve the prediction of precipitation amounts in these

stations. Since these attributes are obtained on the lower

resolution than individual stations we used the values of

attributes from the nearest neighbor. To improve predictions,

we perform square root transformation of the target variable

and did cross-validation during the training to learn the

hyper–parameters of the models.

5 Experiments

To evaluate the effectiveness of the m-GCRF model, we

are comparing to several benchmarks (detailed description

and comparison of alternative methods with which we ex-

perimentally compared to is given in the Appendix B):

Neural Networks (NN) We test the performance of

the unstructured predictor (a Neural Network model) which

captures the nonlinear influence of input variables x, and is

effectively ignoring the unlabeled part of the training data.

This kind of model is common in the domain of hydrology

[4], including the precipitation prediction domain [13, 20].

i-GCRF We also evaluate the i-GCRF model that uti-

lizes the unstructured predictor (NN) and the available struc-

ture over the labeled data as described in Section 3.2.

Multiple Imputation (MI) To apply the MI procedure

in our experiments we build a predictor (Gaussian process

for regression) to infer the missing values based on always

available input attributes (x variables). This predictor out-

puts a predictive distribution (Gaussian) from which we can

sample. Five imputed datasets (samples) are then used to

train the GCRF model that outputs the final (averaged) struc-

tured predictions (The parameters (α and β) over the samples

are then averaged to produce the final model). This bench-

mark method thus utilizes the information from uncertainties

in imputed values, and we use it to characterize the impor-

tance of knowing these uncertainties. Furthermore, we use

MI because it is a sampling method that approximates the

direct marginalization (integral (3.14)) over the whole distri-

bution of the unknown values [23], which in many cases is

infeasible to compute directly.

Gaussian Fields with Harmonic Properties Our

method is also compared to a previous semi-supervised and

structured model [24] summarized in Appendix B.3. Since

we have unknown labels in both parts of the training data

and all of the test data, we tested this approach over all un-

known labels. We calculated weight matrix as described in

Appendix (2.4), and used this weight matrix and labeled ex-

amples to infer values of unlabeled examples, as described in

Appendix (2.1), consisting of test nodes and training nodes

with missing labels. Then we can measure the performance

of this method on test nodes in order to compare with alter-

natives. This approach produced poor results on our datasets

(R2 up to 0.35 for all missingness mechanisms) and there-

fore we are not showing these results on figures together with

the rest of alternative methods.

Gaussian Fields with Harmonic Properties as an im-

putation method (HGF-GCRF) To better utilize Gaussian

Fields with Harmonic Properties, we used it to infer the val-

ues of the missing labels in the training data only. Inference

about unlabeled data is done using labeled examples and a

defined graph structure in each time step. Then we used

GCRF on this imputed data to utilize both the input features

and the known structure in order to produce predictions on

the test data (as described in Appendix B.2). This approach

was named HGF-GCRF in our experiments.

First we evaluated the described methods using syn-

thetic data. For each experiment, we generated synthetic

graphs of a certain type, each emphasizing the impact of

some data properties on the effect of models we compare, as

will be described. All experiments using synthetic graphs are

repeated on 10 instances of a graph type in order to analyze

the variance of the results. Finally, we validate the effective-

ness of the methods on a real-world climate application for

precipitation prediction, where the missing labels are present

in the observed graph history that we use for training. In both

types of datasets, nodes of a graph are completely unlabeled

in history, which makes the task more challenging.

The results are shown in terms of mean and standard

deviation of R2 as the accuracy measure (1 is the best

result and 0 is the mean prediction; shown on y–axes of

the following figures) for 0 to 80% of missingness (on x–

axes of the following figures) in data for the proposed m-

GCRF model and previously mentioned benchmark models:

i-GCRF, HGF-GCRF, Multiple Imputation, as well as an

unstructured Neural Network model.

