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Learning disease severity scores automatically from collected measurements may aid in the quality of both healthcare and scientific
understanding. Some steps in that direction have been taken and machine learning algorithms for extracting scoring functions
from data have been proposed. Given the rapid increase in both quantity and diversity of data measured and stored, the large
amount of information is becoming one of the challenges for learning algorithms. In this work, we investigated the direction of the
problem where the dimensionality of measured variables is large. Learning the severity score in such cases brings the issue of which
of measured features are relevant. We have proposed a novel approach by combining desirable properties of existing formulations,
which compares favorably to alternatives in accuracy and especially in the robustness of the learned scoring function. The proposed
formulation has a nonsmooth penalty that induces sparsity. This problem is solved by addressing a dual formulation which is smooth
and allows an efficient optimization. The proposed approach might be used as an effective and reliable tool for both scoring function
learning and biomarker discovery, as demonstrated by identifying a stable set of genes related to influenza symptoms’ severity, which

are enriched in immune-related processes.

1. Introduction

Diseases and other health conditions require continuous
monitoring and assessment of the subject’s state. The severity
of the condition needs to be quantified, such that it can be
used to guide medical decisions and allow appropriate and
timely interventions. Disease severity scoring functions are
typically used to quantify a patients condition. However,
disease severity and health are often difficult to quantify.
That is because they are essentially latent concepts and are
not directly accessible or observable. In an absence of a
direct measurement of health, the severity of a condition
is estimated based on values of some surrogate variables
that are observable and hopefully informative about the
condition of interest. In clinical practice, commonly tracked
variables include temperature, heart rate, blood pressure, and
responsiveness, to name a few out of a myriad of possible

other variables. A severity score is subsequently calculated
from such observable quantities using some heuristic rules.
Prominent examples of such rules are SOFA [1] score for
sepsis, or more general ICU scoring systems like APACHE
II [2]. Both relevant variables and associated heuristic rules
are established in a consensus of expert bodies and relevant
institutions based on experience and current understanding
of a condition. That process is long and tedious and often
results in extensively coarse scoring rules and a nonoptimal
set of relevant observable variables.

Although utilizing data was always part of this
process, recently it was acknowledged that it might be
improved/complemented by using machine learning
methods that can automatically extract both rules and
relevant variables directly from the data. There are already
a number of approaches for automatic learning of severity
scores/rules from data. One way is to use discrete class labels
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for building classifiers and subsequently use the probability
of a sample belonging to a certain class as a quantification
measure of severity [3]. Another supervised approach is to
learn the severity score function in a regression manner
[4] from some surrogate of severity highly associated with
undesired outcomes down the stream. A downside is that it
already requires a good candidate for scoring function. An
additional issue is that it might be sensitive to censoring due
to treatment, where the severity of state is not acknowledged
because treatment prevented undesired outcomes from
happening. Some of the mentioned drawbacks are addressed
in a more recent approach [5, 6] that is based on a clever
observation that comparing two cases according to severity
is easier to assess than to directly quantify the severity of
a particular case. It was built upon the existing work on
learning scoring functions for information retrieval tasks
[7]. However, even this approach might be inappropriate in
some cases, since it learns the severity score as a function
of all measured variables, which will affect its performance
when there are irrelevant features or when the number of
features is much higher than the number of samples [8]. In
essence, features unrelated to severity will be present even
in small sets of measured variables, and, in high-throughput
measurements like gene expression, this might be an even
larger obstacle.

In this paper, we present an approach to the problem of
learning disease severity scores in presence of irrelevant or
high-dimensional measurements. We build on top of existing
efforts by simultaneously performing feature selections that
are most relevant for severity score learning. In particular, we
are introducing the L, norm in the formulation of ranking
SVM [7] along with the temporal smoothness constraint [6].
Attractive regularization properties of L; norm are already
well acknowledged and exploited in a number of statistical
learning methods since its introduction [9]. The proposed
formulation of sparse severity score learning forces weights of
(most of) the features to be exactly zero, therefore effectively
performing feature selection by learning the sparse linear
scoring function. This novel severity score objective function
is convex and nonsmooth and it precludes the direct use of
convenient optimization tools like gradient-based methods.
Therefore, in this work, we are also providing the reformu-
lation of the problem into its dual that is smooth and that
allows efficient optimization. Other than learning the severity
score from the data, which is an important instrument for
assessing severity, the methodology may also be used to
discover the most relevant variables/features for the disease
severity phenotype. Such findings might be further used to
suggest novel (testable) hypotheses about causal relations
leading to disease manifestation and also to inspire novel
therapeutic approaches.

The rest of the article is structured as follows: Methods
begins with the introduction to related work and continues
with new formulation and derivation of its solution. Results
begins with evaluation on intuitive synthetic examples where
the advantages of sparse severity score framework over the
nonsparse one are apparent. Results continues with the
assessment on a gene expression dataset of H3N2 viral
infection responses. Efficacy and the robustness of the
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proposed method are compared favorably against multiple
alternative methods. Results is concluded with gene ontology
overrepresentation analysis of the discovered subset of genes
most useful for the scoring function.

