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Abstract

Graphical models, as applied to multi-target predic-
tion problems, commonly utilize interaction terms
to impose structure among the output variables. Of-
ten, such structure is based on the assumption that
related outputs need to be similar and interaction
terms that force them to be closer are adopted. Here
we relax that assumption and propose a feature that
is based on distance and can adapt to ensure that
variables have smaller or larger difference in val-
ues. We utilized a Gaussian Conditional Random
Field model, where we have extended its originally
proposed interaction potential to include a distance
term. The extended model is compared to the base-
line in various structured regression setups. An in-
crease in predictive accuracy was observed on both
synthetic examples and real-world applications, in-
cluding challenging tasks from climate and health-
care domains.

1 Introduction

Structured prediction is a technique of simultaneously pre-
dicting a set of related response variables given a set of ex-
planatory variables [Bakir e al., 2007]. Many of the chal-
lenges in structured prediction are due to the exponential size
of that multi-variable output space, requiring complex models
to represent the problem, which further reflects on the feasi-
bility and tractability of learning and inference algorithms.
The resulting variables used to describe the object of interest
are often interrelated, and relations between variables form a
structure. That structure, although potentially complex, can
usually be leveraged to make the problem feasible.
Structured regression, as opposed to structured classifica-
tion, requires the set of response variables to have contin-
uous values. A challenge in structured regression is opti-
mization efficiency, as optimization is used at both the learn-
ing and inference stages. Common modeling approaches
to structured regression are undirected Probabilistic Graph-
ical Models named Markov Networks, or Markov Random
Fields (MRF). The choice of models that express joint or
conditional distributions depends on task objectives, train-
ing examples availability, and other constraints [Ng and Jor-
dan, 2002]. Discriminative models are often preferred over
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generative ones as more accurate due to relaxations of inde-
pendence assumptions [Sutton and McCallum, 2006]. That
is why Conditional Random Fields [Lafferty et al., 2001]
are extensively applied in various domains, including Com-
puter Vision [Peng and McCallum, 2006], Natural Language
Processing problems [Kumar and Hebert, 2004] and Bioin-
formatics [Sato and Sakakibara, 2005]. However, common
choice of the feature functions’ type, particularly the inter-
action functions, are limiting the potential of the model in
certain cases. A typical assumption is that if variables are re-
lated, they should be more similar. The interaction potential
is then constructed in such a way that it penalizes difference
between the connected response variables, making them more
similar and therefore acting as a smoother. This assumption
is also present in other applications of graphical models that
penalize difference in related variables, like feature selection
with Graphical LASSO [Friedman er al., 2008]. However,
sometimes this smoothing is an undesirable property and one
proposed solution to that problem was introducing the sign
term when subtracting the values of two outputs, resulting in
Graphical Fused LASSO penalty [Kim and Xing, 2009]. That
trick is not always adequate for use, since it introduces prob-
lems when the sign is misspecified and because of its hard
discontinuity [Ye and Liu, 2012].

Here, we propose a generalization of the most commonly
used interaction potential function, namely the one operating
on a difference of pairs of variables. We extend it to include
the difference (distance) term, which broadens the scope of its
application. It is no longer acting exclusively as a smoother,
but it could also make variables more different (distant), if
needed. With such interaction potential, the model will try to
force the difference between variables to be equal to the spec-
ified distance term. In this paper, we study the behaviour of
such interaction functions on the Gaussian Conditional Ran-
dom Fields (GCRF) model. In the proposed approach, infer-
ence and learning properties of original model remain pre-
served, and the scope of its acting is extended beyond the
smoothing, resulting in increased accuracy in structured re-
gression tasks. The original model is in fact a special case of
the proposed model when distance terms are set to zeros.

Related work on GCRF models, our proposed model and
the interpretation of the extension are described in Section II.
Experimental results are presented in Section III, followed by
conclusions presented in Section IV.