5.1 Characterization on 494 Synthetic Spatial Graphs

Prediction results (time step t + 1) of the models trained

(1, 2..., t) on data with 80% of missing values for one of

the missingness mechanisms (Experiment 5, Figure 8), are

shown in Figure 3 as an example. It is clear from the figure

that m-GCRF is able to reconstruct the values in the best
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way comparing to the other models (results for MI procedure

are not shown since this model had negative R2). In the

following sections we are going to describe experiments for

all missingness processes, but for the lack of the space,

figures similar to Figure 3 are omitted and the results are

shown in terms of mean and standard deviation of R2 for

different fractions of missing data.

Figure 3: Predictions (second row in the figure) of the models

trained on the data with 80% of missing values

5.1.1 Node labels missing at random In Experiment 1

the objective was to examine how the models will perform

in the case when labels are missing completely at random,

i.e. where there is no control over the missingness process of

nodes. For this experiment 10 40x40 grid-based graphs ob-

served over 5 time steps are used, as explained in Section 4.1.

Figure 4: Accuracy (R2) of the five models when labels are missing

completely at random

From the results of Experiment 1 (Figure 4) we first see

that under fully labeled data (0% missing), both i-GCRF and

the extended m-GCRF model, performed significantly bet-

ter (more than 20% larger R2) than the unstructured Neu-

ral Network model, showing that the grid structure carries

a significant amount of information about the label values.

By increasing the percentage of missing data, we find that

m-GCRF was consistently more accurate than other consid-

ered methods (i-GCRF, HGF-GCRF, MI, and NN). In this

scenario, the strategy of ignoring unlabeled data is losing in-

formation from the structure after only 10% of missing data,

whereas the marginalization approach seems to be more re-

silient to missing labels, up to 20%. Using any data imputa-

tion method was better than ignoring information about the

unlabeled part of the dataset when a small fraction of labels

was missing. However, these approaches failed when there

was more than 10% (for MI) or 20% (for HGF-GCRF) of

missing data. Also, we found that imputation-based meth-

ods were not stable, since the standard deviation of R2 for

these models was large.

5.1.2 Missing labels of weakly connected nodes in a

graph The goal of Experiment 2 was to determine the

effect of removing less structurally important nodes. We

started by removing the least connected nodes, i.e. the nodes

whose total sum of weights is minimal (smallest weighted

node degree). We are assuming that these nodes will not

greatly compromise the structure of the graph.

Figure 5: Accuracy (R2) of the five models when less connected

nodes (structurally less important) are missing

Here, in contrast to Experiment 1, we found (Figure 5)

that i-GCRF was more accurate than NN for all fractions of

missing data. That is to be expected, since the effect of re-

moving first weakly connected nodes is that the remaining

structure was more informative, as compared to removing

nodes completely at random. Additionally, in these exper-

iments m-GCRF retained good accuracy even when a large

percentage of (less connected) nodes was missing, greatly

outperforming the i-GCRF method. We found that remov-

ing weakly connected nodes hurts HGF-GCRF’s accuracy,

especially when there is a small percentage of missing la-

bels, since imputation with Gaussian fields will smooth val-

ues of less connected nodes too much. We observed that this

method becomes more accurate when excluding nodes that

are more connected to their neighbors, but since the fraction

of labeled data is not large, the HGF-GCRF method is not

able to reconstruct all values correctly using only point esti-

mate predictions. We found out that the MI method is a poor

choice here, and that variance of such estimates was large.

We also note that although the variance of different models

seems to overlap, in each instance of the 10 experimental

trials the ranking of the models was the same.

5.1.3 Missing labels of strongly connected nodes in a

graph In Experiment 3, models were evaluated for the case

when nodes that are strongly connected (larger weighted

node degree) with their neighbors are missing (Figure 6).

This is the opposite scenario from Experiment 2, and so

methods aimed to recover values of missing labels based on

structure should be more accurate in such applications.

222 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Figure 6: Accuracy (R2) of the models when strongly connected

nodes are missing

In Figure 6 we see a more significant difference (20%

of R2) between i-GCRF and m-GCRF even for graphs

with 5% missing data. This shows that ignoring nodes

with missing values that are structurally important is a bad

strategy, even for small percentages of missing data. As

expected in this scenario, HGF-GCRF was able to capture

dependencies between these strongly connected nodes and

use these connections to rebuild the missing values.