2. Methods

2.1. Previous and Related Work. As mentioned in Intro-
duction, some of the first proposed severity score learning
methods are supervised approaches that solve classification
or regression tasks and whose solution provides a way to
calculate a severity score.

For example, in [4] Alzheimer’s Disease severity, as mea-
sured by cognitive scores, was modeled as (temporal) multi-
task regression using the fused sparse group lasso approach.
The approach was more concerned with the progression of
the disease, hence the multitask formulation. However, as we
are mostly interested in severity score mapping from a single
time-point set of measurements, here we are presenting its
more influential ancestor, the LASSO model [9]:

1
argmin  LASSO (w) = B 1Y - Xwl? + Awl, . (1)

Here, Y is column vector of n given numeric scores,
associated with d dimensional measurement matrix X,
while w denotes the solution in form of a d-dimensional
column weight vector. We will use this model as one of the
baselines for comparison as it is one of the main workhorses
of biomarker selection [10] and even statistical learning in
general.

Another approach used sparsity-inducing L, norm in
combination with classical loss function for learning dis-
ease severity scoring function [3]. They proposed using L,
regularized Logistic Regression model (among others), to
model the severity scores for the abnormality of the skull in
craniosynostosis cases:

argmin L,LogReg (w)

2)
log (1 + exp (=Y; (X;w))) + Al -

1]
.M:

i=1

This Sparse Logistic Regression formulation is another
related model, as it also results in a sparse vector of feature
weights w that essentially regress the decision boundary
between the severity classes and might be used as a mapping
function for severity scores. In (2), Y; € {-1,1} is a binary
label for ith row of data matrix X.

As outlined previously, these forms of supervision where
estimates of severity score functions (or severity classes) are
needed might be hard to obtain in order to be utilized for
training the severity score automatically. On the other hand,
obtaining the pairs of comparisons is an easier task. Seminal
work of learning the scoring functions from the comparison
labels is proposed in [7]. In that work, the ranking SVM
formulation (see (3)) is developed to learn better document
retrieval from click-through data. This great insight came
from noticing that the clicked links automatically have greater
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ranks compared to the ones not clicked. And such kind of data
is much more abundant than the user provided rankings.

argmin rankingSVM (w)

=7 Il (3)

+c Z max(O,l —(XP—Xq)w).
{p.qieO

Set O is composed of comparison of ordered pairs {p, g},
where p has a higher rank than g and which corresponds
to rows of measurement matrix Xp and Xq, respectively.
More recently the approach was adopted for learning the
Sepsis Disease Severity Score [5]. In it (see (4)), the constraint
that scoring function should gradually evolve over the time
was introduced and hence a temporal smoothness term is
added. In addition, nonsmooth Hinge loss (max(0, 1 — Xw))
is replaced with its smooth approximation, Huber loss (L},),
to obtain the formulation of (linear) Disease Severity Score
Learning (DSSL) framework:

argmin DSSL (w)
w

= Sl e ¥ 1, (1- (%X, - X,)w)

{p.a}eO (4)
2
by (e
{ii+1},€S (t1§+1 - tzs)

Temporal smoothness term in (4) penalizes high rates of
change in severity in consecutive time steps t; and t;,, of a
single subject s. Set of all consecutive pairs in all subjects
is denoted by S and constants ¢ and b are hyperparameters
determining the cost of respective loss terms.

DSSL framework was adopted and extended in different
ways. A multitask DSSL was proposed in [11], which utilizes
matrix norm regularization to couple multiple distinct tasks.
Nonlinear version of DSSL framework, as well as its solu-
tion in form of gradient boosted regression trees, was also
proposed in [6]. Nevertheless, mentioned DSSL approaches
are dense in a sense that they operate on all variables (in
case of a linear version, all coefficients are typically nonzero).
The approach in [11] is based on expensive proximal gradient
optimization algorithm, which makes it unsuitable for high-
dimensional problems. The utility of the approaches in [6]
was presented on an application with a moderately small
number of different pieces of clinical information, vitals,
and laboratory analysis variables and it is not clear how the
approach would perform in situations with high-dimensional
data common in high-throughput techniques like genetic,
genomic, epigenetic, proteomic, and so on.

Yet, high-throughput data is also a very rich source of
useful biomarkers that could be used for diagnostic and
prognostic purposes, as well as for obtaining insight into
causal relations [12]. Therefore we are proposing an approach
that is able to learn a (temporally smooth) scoring function
from comparison data while simultaneously performing the
selection of most relevant (important) variables.

2.2. Proposed Model Formulation. In our Sparse Learning
of Disease Severity Score (SLDSS) formulation, we combine
attractive properties (and terms) of previously mentioned
approaches, ranking SVM (see (3)) [7], temporal smoothness
constraint (see (4)) [6], and L, norm from sparse methods
(see (1) and (2)) 3, 9]:

mu%n SLDSS (w)

:%||w||§+c Z max(O,l—(Xp—Xq)w)

{p.qte0 (5)
2
b Y (—(ij —X) “’) Al
{ii+1},€S (ti+1 - ti)

In fact, since the model imposes both L, and L, norms on
the feature vector w, it resembles the elastic net regularization
[13], which has an advantage of achieving higher stability with
respect to random sampling [14].

