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Abstract— In a data-mining approach, a model for 

estimation of Aerosol Optical Depth (AOD) from satellite 

observations is learned using collocated satellite and ground-

based observations. For accurate learning of such a spatio-

temporal model, it is important to collect ground-based data 

from a large number of sites. The objective of this project is 

to determine appropriate locations for the next set of 

ground-based data collection sites to maximize accuracy of 

AOD estimation. Ideally, a new site should capture the most 

significant unseen aerosol patterns and should be the least 

correlated with the previously observed patterns. We 

propose achieving this aim by selecting the locations on 

which the existing prediction model is the most uncertain. 

Several criteria were considered for site selection, including 

uncertainty, spatial diversity, similarity in temporal pattern, 

and their combination. Extensive experiments on globally 

distributed data over 90 AERONET sites from the years 

2005 and 2006 provide strong evidence that sites selected 

using the proposed algorithms improve the overall AOD 

prediction accuracy at a faster rate than those selected 

randomly or based on spatial diversity among sites.  

Keywords-aerosol estimation, sensor site selection, 

uncertainty sampling, active learning 

I.  INTRODUCTION 

In many remote sensing applications, especially those 

involving learning of some spatio-temporal phenomena, it 

is important to have sensor sites in places covering the 

major distribution patterns of the observed phenomenon. 

A question of fundamental importance is where to place 

these sensors given a set of possible locations. An 

application of this kind considered in this study is 

estimation, or retrieval, of Aerosol Optical Depth (AOD), 

which is a measure of the amount of sunlight absorbed by 

the atmospheric aerosols. Aerosols are small solid or 

liquid particles suspended in air, emanating from natural 

or man-made sources. One of the biggest challenges of 

today’s climate research is to characterize and quantify 

the effect of aerosols on Earth’s radiation budget.  

Two types of sensors which collect data about 

aerosols are used to estimate AOD. They are satellite-

based instruments such as MODIS and MISR [8] and 

ground-based instruments represented by the AErosol 

RObotic NETwork (AERONET) [3]. The former has 

higher spatial but lower temporal coverage and results in 

moderate AOD retrieval accuracy, whereas the later 

provides highly accurate retrieval but has very limited 

spatial coverage.  

Traditional knowledge-based methods for AOD 

estimation from satellite observations are developed 

according to an understanding of physical properties of 

the aerosol followed by validation according to the 

ground-based observations [4]. Neural networks trained 

on satellite observations spatially-temporally merged with 

AERONET retrievals resulted in significantly improved 

accuracy of AOD retrievals as compared to the 

knowledge-based approach [7]. This improvement comes 

from the utilization of highly accurate ground-based 

measurements as targets during training of the neural 

network retrieval model. So, one can argue that adding 

more AERONET sensors will increase their retrieval 

accuracy further.  

Intuitively, this improvement will be maximized if the 

new sensors are placed to capture the dominant AOD 

patterns unobserved by the existing set of AERONET 

sensors. This means that a pattern observed by the new 

sensor should be the least correlated with the already seen 

patterns. Given a set of AERONET sites already in place, 

the problem being addressed in this paper is to select a 

predetermined number of new sites from a fixed set of 

possible alternatives so as to maximize the improvement 

in retrieval accuracy. 

Selection of a new site that is the least correlated with 

the set of existing sensors could be described as selection 

of a site where the predictor trained on the data generated 

from the current sensors is the most uncertain. Due to the 

similarity of the site selection process with active learning 

methods, we will call it active site selection. However, in 

conventional active learning, we are allowed to select for 

labeling any of the unlabeled points,  whereas for active 

site selection, if a particular site is chosen, all satellite 

observations spatio-temporally collocated with that site 

will be added to the existing training set. So, the 

conventional point-by-point active learning algorithm has 

to be extended here to select the site having maximum 

average uncertainty. 