Another interesting scenario is examined in Experi-

ment 4, where nodes that are missing are strongly connected

(as in Experiment 3), but we never removed the neighboring

nodes, so the Markov blanket of each node is preserved.

Figure 7: Accuracy (R2) of the models when strongly connected,

but not neighboring, nodes are missing

The results from this scenario (Figure 7) imply that

if the neighborhood of each missing node is known, the

node could be recovered with more certainty, and m-GCRF

can sustain better accuracy on larger percentages of missing

labels. This means that if we can influence the mechanism

of missingness (e.g. we need to choose how to reduce the

labeled training set), this aspect should not be neglected.

We found a similar pattern when imputing data using GF

(inference about unlabeled nodes via smoothing of labeled

neighborhood in this situation really makes sense). However,

since it is using only information from structure and point

estimation, the method accuracy was lower when more than

10% of labels were missing and structure was compromised.

5.1.4 Missing labels of entire neighborhoods Experi-

ments 5, 6 and 7 are aimed to evaluate algorithms when the

cause of missingness is in the neighborhood structure. For

example, when sensors start going down in a chain reaction

from a particular sensor, which, for instance, is caused by

spreading fire. In particular, Experiment 5 evaluates algo-

rithms when data starts missing from the center of the grid

structure and expands further out (Figure 8). Experiment

6 evaluates accuracy when missingness starts from the up-

per left corner of the grid structure, where there are mostly

middle-range values of the response variable y (Figure 9).

Experiment 7 is characterizing a situation when data starts

missing from the upper right corner of the grid (Figure 10),

where values of the response variable y are largest.

Figure 8: Missing labels from center of the grid, where all the

extreme values get preserved even for high levels of missingness

Figure 9: Missing labels from upper left corner, where there are

mostly mid-valued nodes, but soon spreading to a whole grid

Figure 10: Labels missing from the part of the grid where only large

values accumulate, introducing bias to the models

In all three situations, we notice improvements in the

accuracy from the unstructured predictor in both i-GCRF

and m-GCRF, since the nodes that are missing are missed

along with their neighboring nodes. Therefore, the rest of the

structure is fairly well preserved and even i-GCRF should

benefit from information of the existing structure. We also

see good performance of HGF-GCRF when small chunks

of data are missing, and very unstable performance of the

MI method. In Experiment 5, since the data starts missing

from the center of the grid, we only remove mid-ranged

values, and the extreme values of the response variable y are

preserved. In the results (Figure 8) we see a huge difference

between m-GCRF and i-GCRF on 40-80% of missing data.
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In Experiment 6, data of one kind (middle-range values)

is omitted first, but after 40% missing data the extremes

(high and low values of y) also start missing (they are not

preserved as in Experiment 5). Therefore, we see a drop in

performance of m-GCRF when more than 60% of data is

missing, such that missingness affects both the highest and

lowest values. Finally, Figure 10 from Experiment 7 shows

that if nodes are missing mainly with large values (extremes)

of y, this will cause high bias in the estimators, and the

performance will drop significantly. This corresponds to the

situation of data Missing Not At Random, and is known to

have this effect theoretically [12].

5.2 Climate Application: Precipitation Prediction In

precipitation data described in Section 4.2, there are no miss-

ing values in input variables, but about 5% of the depen-

dent variables (precipitations) are missing. Our experiments

on this data (Figure 11 for the fraction of missing values

labeled ”Natural”–(about 5%)) provide evidence that struc-

tured models bring some accuracy improvement versus us-

ing an unstructured NN model. Consequently, the graph

structure (spatial similarity) carries useful information that

structured models were able to exploit. When comparing

structured models, we also found that using m-GCRF was

beneficial, as additional useful information is extracted by

marginalizing missing labels instead of ignoring such cases.

In follow-up experiments with precipitation data (to-

gether with those in Appendix D) we explored two scenar-

ios inspired by real-world situations in which there would be

more missing labels. In one of these scenarios the fraction of

missing values naturally increases, while in the other we are

asked to reduce data collection in a way that minimizes the

information loss.