The solution w* of the optimization objective defined in
(5) serves as a sparse linear function f(X) = Xw" that may
be applied on measurements from the new patient, to obtain a
scalar value of severity that might be compared to previously
assessed cases and inform further actions. The sparse vector
w” may also serve as an indicator of which features are the
most influential for pairwise comparison. The formulation
contains two nonsmooth terms, L, and Hinge loss, and
therefore it is not directly solvable using off-the-shelf gradient
methods. In DSSL formulation, the (nondifferentiable) Hinge
loss is approximated with twice differentiable Huber loss, thus
making the optimization criterion solvable using the second-
order gradient methods (e.g., Newton and Quasi-Newton).
In order to provide an efficient solution for the proposed
nonsmooth objective, we will solve the smooth dual problem
instead of relying on smooth approximation or nonsmooth
optimization tools.

First we rewrite (5) into a more suitable form for which
we will later provide the smooth dual problem. We aggregate
the differences of measurements into single data matrix Dy 4,
where k is a number of pairs in the comparison set O.
Similarly, we express measurement and temporal difference
ratios as matrix Ry, ;, whererows are R; = (X;,,-X;)/(t;,,—t;)
and [ is a number of pairs in the consecutive measurements
set S. We aggregate the L, norm and temporal smoothness
terms (they are essentially weighting the square of opti-
mization parameters) into a single weighted quadratic term
(1/2)w"Qw, where Q = I + 2bR*R, I being d-dimensional
identity matrix. The first two terms, weighted quadratic norm
and Hinge loss, resemble the well-known SVM criterion
function that we will rewrite in its “soft” form with additional
slack variables z; and their associated constraints. Additional
set of “dummy variables” y is introduced in L, term, with
trivial constraints w = y. The equation of the rewritten SLDSS
now reads

k
min SLDSS (w,2,3) = w'Qu+ Yz, + A,

i=1

st. Dw=>1-z,



z; 20,
Vie{l,... k},

w=y.
(6)

Now we turn this constrained problem with inequalities
and equalities into its Lagrangian dual. Constraints are
moved to the criterion function as penal terms weighted by
Lagrangian multipliers «, 3, and y. The equation of the SLDSS
dual problem is

min max
w,y,220 a>0,5>0

Dual (w, y,z,a, 3, y)
= %wTQw +cl’z+al (1-z-Duw) 7)

Bz + My +y (w-y).

Given that optimization criterion is convex and feasible
(Slater’s condition holds [15]), strong duality allows switching
the order of maximization and minimization in (7), and
minimization in primal variables can be safely performed
first. Now we analyze the expression according to primal
variables w, y, and z and find the minimizing conditions for
each of them.

The dual formulation is the quadratic function of param-
eters w and we can find its optimal form as a function of new
free parameters introduced in dual (by equating its gradient
with zero):

. 1o T T
min DUAL(w):mu%nE(w Q-a'D+y )w
V,DUAL (w) =w'Q-a'D+y" =0
]

w' =Q" (ocTD - yT) .

(8)

Similarly, the expression for slack variables z is a linear
combination of dual variables and it is minimal when the
directional gradient is equated to zero vector, giving the
optimality condition in a form of an equality constraint:

mzin DUAL (z) = mzin% (clT —al - [)’T) z
V,DUAL(z) =c1" -a" -7 =0 )
)
B=cl-a

Resulting equality constraint 3 = c1 — « in combination
with inequality 8 > 0 can be reduced to just one constraint
a < cl1, which removes 8 from further consideration.

For minimization over dummy variables y, we use the
convex (Fenchel) conjugate function of the expression [15]
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and obtain optimality condition as inequality constraint over
the infinity norm of the dual variable:

min  DUAL (y) = minA ], - Yy

= -maxy'y - Ay,

=0 if [y, <A, (10)
or = —00 otherwise

U

IVlleo < A

When optimal (minimizing) conditions (see (8), (9), and
(10)) are replaced in dual formulation (7), it becomes

max Dual (e, y)

az0,a<cL |yl <A

(DToc - y)T QleQf1 (DT(x - y)

| =

(11)
-a'DQ! (D' -y)

+ yTQ_l (DToc - y) +17a.
After negating (11) to turn it into minimization problem

and after simplification of the expression, final problem
formulation is

. 1 T T 1 T T

min 1 (0a-y) Q" (D'a-y) -1

st. 0<a<cl, (12)
-Al<y<Al

The original nonsmooth problem is turned into the
smooth dual problem, which can be solved for its two sets of
parameters « and y. Since the strong duality holds, a solution
to dual is a solution to the original problem, and optimal
weight vector w” can be retrieved after plugging the solution
of dual, «* and y*, into (8).

Similar dual formulation, just without the dummy vari-
ables y and associated multipliers y, might be used for DSSL
with the exact Hinge loss, instead of the originally proposed
DSSL which uses Huber loss approximation [6].

2.3. Optimization Algorithm. The differentiable dual from
(12) is, in fact, a quadratic optimization problem with box
constraints:

1
min  —x Hx +f’x
2 (13)
s.t. 1b < x < ub,
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There are ready-to-use tools for solving the problem in
(13), and we utilized the built-in Matlab “quadprog” solver,
which is implemented as a projection method with the active
set.