An additional challenge in AOD estimation due to 

inherent properties of the satellite-based instruments is 

that the observation noise variance is dependent on the 

spatial-temporal properties of aerosols and land cover. 

However, it will be argued in the next section that this 



input-dependent noise variance does not affect the 

computation of pure model uncertainty using an ensemble 

of neural networks. The uncertainty at a particular point is 

calculated as the variance among the predictions from the 

members of the ensemble [9] [5]. In this project, we have 

explored several methods for selecting sites using this 

uncertainty information and taking into consideration 

spatial and temporal variability of the AOD values. To 

start with, we have applied two simple methods that select 

sites (1) randomly and (2) by maximizing spatial 

diversity. The alternative methods utilize the model 

uncertainty information to select sites having maximum 

uncertainty. We have also considered hybrid approaches 

that combine an uncertainty based selection with selection 

aimed to minimize the spatial, temporal and spatio-

temporal correlations among selected sites, respectively. 

In a previous related study on active sensor placement 

for river monitoring [2], a Gaussian Process model was 

assumed to describe a spatial variable and was used to 

derive an active sensor placement strategy to learn the 

underlying spatial distribution. However, the problem 

addressed in the monitoring problem is different from the 

current problem in two ways. First, in the monitoring 

problem, placing a sensor at a location returns a single 

observation of the measured variable whereas in our case, 

an AERONET site returns multiple AOD retrievals 

corresponding to different time instances. Second, in the 

river monitoring problem, the spatial variable (the pH 

value of the water) is predicted solely based on the 

location, while AOD is predicted from satellite-observed 

reflectances and other environmental attributes described 

later.  

In summary, contributions of this study consist of: 

1. Extending the standard active learning algorithms to 

active selection of AERONET sites. 

2. Developing selection algorithms that take into 

account spatial and temporal correlations in aerosol data. 

II. ESTIMATION OF UNCERTAINTY  

Several techniques have been proposed for uncertainty 

estimation in active learning. One of the most popular, 

due to its simplicity and robust performance, is the query 

by committee approach [9] and its variants. We 

summarize this technique in the following. Let us suppose 

a labeled data set is given as D={(xn, yn), n = 1… N}, 

where xn is a multi-dimensional attribute vector and yn is 

its label.  The first step in uncertainty estimation is to 

build a committee of K predictors, fi(x), i = 1…K, trained 

on bootstrap replicates [4] (obtained using sampling with 

replacement) of the original data set D. Given the 

ensemble, its uncertainty u(x) on an unlabeled point x, is 

obtained as the variance of its members, 
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where f (x) is the average prediction of K ensemble 

members. In this paper, we will be using feed-forward 

neural networks as the ensemble components. 

In a typical active learning scenario, an unlabeled 

point with the largest uncertainty would be selected for 

labeling first. This criterion is modified for the active site 

selection, as explained in Section III. Before moving 

there, let us mention an issue that can be of practical 

importance. In many applications, including AOD 

retrieval, noise variance is not constant. Noise variance 

can be estimated by training an additional neural network 

on the squared errors of the ensemble predictor [1]. An 

interesting research question is whether and how should 

the noise variance information be incorporated in the 

active learning or active site selection. Our preliminary 

results (not shown in this paper) indicate that it could lead 

to the improvements in the active site selection, and it will 

be a subject of our future work.  

III. ACTIVE SITE SELECTION 

Given a set of Nl locations where sensors are already 

installed and running, L = {Li, i = 1…Nl} and a set of Ns 

available locations for sensor installation, S = {Si, i = 

1…Ns}, the objective is to install N < Ns new sensors such 

that the benefit of installing them is maximized. The 

benefit is defined in terms of the improvement of 

prediction accuracy when labeled data from the new sites 

are added to training data. The methods proposed in this 

section will be compared to the random selection method 

that picks N sites randomly from the available Ns 

locations.  