2 Model

Although representationally powerful, applications of Con-
tinuous Conditional Random Fields to modeling problems
is somewhat hampered by the high computational complex-
ity related to calculating the partition function (normalization
term). Also, in general, inference on them requires expen-
sive sampling methods. To alleviate some of those prob-
lems and make the methods more applicable, the Gaussian
distribution assumption can be imposed. Recently, several
formulations of CRF models named Gaussian Conditional
Random Fields (GCRF) were proposed [Tappen et al., 2007,
Radosavljevic er al., 2010; Sohn and Kim, 2012; Wytock
and Kolter, 2013]. Approaches like [Wytock and Kolter,
2013; Sohn and Kim, 2012] utilize regularization techniques,
mainly L; norm, to impose sparseness and learn the precision
matrix and its structure. Others, like [Tappen et al., 20071,
have more specialized formulation tightly related to the ap-
plication of interest. Radosavljevic ef al. [2010] proposed
a model for AOD prediction and regression in remote sens-
ing, which relies on a known structure to constrain the learn-
ing of the predictive model, and in this work we are going to
focus on this particular kind of GCREF. It utilizes a formula-
tion of feature functions where the resulting probability has
multivariate Gaussian form. This property of GCRF allows
efficient inference in the form of an algebraic solution. More-
over the resulting GCRF learning (parameter fitting) problem
is convex, which allows the use of reliable optimization algo-
rithms and guarantees a high quality solution. All these char-
acteristics make GCRF a promising tool for a broad spectrum
of applications including climate [Radosavljevic et al., 20101,
and health-care [Radosavljevic ef al., 2013] and it has been
modified in several different ways [Radosavljevic et al., 2014;
Stojanovic et al., 2015; Gligorijevic ef al., 2016].

2.1 Related work

One of the challenges in structured learning is finding the ap-
propriate structure for the problem at hand.

As outlined previously, there are several approaches
to structured learning with Gaussian Conditional Random
Fields, corresponding to different parameter sharing and the
need and ability to learn the structure itself. One approach is
based on learning the covariance matrix ([(Wytock and Kolter,
20131, [Sohn and Kim, 2012]) using sparsity-inducing regu-
larization. This approach utilizes no parameter sharing, thus
effectively learning the entire (but sparse) structure. Another
approach is based on exploiting additional information in the
form of a predefined weighted graph [Radosavljevic et al.,
2010]. Usually, this kind of additional information comes
from domain knowledge or underlying topology of the prob-
lem. Here we will adopt a hybrid approach, where sparsity
is predefined by the presence of the edges in the graph, but
the weights of edges are learned as model parameters. The
motivation for this is based on the following: if learning the
whole structure only from the data, sparse learning methods
must be employed since otherwise too many parameters need
to be determined; however, when a structure is predefined, the
model largely depends on the quality of the given structure.

To present our model, we will first describe the work of
[Radosavljevic et al., 2010], where a model is defined as a

weighted product of association and interaction potentials:
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Here, each association potential is defined as a squared
difference between node response variable y; and some in-
dependently estimated value R; obtained as an unstructured
predictor. Several association potentials can be associated
with each node, corresponding to different predictions of the
node value. An interaction potential is defined as a weighted
squared difference between the response variable at neighbor-
ing nodes in a graph, with the weight S;; being proportional
to the corresponding edge in the graph. Several sets of asso-
ciation and interaction potentials corresponding to different
unstructured predictors can be used, hence summation over k
and [ in (1). Weighting factors v and 3 for the association and
interaction potentials are the parameters of the model and can
be learned using the maximum likelihood optimization.

This model relies on a predefined structure given in a form
of an undirected weighted graph S. For some problems this
graph arises naturally, e.g. when correlation patterns can be
easily identified, as in spatial or temporal problems. When
a graph is suitably chosen, the parameter space is greatly re-
duced, allowing the efficient learning. However, if the chosen
graph is not appropriate for the problem, the parameter space
is restricted to a subspace of the original problem that may
not contain the desired solution, and underfiting may occur.

The interaction potential functions defined in (1) penalize
the difference between the predictions at neighboring nodes,
thus acting as a smoothing filter. The intensity of penalization
is proportional to the edge weight.

Efficient inference on this model is possible since expres-
sion (1) can actually be represented as a multivariate Gaus-
sian conditional distribution. The partition function therefore
has an analytic solution, and mode is simply the mean of the
multivariate Gaussian. The likelihood function is a convex
function of « and 3 parameters, and reliable and effective op-
timization methods can be used.

2.2 The proposed model

Commonly, the model described in (1) is viewed as a sum
of weighted potentials appearing as the exponent of a base
of a natural logarithm e. Here we present it from a different
perspective, and focusing on the model as a multiplication
of Gaussian functions. This viewpoint will make it easier to
point out some important characteristics. In general, MRF
(and CRF) with single and pairwise potentials on the set of n
variables Y = [y...y,]T, can be factored as:

p(Y) = %Hfi(yi)ngij(yiyyj) (2)