3. Results

3.1. Severity Score Characterization on Synthetic Data. For
the initial assessment of the proposed framework, we have
generated a synthetic example with properties that motivated
the approach. If a large number of variables are measured,
many are expected to be irrelevant for the assessment of
severity.

We defined the severity score as a linear combination of
intensities of the first 10 features after initiating a set 0of 100. In
addition, we set the coeflicients to have different magnitudes,
as it is expected that contribution of different variables is
of various levels (Figure 1(a)). The remaining ninety features
do not affect severity score at all; they are irrelevant and
only introduce uncertainty into the problem. For training
purposes, values of all features are randomly sampled from
a uniform distribution for 10 fictitious subjects with 10
different measurements each. Severity scores are associated
based on a linear function with weights depicted in Figure 1.
Comparison labels (pairs) were generated as all possible
pairs in which the first element (sample) has substantially
higher severity score as compared to the second element.
This requirement of substantial gap in severity between pairs
serves to mimic the case where a doctor could claim, with
high confidence, that one patient is in more severe condition
than another. Such generated training data was utilized to
fit Sparse LDSS, (dense) DSSL, and DSSL model trained on
the exact 10 features that are relevant, which we named Ideal
DSSL in Table 1.

All models were tested on comparison pairs from an addi-
tional 50 test subjects with 10 measurements each. Testing
data was generated by the same protocol as explained for
training, except the threshold for the required difference of
scores was set several times lower, in order to see how learned

2
%ﬂ 0.5 ]
g 0
0 10 20 30 40 50 60 70 80 90 100
Features
mm True
(a)
1 T T T T T T T T T
=
.%D 0.5 i
=
oy .
0 10 20 30 40 50 60 70 80 90 100
Features

Weights

) 10 20 30 40 50 60 70 80 90 100
Features

= DSSL
(c)

FIGURE 1: Synthetic example. Comparison of learned weight vectors
(normalized) of sparse SLDSS method and dense DSSL method with
the ground truth.

TABLE 1: Performance on synthetic data as measured by correctly
ordered pairs, accuracy, and by aggregated error (magnitude of
difference in wrongly ordered pairs), Hinge loss.

Approach SLDSS DSSL Ideal DSSL
Accuracy 0.9397 0.8373 0.9558
Hinge loss 176.06 3110.20 180.65

functions generalize to more subtle differences between the
cases.

# Correctly Ranked
# Total Examples

Accuracy =

(15)
# Incorrectly Ranked

# Total Examples

The predictive performance was measured as “Accuracy”
(see (15)), that is, the fraction of the total examples that are
correctly ordered, meaning that a linear function assigned
a higher score to the first component of a pair. The results
presented in Table 1 show that learning a dense weight vector
impairs the predictive accuracy of the model, while learning
a sparse vector, using the SLDSS, approaches the accuracy of
the Ideal model, obtained by learning a disease severity score
from relevant features known in advance. Figure 1 shows the



0.9

0.8

Accuracy

0.7

0.6

0.5 . .
10! 10 10° 10*

# features [log-scale]

—— Ideal DSSL
—— DSSL
—— SLDSS

FIGURE 2: Synthetic experiment. Influence of the problem dimen-
sionality (number of features) on the accuracy of ranking methods.

weights of learned severity functions, and it might be seen
that reason for the reduced testing accuracy of the dense
DSSL method (Figure 1(c)) is because it assigned nonzero
weights to (by design) completely irrelevant features.

3.2. Feature Size Analysis. We have explored how the number
of irrelevant features affects the model performance. This
time we sampled 100 subjects (with 10 time-step samples
each), with 10,000 features, where only the first 10 contribute
to the true score. We varied the number of features from
10 (all features informative) up to 10,000 in exponentially
progressive increments [10; 30; 100; 300; 1,000; 3,000; 10,000].
Results presented in Figure 2 show that when all features
are informative (10 out of 10) DSSL is slightly better than
SLDSS. However, as soon as irrelevant features are added,
the SLDSS approach becomes more accurate than DSSL.
As more irrelevant dimensions are added, both approaches’
performance decreases, however SLDSS at a slower pace.

3.3. Sample Size Analysis. We also investigated how the num-
ber of training samples affects the predictive performance
of the ranking approaches. We generated another synthetic
set of 100 subjects (10 samples each). All samples had 100
features, where the first 10 were relevant for the ground truth
score. From such generated examples, we constructed 357,355
comparison pairs for training. We varied the number of
sample pairs, by randomly sampling from 10 up to 300,000 in
exponentially progressive increments [10; 30; 100; 300; 1,000;
3,000; 10,000; 30,000; 100,000; 300,000]. From the results on
holdout testing set, presented in Figure 3, it can be seen that
accuracy increases with the number of training pairs and that
SLDSS is always more accurate than DSSL. The Ideal DSSL,
which is always trained only on the 10 relevant features, is
consistently the most accurate.
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FIGURE 3: Synthetic experiment. Influence of the sample size
(number of sample pairs) on the accuracy of ranking methods.