5.2.1 Naturally increased missing labels In Precipitation

Experiment 8 the objective was to examine how these five

models would perform if we observed even more missing

data. We modeled the probability distribution of originally

missing nodes and used it to randomly add more missing

values on nodes that are more likely to lose labels according

to this distribution. So, this experiment explores the scenario

of increasing missing data that could naturally occur under a

process similar to the original data missingness mechanism.

The results of this experiment are shown in Figure 11, where

labels on the x axis correspond to the fraction of additional

missing labels. Here we again see very similar behavior as in

the synthetic data experiments described in Section 5.1. By

increasing the percentage of missing data, we find that m-

GCRF was consistently more accurate than other considered

methods (i-GCRF, HGF–GCRF, MI, and NN). i-GCRF and

the extended m-GCRF model, performed better than the NN

model, showing that the spatial similarity carries a significant

amount of information about the label values. Imputation–

based methods were also better than unstructured model

when a small fraction of labels was missing. However,

the MI approach failed when there was more than 10% of

missing labels. Using imputation with HGF–GCRF is a

marginally better option than ignoring approach, but is not

as good as using m-GCRF. Additional experiments were

conducted with different missingness mechanisms on this

data with all these methods, but because of limited space,

the results are shown in Appendix D.

Figure 11: Accuracy (R2) of all models on precipitation dataset

with additional missing labels according to the ”natural” missing-

ness process

5.2.2 Active restriction of labels Finally, in Experiment

9 we explore the scenario in which the objective is to

reduce the total number of labels in the dataset for future

data collection. A practical situation of this kind arises

when there is a need to reduce the cost of collecting the

meteorological data by closing some stations or learning

with spatial interpolation on non-existing stations on a lower

scale. By examining how models behave under different

control of missingness mechanisms, we can significantly

help decision-making regarding the relevance of various

weather stations for accuracy of the overall predictive model.

We considered several missingness mechanisms. First,

we removed nodes at random, as in Experiment 1. Also,

we removed weakly connected, or conversely, strongly con-

nected nodes, as in Experiments 2 and 4. Since the con-

nections are determined spatially, this means that strongly

connected nodes are ones where there are more stations in

the vicinity. Here we also used the strategy of removing la-

bels from nodes that are not neighboring, thus preserving the

Markov blanket of each node. Finally, we explored the strat-

egy of removing labels from nodes that historically did not

have extreme precipitation values, as in Experiment 5. The

results are shown in Figure 12. Note that the results in this

figure are shown only for m-GCRF, since the objective was

to determine which data reduction mechanism results in the

largest accuracy of m-GCRF prediction (but the comparison

of all five methods is given in Appendix D).

We found that to control prediction error due to data

missingness, removing a large fraction of nodes at random

or according to the natural missingness distribution is a

bad choice, since it affects the accuracy the most. Instead,

it is better to remove strongly connected nodes (without

removing their neighboring nodes) if removing less than
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Figure 12: Accuracy of m-GCRF under different strategies of

actively removing labels with additional missing labels

40% of data. We can interpret this as discarding precipitation

measuring stations that have many other nearby stations,

but keeping the neighbors, since the strongly correlated

neighbors are useful in reconstruction of the missing values

at the removed stations.

6 Conclusion

Longitudinally collected structured data often has a

large fraction of missing values. Moreover, nodes of a graph

might be completely unlabeled in the history, which makes

the task more challenging. For regression in such situations,

we propose a m-GCRF model. Our experiments on about

500 spatio-temporal graphs with up to 80% of missing values

provide evidence that m-GCRF is consistently more accurate

under various missingness mechanisms than an alternative i-

GCRF model that ignores unlabeled data, and than in the

domain commonly used unstructured nonlinear regression

model. Experiments also show that the proposed model

outperformed alternative imputation-based methods. The

m-GCRF model is successfully applied to a challenging

problem of predicting precipitation based on a temporal

graph with missing observations. We also show that if there

is a need to actively decrease the amount of labels in the data

(e.g. because of the cost of labeling), certain data reduction

strategies can be more effective, as they introduce less error

when using m-GCRF for prediction.
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