While MRF models both response Y and covariates X
jointly, CRF models only the conditional probability of ¥
given X. The convenience of the conditional model is that by
omitting structure between covariates, parameter space can be
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Figure 1: Two target variables related with highly correlated additive noise. 250 noisy observations of the response
variables y; and y2 are shown on the left panel, as well as the underlying deterministic signals. On the right panel their
difference Ay12 = y1 — yo is presented. Since the noise is highly correlated, by subtracting the measurements a significant part
of the variance is filtered out. It is clear that uncovering the true underlying signal will be a much easier task for the difference
Avyy2, compared to the original more noisy observations of variables y; and ys. In this situation, difference estimate is more
reliable and can be used to improve predictions of the target variables. Such correlated noise is common in biological data, for

example in gene expression studies [Dunlop er al., 2008].

significantly reduced. We are interested in regression of the
response variables from a set of measured explanatory vari-
ables, therefore, from now on we will discuss the CRF model.

If we adopt the Gaussian functions for activation potentials
(fi) and interaction potentials (g;;) we obtain a Gaussian con-
ditional random field. If we now rewrite activation potentials
from model (1), they will have the form of a Gaussian func-
tion with parameters (R, o):

(yi — Ri(X))?
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fi(yi) = exp(— ) (3
where R;(X) is the mean estimated from the data with some
regression method, and which depends on the values of ex-
planatory variables. Term 02 = %ofl represents the variance
as a function of a shared parameter « to be learned.

Interaction potentials also have the Gaussian function form
with parameters (0, 0;;):

Ayz‘Qj

2
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9ij(Yi, ;) = 9ij(Ayij) = exp(— ) )
where: Ay;; = y; — y; , the mean is zero and variance is
afj = (28S5;;)~1, B is a shared parameter to be learned. In-
terpretation of (3) and (4) is the following:

1. Gaussian function association potentials (3) force the
value of each y; to be near the corresponding R;(X), with
precision parameter 1/« to be learned.

2. Gaussian function interaction potentials (4) force a value
of Ay;; to be close to zero, with precision proportional to
\/Si;. Therefore, S;; can be interpreted as a similarity mea-
sure (greater values of 5;; indicate smaller Ay;;). Propor-
tionality factor /3 for interactions is learned as a model pa-
rameter.

This form of interaction function with zero mean forces
related variables to be more similar. That characteristic
might be desirable under the assumption that related variables
should always be similar, but that doesn’t necessarily need to
be the case. Therefore, we extend the interaction potential

model (4) by introducing an additional term D;;(X), which
represents a distance measure which depends solely on X:

(Ayij — Dij(X))?
267,

The new GCRF model can now be stated as:
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Interpretation of model in (6), which we refer to as Dis-
tance GCRF or DGCREF, is as follows:

1. Gaussian function association potentials remain the
same as in original GCRF [Radosavljevic et al., 2010], with
the exception that there is no parameter sharing between
nodes.

2. Gaussian function interaction potentials (5) now force
the difference between the i-th and j-th node to be ex-
actly D;;(X). Precision (interaction “strength”) of each pair
(i, ;) is proportional to \/f3;;.

One can notice that in the new formulation there is no sim-
ilarity term S;;, and the reason is that now when we have
separate (3;; for each edge (not shared parameter anymore)
we no longer need prespecified S;; to weight total precision
associated with each term. Now those precision parameters
can be learned much more appropriately through the model.

In order for the method to work well, the appropriate dis-
tance values need to be determined. We propose learning
these parameters in a similar way as learning the single output
variables, which is fitting R;(X) using regression methods,
except now we will regress the difference Ay; ; between vari-
ables y; and y; from the input X . One might ask why to fit the
difference as a function of input if we have already fitted the
output variables themselves. Shouldn’t the difference model
just be the difference between the two models? That doesn’t
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necessarily need to be the case. We can consider an example
illustrated at Figure 1 where variables have highly correlated
noise. When fitting the variables, noise might prevent us from
getting some of the true information and also make us pick
information that comes from the noise (Figure 1 left panel).
However, when fitting the difference of those two variables
(Figure 1 right panel), highly correlated noise might cancel a
significant part of itself and allow us to pick up more reliable
information than in the case of original outputs. That is one
mechanism that could justify including information about the
difference of signals into the model.

2.3 Inference and learning

The newly proposed model has inherited all the convenient
properties from the baseline model.