A. Selection based on spatial diversity      

Following the observation that neighboring locations 

are highly correlated, one approach is to install new 

sensors at spatially diverse locations. Specifically, in this 

approach we are selecting sites that are farthest away 

from the existing sites. The procedure described in Table I 

is to select sites in an iterative fashion where the first site 

is selected at location that is the most distant from L. The 

distance of candidate site Si is defined as the minimal 

distance between Si and any point from L, i.e. d(Si) = 

minj dist(Si, Lj). Upon adding selected location to L, the 

selection procedure continues until N sites are selected.  

B. Site selection based on uncertainty 

The traditional approach in active learning is to label 

the most uncertain examples. But in our case, instead of 

selecting an individual example, we have to select a site 

that will produce multiple labeled examples. Therefore, 

we define uncertainty u(Si) of site Si to be the average 

uncertainty over all unlabeled examples available for that 

site.  Following the query by committee procedure 

outlined in Section II, we train K neural networks on 

labeled data obtained from the existing AERONET sites. 

Then we measure the average uncertainty for each 



candidate site using historical unlabeled data from that 

site. The selected sites are those with the highest 

estimated site uncertainty. 

TABLE I.  SITE SELECTION BASED ON SPATIAL DIVERSITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II.  UNCERTAINTY BASED SITE SELECTION 

 

 

 

 

 

 

 

 

C. Site selection based on temporal correlation 

One drawback of the site selection method described 

in III.B is that a global measure such as average 

uncertainty might fail to account for the similarity in 

temporal variation of the uncertainty among sites. Each of 

the candidate sites can be regarded as a time-series of 

uncertainty values over a year (there can be at most one 

valid observation per day). In our approach, each of these 

daily time-series is converted into monthly time-series by 

averaging the uncertainties over each month in order to 

resolve the missing values problem. The underlying 

assumption is that sites which have similar temporal 

uncertainty patterns are redundant. The algorithm 

summarized in Table III is preventing selection of sites 

with similar temporal uncertainty patterns. We denoted 

du(Si) as the temporal similarity of candidate site Si, and 

defined it as the minimum Euclidean distance between its 

monthly uncertainties and those of the existing sites in L. 

D. Site selection based on of the composite uncertainty 

Algorithms in Tables I, II, and III focus on a single 

measure for site selection. Each of them might favor 

different sites. For example, we observed that AOD 

patterns of East U.S. are similar to those of Europe while 

they differ significantly from West U.S. [8]. So, if the 

learner is trained on sites from East U.S., it will have low 

uncertainty when applied on sites from Europe, but 

relatively high uncertainty in West U.S. This, the 

uncertainty-based selection will favor sites from West 

U.S., whereas spatial selection will favor sites from 

Europe. Furthermore, N sites having the highest 

uncertainties might be spatially and temporally correlated. 

In order to combine all of the above metrics together we 

define a new distance measure for the candidate sites as 

the weighted sum of spatial and temporal distance from 

the nearest existing site and uncertainty. 

We define the composite spatio-temporal uncertainty 

ust(Si) of candidate site Si as  

ust(Si) = α⋅d(Si) + β⋅u(Si) + γ⋅du(Si), 

where α⋅d(Si) + β⋅u(Si) + γ⋅du(Si) are defined in III.A, 

III.B, and III.C, respectively. To simplify interpretation, 

all three quantities are scaled between 0 and 1. The 

resulting active site selecting procedure is shown in Table 

IV. In the experiments, we used several combinations of 

α, β, γ. 

TABLE III.  SELECTION BASED ON UNCERTAINTY AND TEMPORAL 

CORRELATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV.  SELECTION BASED ON THE COMPOSITE UNCERTAINTY  

 

 

 

 

 

 

 

 

 

 

 

 

  

L = {Li, i = 1…Nl} := Set of existing sites. 

S = {Sj, j = 1…Ns} := Set of possible new sites 

N := Number of new sites to be chosen. 