3.4. Severity Score for Influenza A Virus. To further assess
the proposed approach, we applied it to learning the severity
of H3N2 influenza symptoms. The utilized dataset (http://
people.ee.duke.edu/~Icarin/reproduce.html) contains tem-
porally collected gene expression measurements of human
subjects infected with H3N2 virus [16]. The samples were
collected on multiple occasions (approximately every eight
hours) during the period of one week after the virus was
inoculated in subjects. Concurrently, the severity of their
symptoms was tracked (approximately twice a day) and
clinically assessed using the modified Jackson score [17].
When measurement time points were not perfectly aligned
with severity score estimates, the temporally nearest estimate
was associated with the gene expression vector. Having
high dimensionality of the measurements (12,032 genes),
temporally collected samples, and associated severity score
estimates, this dataset was suited for testing the proposed
severity score learning framework. In addition to direct
assessments of severity scores, which could be used for
regression, the data samples are also accompanied with class
labels “symptomatic” and “asymptomatic” [18], based on the
values of modified Jackson scores. Our comparison pairs
generation process follows the guidelines proposed in [6].
Ideally, an expert would be presented with example pairs
and would assess which one appears more intense (with
respect to a property of interest), based on visual inspection,
clinical report, or arbitrary convenient source. The alternative
is to use an existing scoring system to generate comparison
pairs, and for this application we utilized the Jackson score.
We generated a third label type by extracting all possible
pairs of samples where the first component is associated
with a score that is substantially larger than the second. In
our experiments, the “substantial” is defined by setting a
threshold to 5 for training and 1 for testing.
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TABLE 2: Performance on H3N2 influenza gene expression dataset
as measured by the fraction of correctly ordered pairs (accuracy).

DSSL
0.7689

LASSO
0.9490

Approach  SLDSS
Accuracy  0.8097

L, Logistic Regression
0.7815

On the described dataset containing 267 samples (17
subjects with about 16 temporal samples each), we have
compared the predictive performances of 4 methods:

(1) Sparse Learning of Disease Severity Score (SLDSS)
from comparison pairs

(2) “Dense” Disease Severity Score Learning (DSSL) from
comparison pairs

(3) LASSO regression on direct values of severity scores

(4) L,-regularized Logistic Regression fitted on binary
classification labels of symptom severity.

All enumerated methods result in a vector of feature
weights that can be used as a scoring function. Except for
the DSSL which results in a dense vector of weights, all other
approaches typically only have a small number of nonzero
weights, while all others are exactly equal to zero.

We compared the mentioned methods in a 10-fold cross-
validation procedure (where all samples belonging to one
subject are either all in training or all in testing folds) and
the results are shown in Table 2.

In conducted experiments, the nonsparse method (DSSL)
has the lowest accuracy, which provides evidence that sparse
approaches were beneficial. LASSO was the most accurate,
due to its direct access to the ground truth values (of the
underlying scores), while other methods only had access
to partial information. The Logistic Regression only had
information if the score was larger than a certain threshold,
while the DSSL and SLDSS only knew, for a list of pairs,
which element in a given pair had a higher score. This, on the
other hand, limits the application of LASSO to cases where
scoring function already exists, thus reducing the necessity
for learning it from the data. Among the approaches which
learn from indirect information about underlying values of
scores (comparison pairs and severity classes), our SLDSS is
the most accurate.

3.5. Robustness of Selected Features. We were also inter-
ested in using SLDSS for feature selection to discover the
most relevant variables for the condition. Therefore, we
have performed additional analysis regarding the robustness
(stability) of the selected features. Robustness of selected
features is a very important aspect of the feature selection
algorithms that was relatively neglected up until recently [19].
Various fields aim at finding the right subset of variables
that would allow reliable prediction, and the more there
are candidates to search from, the harder it is to find the
right subset. Feature selection methods play a crucial role
there, but when the dimensionality of data is much higher
than the number of samples, the expectation of consistently
finding high-quality solution decreases [20]. On the other

side, L, regularized models have far fewer requirements for
sample size as compared to rotation invariant models (L, reg-
ularized models, Support Vector Machines, Artificial Neural
Networks, and DSSL, whose sample complexity grows at least
linearly in the number of irrelevant features), as their sample
size requirement grows logarithmically in the dimension of
(irrelevant) features [21], so they are an attractive tool for such
tasks.

Robustness is a metric that quantifies how different
training sets affect the affinity of the algorithm towards the
particular features and there are different measures proposed
[22]. Here we used the common three:

(1) Pearson coeflicient (see (16)), which measures the
correlation between the weight vectors w and w'
learned on different data (sub)sets and tells magni-
tude stability of the weights. In the case when the
weight vector is used as a linear function, it also tells
how stable the learned function is.

_ Yi(wi-w) (w) - py)
VI (W - 1) s (] — i)’

Cp (w, w') (16)

(2) Spearman rho metric (see (17)), which measures
how well the orders (ranks) r and ' of weights” w
and w' magnitudes are preserved between different
training sets. It is important, for example, in the
dense methods where features are selected as some
top number of features according to the magnitude of
weights.

_ Zi (ri - Mr) (ri’ - [’lr’)
) - 2 2
V(- 1) 5 (7 - )

!

Cq (r, r 17)

(3) Jaccard index (see (18)), which measures the overlap
between two discrete sets s and s of nonzero features
in w and w', normalized with their union (| - | is car-
dinality operator). Jaccard index is the most relevant
measure (out of the three mentioned) regarding the
stability of selected features, as studied frameworks
select features in the form of a discrete set of nonzero
features.