We will first examine inference. The modeled conditional
probability takes the form:
(—E) @)

1
— X
7 p

If we equate the exponent of a model in (7) as a sum of
weighted quadratic potentials (8) and the exponent as a mul-
tivariate Gaussian (9):

B=323 el - BHOY
+> 0> By — D(X) —yy)*) ®

L (4.9)

P(Y|X) =

1 _

SV ==Y —p) ©)
We obtain that precision matrix @ = X! is composed of

@1 (association potential part) and ()2 (the interaction poten-

tial part):

FE =

Yok, ifi=j.
Qli;=4% (10)
0, otherwise.
; > By, ifi=].
Q2;=4 ' &) . (1)
- Xl: Bijs otherwise.
We also get that
w=2b (12)
Therefore, b takes the following form:
(13)

b; = 2ZafRf(X)+ZZﬁijij(X)
k 1

Since the difference is anti-symmetric, D;;(X) =
—Dji(X ), it can be used to train only one direction, and then
the other one is estimated just as its negation, and fed to the
appropriate place in (13).

Since X! = 2(Q1+ @Q2), using equations (10) to (13) we
can infer the vector of most probable values for the variables
of interest.

We can also notice that inference of the newly proposed
model differs from the original only in the equation for b,
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where the original model equation is made from just the first
sum in (13).

Free parameters alphas and betas are commonly learned
from data (and provided independence structure) by maxi-
mizing the log-likelihood.

Here we provide derivatives of the log-likelihood for the
parameters of the model. We start from the expression d log P
as stated in [Radosavljevic et al., 2010]:

1
dlogP = —i(y —w)Tds (Y — p)
1

+ (ab" — pPdX (Y — p) + 5Tr(czz—lz) (14)

From which we get a particular derivative function for each
parameter:

dlogP

=V =IO —p)

+ QVOT _ JT1ONY — p) + Tr(I9%)  (15)

dlog P T (i
- (Y — TGN (Y —
i3, Y —p) Y —p)

+ VDT _ yTTEDYY — ) + Tr(IG9%)  (16)

where matrices ("), 1(:7) are derivatives of the precision ma-
trix over parameters c; and (3;; respectively, and vectors V),
V(i:3) are derivatives of the b vector over the same parame-

ters.

1, fora=b=1,(4,j)is edge in graph.
J

fora=b=1.
otherwise.

L

0. a7)

(4,3) _
Ly = —1, if (a,b) or (b,a) are in graph.
0, otherwise.
(18)
, 31, fora=i.
Vi =% (19)
0, otherwise.
o >>1, fora =i where (i, ) in graph.

VD =875 (20)

0, otherwise.

2.4 Behaviour of the model

An analogy can be drawn between the behaviour of the orig-
inally introduced interaction potential from (4) and a rubber
band. The weighting coefficient in interaction potential simi-
larly behaves as the band’s stiffness coefficient; the higher it is
the less tolerant it will be to difference in their values and the
higher the force it will try to reduce it with. More importantly,
it may only reduce the difference, it can never make it larger,



the band cannot push its ends away from itself. In some cases,
estimated values of two variables actually need to be pushed
apart. In the graphical models with discrete valued variables,
such pairs are called “repulsive nodes”. Newly introduced in-
teraction potential eq. (5) does not force the variables to have
exactly zero difference, instead, it allows the tuning of that
distance parameter to some other, potentially more appropri-
ate value. Once that distance parameter is fixed, the inter-
action potentials force the neighbouring values to that differ-
ence. If the values are too far apart (where estimated distance
should be smaller) it will bring them closer, similarly as the
original GCRF. However, if they are too close together, it will
move them apart towards the desired distance. This behaviour
is different than the rubber band model and it can be seen as a
spring model, where springs have some nominal length which
they will keep at rest. But if one tries to stretch a string or to
compress it, it will resist towards its nominal condition.

2.5 Computational cost

Since the baseline model approximated the mean parameters
of interaction potential with zeros, it didn’t need to build the
regression models for them. The newly proposed model has
to do it, which results in increased effort to build the model.
In the worst case of a dense structure, the number of single
target models that has to be fitted is quadratic with the size
of the problem. Luckily, the structure in problems of interest
is often sparse and computationally manageable, as will be
demonstrated in the results section. Many complex systems
like biological and social processes tend to have a scale-free
property characterized by a power law degree distribution,
which results in a practically linear number of links in the
number of nodes. In such a case, the computational complex-
ity of fitting the unstructured models is proportional to that of
the baseline models.

Regarding the increase in the number of free parameters of
the model, which we have introduced by relaxing the sharing
of the parameters, it also increases the computational burden.
That cost is reflected in the fact that more iterations need to be
performed in order for the optimization algorithm to converge
in higher dimensional parameter space. However, the asymp-
totic computational complexity remains the same, since the
main computational burden still comes from the matrix inver-
sion.

With all that in mind, the newly proposed method does
have an additional computational cost compared to the base-
line, but it is applicable on every problem where the baseline
can be applied, since they share the same limitations regard-
ing the size of the problem.