 

repeat N times 

 for each Si in S 

  d(Si) = dist(Si, L); 

 end 

 i* = arg maxi d(Si); 

 L = L + Si*; 

 S = S − Si*; 

end 

Given L, S, N (See Table I) 

 

repeat N times 

 for each Si in S 

  calculate ust(Si); 

 end 

 i* = arg maxi ust(Si); 

 L = L + Si*; 

 S = S − Si*; 

end 
 

Given L, S, N (defined in Table I) 

 

1. for each Sj in S 

Compute average uncertainty u(Si) of site Si;  

    end 

2. Pick N sites with the largest average     

    uncertainty from S and add them to L; 

Given L, S, N (See Table I) 

 

for each Sj in L 

um(Li ) := vector of monthly uncertainties;  

end 

for each Sj in S 

um(Si ) := vector of monthly uncertainties; 

end 

repeat N times 

 for each Si in S 

  du(Si) = minj dist(um(Si ), um(Lj )); 

 end 

 i* = arg maxi du(Si); 

 L = L + Si*; 

 S = S − Si*; 

end    



IV. EXPERIMENTAL RESULTS 

A. Dataset 

The experimental dataset was created by collocating 

spatially and temporally labels collected by 171 

AERONET sites and attributes observed by MODIS 

instrument on the TERRA satellite. The data spans the 

entire world and cover period between January of 2005 

and December of 2006. The resulting data set has 28,418 

labeled 13-dimensional examples. The attributes used are 

MODIS solar and sensor zenith and azimuth angles, 

scattering angle of radiation, mean and standard deviation 

of MODIS radiances at 4 different wavelengths, and 

AERONET site elevations. 

Training dataset was created by using data points from 

2005 and test dataset was created from 2006. To maintain 

interpretability of the results, 70 examples were chosen 

from each training site and 50 examples were chosen 

from each test site. Sites which had less than the specified 

number of examples were removed. After the removal, 

there were 90 training sites and 70 test sites. Figure 1 

shows locations of the training sites. Figure 2 shows AOD 

time series at 10 AERONET sites during 2005. 

 

 
Figure 1.  All training sites 
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Figure 2.  AOD distribution at 10 sites 

B. Results 

In our experiments we used feed-forward neural 

networks to estimate AOD.  We trained a committee of 20 

neural networks, each having 10 hidden nodes. AOD is 

estimated as the average of the committee predictions. 

Initial training set was created with 700 examples 

collected during 2005 from 10 randomly selected 

AERONET sites. We treated the remaining AERONET 

sites as the candidate sites. We evaluated 5 different site 

selection algorithms. For each algorithm, we measured 

the R
2
 accuracy of the committee after adding t candidate 

sites to the training set.   For each t = {1, 2 … 20} we ran 

a separate experiment.  

The entire set of experiments was repeated 10 times, 

each time starting with a different set of initial sites. We 

report average accuracies obtained from those 

experiments. From Figure 3 it can be seen that 

uncertainty-based site selection gives significantly higher 

accuracy than random site selection or selection based on 

spatial diversity (Table I). The difference is particularly 

large when only a few candidate sites are selected (t < 5). 

The average uncertainty (Table II) and the temporal 

uncertainty (Table III) result in similar accuracies. 

However, there are some interesting differences, as will 

be illustrated in IV.C and IV.D. The composite 

uncertainty (Table IV) with α=1, β=1, γ=1, is the best 

overall, although the difference is not large.  
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Figure 3.  Comparisons of accuracies obtained from different types of 

site selection method 

C. Selected Sites 

In Figures 4, 5, 6 and 8, actively selected sites based 

on different selection criteria are plotted to better illustrate 

the differences among them. We illustrate the outcome of 

a single experiment (because each of the 10 different 

experiments started from a different set of initial sites). 