! !
|sﬂs. 'sﬂs|

"y = = 18
C](S’S) [sus’| Isl+]s'|-]sns| (&)

All four severity score learning methods are assessed for
consistency/robustness based on each of the three stability
measures (see (16)-(18)), through a 10-fold cross-validation
procedure on H3N2 data. The sparsity level was tuned with
free parameters (for sparse methods) so as to produce the
average number (over tenfold) of nonzero features of about
100 out 0f 12,032 possible (SLDSS 97.1+16.7; LASSO 99.9+8.8;
L,LogReg 101.7 £ 22.7), with results presented in Figure 4
and summarized in Table 3. The dense method, DSSL, was
compared to others, according to Jaccard index, by taking
only the top 100 features according to the largest magnitudes
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TABLE 3: Stability of selected feature subsets summarized as an average pairwise similarity over ten training folds.

Measure SLDSS DSSL LASSO L, Logistic Regression
Pearson coefficient 0.8656 0.7402 0.7362 0.5562
Spearman rank 0.8163 0.7204 0.5162 0.3988
Jaccard index 0.6916 0.2946 0.3595 0.2474

in each of the folds separately. The results show that here
proposed SLDSS method is the most stable one according
to each of the three measures. This means that it learns the
most stable severity score function (according to Pearson
correlation), as well as the most stable set of nonzero features
(according to Jaccard index). This evidence is suggesting that
SLDSS is finding the most reliable signal in the data, out of all
the tested approaches. Nevertheless, there are no guarantees
that the selected set of features is free of false positives, as
previously it was theoretically concluded that LASSO-like
approaches select a superset of the true features [23].

3.6. Gene Ontology Overrepresentation Analysis. To further
check the appropriateness of SLDSS method as a biomarker
discovery tool, we performed gene ontology overrepresen-
tation analysis to assess the relevance of a set of features
extracted from the influenza dataset. In the robustness
analysis section, we found that more than two-thirds (0.6916)
of the nonzero features are, on average, shared between the
different folds of data. In fact, 50 genes were nonzero in all
of the folds, so we took that set of genes and submitted it
for overrepresentation analysis in the PANTHER [24] online
tool.

We analyzed the list of 50 selected genes given in Table 4,
against all the 12,032 genes in the dataset. Some of the 12,032
genes were duplicates, and some symbols were not recognized
by the database (annotation version and release date: GO
Ontology database, released 2016-03-25) resulting in the
comparison of the 50 selected genes against the reference list
0f10,792 genes using the PANTHER Overrepresentation Test
(released 2016-03-21) with Bonferroni correction. Bonferroni
correction [25] is a simple and common method for multiple
testing correction of significance value indicators. It is well
acknowledged that it might be substantially conservative,
especially when multiple tests are not independent. In mul-
tiple gene ontology process testing, it might be extremely
conservative because descendants of a process are completely
dependent on their parents. Nevertheless, even after overly
conservative adjustments, a number of processes are found
statistically significantly overrepresented with the cutoff value
of 0.05 for P value. Significantly overrepresented GO biolog-
ical processes (listed in Table 5) are related almost exclusively
to immune response and a reaction of the host body to the
virus. This is consistent with the fact that the dataset is about
the response to viral infection, suggesting that the discovered
set of features is indeed relevant for the studied process.

4. Conclusion

We assessed multiple approaches to learning the severity
scores in high-dimensional applications. Our results point

TABLE 4: Genes selected by the Sparse Disease Severity Score
Learning method, listed in alphabetical order.

Gene symbols

AIM2
ALDHIA1
ATF3
BLVRA
C3ARI1
CASP5
CASP7
CCL2
CCL8
CDKNIC
CXCLI10
EIF2AK2
EPB41L3
ETV7
GBP1
HERC5
IFI35
IF144
IF144L
IFI6
IFIH1
IFIT1
IFIT2
IFIT3
IL18RAP
ISG15
LAMP3
LAP3
LILRAS5
MAFB
MS4A4A
MX1
MYOF
OAS1
OAS2
OAS3
OASL
RIN2
RSAD2
RTP4
S100A12
SERPINGI
SIGLEC1
STAT1
TFEC
TLR7
TNFSF10
TYMP
XAF1
ZBP1
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FIGURE 4: Similarity matrices. Similarity matrices between weight vectors learned over all 10 folds of data and all four methods. Warmer
colors correspond to higher similarity (stability) and cooler tones to lower similarity. SLDSS (upper left squares) has the highest similarities

among all methods.

TaBLE 5: PANTHER overrepresentation analysis results. No.: number of associated genes; Exp.: expected number of genes by chance; Fold:

number of times enriched.

GO biological process complete GOID No. Exp. Fold P value

Defense response to virus (GO:0051607) 18 .62 29.21 4.00E - 18
Response to virus (GO:0009615) 20 .96 20.75 1.01E-17
Type I interferon signaling pathway (GO:0060337) 14 .28 49.54 1.97E - 16
Cellular response to type I interferon (G0O:0071357) 14 .28 49.54 1.97E - 16
Response to type I interferon (G0O:0034340) 14 29 47.96 3.08E - 16
Immune response (GO:0006955) 32 5.42 591 2.37E - 15
Immune system process (G0O:0002376) 35 8.20 4.27 4.07E - 13
Innate immune response (GO:0045087) 26 3.79 6.87 1.07E - 12
Defense response (G0O:0006952) 31 6.12 5.07 1.07E - 12
Defense response to other organisms (G0O:0098542) 19 1.73 10.97 1.46E — 11
Immune effector process (G0O:0002252) 19 1.75 10.85 1.76E — 11
Cytokine-mediated signaling pathway (G0O:0019221) 20 2.13 9.40 3.84E-11
Cellular response to cytokine stimulus (G0O:0071345) 21 2.72 7.72 3.01E - 10
Response to cytokine (G0:0034097) 22 3.16 6.96 4.80E — 10
Response to other organisms (G0O:0051707) 22 3.23 6.81 7.44E - 10
Response to external biotic stimulus (GO:0043207) 22 3.23 6.81 7.44E — 10
Response to biotic stimulus (G0O:0009607) 22 3.31 6.65 1.21E-09
Negative regulation of viral genome replication (G0O:0045071) 8 19 4111 1.83E - 07
Negative regulation of viral process (GO:0048525) 9 .36 24.90 7.74E - 07
Regulation of viral genome replication (GO:0045069) 8 .30 26.56 5.56E — 06
Negative regulation of viral life cycle (GO:1903901) 8 .35 23.02 1.69E — 05
Response to stress (G0O:0006950) 34 14.20 2.40 5.49E — 05
Negative regulation of multiorganism process (GO:0043901) 9 .60 15.06 6.01E - 05
Response to external stimulus (GO:0009605) 26 8.48 3.06 1.19E - 04
Cellular response to interferon-gamma (GO:0071346) 8 .50 16.14 2.59E - 04
Regulation of viral process (G0O:0050792) 9 .79 11.43 6.26E — 04
Response to interferon-gamma (GO:0034341) 8 .57 13.93 7.95E — 04
Regulation of symbiosis (G0O:0043903) 9 .88 10.17 1.66E — 03
Regulation of viral life cycle (G0O:1903900) 8 74 10.86 5.14E - 03
Interferon-gamma-mediated signaling pathway (G0O:0060333) 6 31 19.33 5.39E - 03
Response to stimulus (GO:0050896) 43 26.53 1.62 6.68E — 03
Regulation of defense response (G0:0031347) 14 3.03 4.61 8.01E - 03
Regulation of cytokine production (G0O:0001817) 12 2.19 5.48 9.59E - 03
Cellular response to organic substance (G0O:0071310) 23 8.36 2.75 1.01E - 02
Regulation of multiorganism process (GO:0043900) 1 1.81 6.07 1.07E - 02
Response to interferon-alpha (G0O:0035455) 4 .09 45.44 1.55E - 02
Cellular response to chemical stimulus (G0O:0070887) 25 10.06 2.49 1.75E - 02
Cell surface receptor signaling pathway (G0O:0007166) 23 9.04 2.54 4.07E - 02
Multiorganism process (GO:0051704) 22 8.40 2.62 4.59E — 02
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to the utility and maybe even necessity of reducing the
dimensionality of the problem through sparse learning tech-
niques. Combination of the advantages of existing solutions
turned out to be beneficial for the performance of the
formulation proposed in this study. The robustness of the
learned disease severity score function, as well as features
selected by our approach, compares very favorably to the
alternatives. Conducted gene ontology overrepresentation
analysis supports the relevance of the genes identified by
the SLDSS approach. Additional studies are possible to
further characterize selected genes and the processes they
are involved in, in order to provide further insight into
causal relations underlining the influenza infection. These
are all mounting evidence that our approach could be used
as a discovery tool for both disease severity scores and
related informative variables, which could further motivate
novel hypotheses. The method we proposed in this article
is appropriate for learning severity score from a relatively
small number of high-dimensional cases. More efficient
optimization tools would be needed for applications where
the number of cases is also large since in such applications a
quadratic number of comparisons in the number of samples
can be a challenge.

Abbreviations

SOFA: Sequential Organ Failure Assessment

ICU: Intensive Care Unit

APACHE: Acute Physiology and Chronic Health
Evaluation

SVM: Support Vector Machine

LASSO:  Least Absolute Shrinkage and Selection
Operator

SLDSS:  Sparse Linear Disease Severity Score

DSSL: Disease Severity Score Learning.

Disclosure

The funding bodies had no role in the design, collection,
analysis, or interpretation of this study, and any opinions,
findings, conclusion, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the view of the DARPA, AROQ, or the US Government.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

Ivan Stojkovic developed and implemented the computa-
tional methods and conducted the experiments, supervised
by Zoran Obradovic. Ivan Stojkovic and Zoran Obradovic
discussed and analyzed the results and wrote the manuscript.
All authors read and approved the final manuscript.

Complexity

Acknowledgments

The authors wish to thank Aleksandar Obradovic for proof-
reading and editing the language of the manuscript. This
material is based upon work partially supported by the
Defense Advanced Research Projects Agency (DARPA)
and the Army Research Office (ARO) under Contract
no. W91IINF-16-C-0050 and partially supported by DARPA
Grant no. 66001-11-1-4183 negotiated by SSC Pacific grant.