The locations of the initial 10 sites are shown as blue dots 

in the figures, and their AOD time series are shown in 

Figure 2. As expected, sites selected based on spatial 

distance are quite sparse and cover almost the entire 

world. None of the sites in Europe and North America 

were selected. Unlike spatial selection, uncertainty-based 

selection picks almost all sites from Europe and North 

America. It is worth noting that some of the sites selected 

based on uncertainty are quite close to each other 

spatially. Additionally, average uncertainty and temporal 



uncertainty selection algorithms end up selecting similar 

set of sites. Mostly, this is the result of the fact that they 

use the same underlying information about prediction 

uncertainty. The only difference in the selected sites is 

site ‘Mongu’ located in southern Africa (see Figure 6). 

The AOD distribution of ‘Mongu’ shown in Figure 7 

reveals why it was not selected by the temporal 

uncertainty criterion. Its AOD time series is very similar 

with two of the initial sites (1
st
 and 3

rd
 sites in the first 

column of Figure 2). 

From Figure 8, it can be seen that the sites selected 

by combining uncertainty and spatial distance are 

different from those selected by both uncertainty and 

spatial correlation only. The selection is still spatially 

diverse, but the algorithm selected few sites from North 

America due to their high uncertainty. The two selected 

sites are over desert areas that are known to be very 

challenging surfaces for AOD estimation.  

 

 
Figure 4.  Sites selected based on spatial diversity. (Circle =  initial 

sites; Square =  chosen actively)  

 

Figure 5.  Sites selected based on temporal uncertainty  

 

Figure 6.  Sites selected using uncertainty  

 
Figure 7.  AOD time series at the ‘Mongu’ site in Southern Africa  

 

Figure 8.  Sites selected based on composite measure  

D. Continent-Wise Accuracies 

 In all the results described in the previous figures the 

reported R
2
-accuracy is average over all test locations. To 

get a better insight, the test data was divided into different 

continents and accuracy was measured on each continent 

separately.  

 The results are shown in Figure 9.  It can be seen that 

different continents favor different selection algorithms. 

For Europe, random selection works quite well because a 

large fraction of candidate sites are from Europe. A 

predictor which is trained on a large number of European 

sites is expected to perform well over Europe. In North 

America, however, this logic does not work because 

despite a large number of candidate sites, random 

selection does not work too well. A possible explanation 

is because North America has a large mountainous desert-

like region in West that is very difficult for AOD 

estimation. While random selection can occasionally pick 

some sites from that region, the uncertainty-based 

selection is focusing on these sites and thus improves the 

overall North America accuracy.  

 In Asia (Figure 9.c), Africa (Figure 9.d), and South 

America (not shown) spatial selection does a better job 

than other methods. The reason is that AERONET sites 

are underrepresented over these continents. While random 

selection is biased to Europe and North America, and 

uncertainty selection is biased to bright desert surfaces, 

spatial selection is biased to underrepresented spatial 

regions and continents. This clearly results in improved 

accuracy over underrepresented areas. 

V. CONCLUSION AND FUTURE WORK 

The novelty of this project lies in the nature of the 

problem being addressed here. This paper reports the first 

systematic study on active selection of future AERONET 

sites. The nature of active selection problem addressed 

here is different from conventional active learning 

problems. It can be regarded as batch selection because 

selecting one site actually adds multiple training points. 

We proposed and evaluated several site selection 

strategies. All proposed methods worked better than a 

random site selection. Selection based on prediction 

uncertainty resulted in high accuracy gains. Selection 

based on spatial diversity was somewhat less successful 

with respect to improvements in overall accuracy. 



However, it can be very useful because it selects sites 

over underrepresented regions. A composite selection 

criterion that takes into account both spatial diversity and 

uncertainty seems to be a good compromise – it gives 

large overall accuracy gains that are particularly large 

over underrepresented regions.  

We believe that this work can be valuable in future 

selections of AERONET sites, but also in many related 

remote sensing applications. As mentioned previously, in 

the present work we did not consider the effect of 

heteroscedastic noise variance in the site selection 

process. This will be a topic of our future research. 
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Figure 8. Continent-wise performance of different types of site selection algorithms  