References

[1] J.-L. Vincent, R. Moreno, J. Takala et al., “The SOFA (Sepsis-
related Organ Failure Assessment) score to describe organ
dysfunction/failure,” Intensive Care Medicine, vol. 22, no. 7, pp.
707-710, 1996.

[2] W. A.Knaus, E. A. Draper, D. P. Wagner, and J. E. Zimmerman,
“APACHE II: a severity of disease classification system,” Critical
Care Medicine, vol. 13, no. 10, pp. 818-829, 1985.

S. Yang, L. Shapiro, M. Cunningham et al., “Skull retrieval for
craniosynostosis using sparse logistic regression models,” in
Medical Content-Based Retrieval for Clinical Decision Support,
pp. 33-44, Springer, 2012.

[4] J. Zhou, J. Liu, V. A. Narayan, and J. Ye, “Modeling disease
progression via fused sparse group lasso,” in Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’12), pp. 1095-1103, August
2012.

[5] K. Dyagilev and S. Saria, “Learning severity score for sepsis: a
novel approach based on clinical comparisons,” in Proceedings
of the in. AMIA Annual Symposium Proceedings, pp. 1890-1898,
2015.

[6] K. Dyagilev and S. Saria, “Learning (predictive) risk scores
in the presence of censoring due to interventions,” Machine
Learning, vol. 102, no. 3, pp. 323-348, 2016.

[7] T. Joachims, “Optimizing search engines using clickthrough
data,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 133-
142, July 2002.

[8] I M. Johnstone and D. M. Titterington, “Statistical challenges of
high-dimensional data,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical ¢» Engineering Sciences, vol.
367, no. 1906, pp. 4237-4253, 2009.

[9] R. Tibshirani, “Regression shrinkage and selection via the lasso:
a retrospective,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 73, no. 3, pp. 273-282, 2011.

[10] D. Ghosh and A. M. Chinnaiyan, “Classification and selection
of biomarkers in genomic data using LASSO,” Journal of
Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 147-154,
2005.

[11] I. Stojkovic, M. F. Ghalwash, and Z. Obradovic, “Ranking based
multitask learning of scoring functions,” in Proceedings of the
European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases, 2017.

[12] A. J. Atkinson Jr., W. A. Colburn, V. G. DeGruttola et al.,
“Biomarkers and surrogate endpoints: preferred definitions and
conceptual framework;,” Clinical Pharmacology & Therapeutics,
vol. 69, no. 3, pp. 89-95, 2001.

[13] H.Zouand T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005.

[3



Complexity

(14]

(15]

(16]

(17]

(20]

[21]

(22]

[25]

C. De Mol, E. De Vito, and L. Rosasco, “Elastic-net regulariza-
tion in learning theory;” Journal of Complexity, vol. 25, no. 2, pp.
201-230, 2009.

S.Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge, UK, 2004.

A. K. Zaas, M. Chen, J. Varkey et al., “Gene expression sig-
natures diagnose influenza and other symptomatic respiratory
viral infections in humans,” Cell Host ¢» Microbe, vol. 6, no. 3,
pp. 207-217, 2009.

G. G. Jackson, H. E Dowling, I. G. Spiesman, and A. V.
Boand, “Transmission of the common cold to volunteers under
controlled conditions: I. The common cold as a clinical entity;’
A.M.A Archives of Internal Medicine, vol. 101, no. 2, pp. 267-278,
1958.

C. W. Woods, M. T. McClain, and M. Chen, “A host transcrip-
tional signature for presymptomatic detection of infection in
humans exposed to influenza HINI or H3N2,” PLoS ONE, vol.
8, no. 1, Article ID 52198, 2013.

Y. Saeys, I. Inza, and P. Larrafiaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp.
2507-2517, 2007.

C. Sima and E. R. Dougherty, “What should be expected from
feature selection in small-sample settings,” Bioinformatics, vol.
22, no. 19, pp. 24302436, 2006.

A. Y. Ng, “Feature selection, L 1 vs. L 2 regularization,
and rotational invariance,” in Proceedings of The Twenty-First
International Conference on Machine Learning, Banff, Alberta,
Canada, July 2004.

A. Kalousis, J. Prados, and M. Hilario, “Stability of feature
selection algorithms: a study on high-dimensional spaces;
Knowledge and Information Systems, vol. 12, no. 1, pp. 95-116,
2007.

P. Bithlmann and S. van de Geer, Statistics for High-dimensional
Data: Methods, Theory and Applications, Springer Series in
Statistics, Springer, New York, NY, USA, 2011.

H. Mij, S. Poudel, A. Muruganujan, J. T. Casagrande, and P. D.
Thomas, “PANTHER version 10: expanded protein families and
functions, and analysis tools,” Nucleic Acids Research, vol. 44,
no. DI, pp. D336-D342, 2016.

W. Haynes, “Bonferroni Correction,” in Encyclopedia of Systems
Biology, W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H.
Yokota, Eds., pp. 154-154, Springer, New York, NY, USA, 2013.

1



Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