3 Experimental Results

In order to characterize the improved capabilities of the ex-
tended model over the baseline model we have conducted a
number of computational experiments described in the fol-
lowing two subsections.

3.1 Synthetic data

The GCRF model is based on an assumption that the pro-
cess that generates samples has a deterministic function for
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the mean and the covariance that also might depend on the
input space of the problem. The model assumes that there
are multiple output (response) variables that are to be pre-
dicted, while the input space (the variables the joint distri-
bution is conditioned on) may or may not be multidimen-
sional. Mean functions of the synthetic examples are created
as parametrized polynomials with (pseudo)random parame-
ters, and correlated noise is superimposed to them in order
to include the relation (structure) between those targets. As
the structure pattern between the variables, we have set two
prototypical examples, linear chain and regular two dimen-
sional grid (mesh). Such structures are simple, sparse and ar-
tificially generated, yet they can provide an appropriate rep-
resentation for various problems present in temporal or ge-
nomic sequence of events, and in spacial applications.

In our first type of synthetic experiments 10 examples of
the linear chain connection structure of 10 variables are con-
sidered. The connection between the variables in the chain
is expressed as an appropriate sparse precision matrix. Simi-
larly, in the second type of synthetic examples, the grid struc-
ture containing 9 nodes (3 x 3), is created as ten random ini-
tializations of mean and noise patterns.

In our experiments on synthetic data we have sampled 250
instances from the previously described process for training
the neural network models (NN), which were chosen as an
unstructured predictor. Another 150 examples are used for
the unstructured models to generate predictions on which we
have trained the baseline GCRF and the Distance GCRF. Both
approaches relied on unstructured predictions and were tested
on another 600 test examples and prediction performance was
measured as the root mean squared error (RMSE). Results
presented in Table 3.1 (also shown at the Figure 2) are average
performance over ten different synthetic datasets.

Method Linear Chain 2D Grid
Unstructured-NN 0.830 £ 0.295 1.052 £ 0.270
Structured-GCRF 0.594 +0.128 0.688 +0.127
Structured-DGCRF | 0.533 £0.111 | 0.598 +0.134

Table 3.1 Predictive error RMSE of three methods on two
graph types. The best performance for each type is marked
in bold (p-values, 0.011 and 0.0043).

The proposed DGCRF model, with distance based interac-
tion potential as in (5), is able to improve accuracy (statisti-
cally significant with cut off level 0.05) based on information
from estimation of differences between connected outputs.

3.2 Real Applications

The proposed method is further characterized and compared
to alternatives on two challenging real world applications
briefly described in this section.

Sepsis Admissions Prediction in California Hospitals
(SEPSIS). The monthly admission rate is predicted for sepsis
in the California hospitalization dataset [(SID), 2003 20111,
which contained admission information for 108 months at
231 hospitals. Data for this experiment was provided by the
Health Care and Utilization Project (HCUP) and State Inpa-
tient Databases (SID). Sepsis is a diagnosis with one of the
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Figure 2: Synthetic problem results. Prediction errors of three methods on two types of structure between the outputs. On
the left panel RMSE on ten different synthetic problems in the form of a linear chain graph is presented, while the right panel
shows ten different problems of two dimensional grid applications.

highest mortality rates in the USA. An accurate prediction of
the total number of patients diagnosed with sepsis can help
optimize hospital resources and reduce associated costs. In
our experiments, time series consisting of sepsis related in-
patient hospital records from 231 hospitals were considered.
The admission rate for the following month are predicted
from the previous three months’ admission rates for each hos-
pital. At each node in a graph representing 231 hospitals in
California we trained unstructured predictors using data from
the initial 75 months. This is repeated 10 times by sampling
50 out of 75 months at random where remaining 25 months
were used to learn the parameters of a structured model. The
future 30 months were used as a test set in each of ten exper-
iments. Hospital similarity matrix was derived from hospital
statistics data in order to provide structure for our models.
Similarity between hospitals is measured by Jensen-Shannon
divergence on the mortality rate distributions, and only the
large coefficients were kept in order to obtain a sparse graph
of highly related hospitals.

Precipitation Estimation in Continental US (RAIN).
The rain dataset contains precipitation records from meteo-
rological stations across the USA and has been acquired from
NOAA'’s National Climate Data Center (NCDC) [Menne et
al., 2009]. We have considered monthly precipitation mea-
surements over a period of 708 months in 1132 locations. In
addition to precipitation, we used 6 variables acquired from
the NCEP/NCAR Reanalysis 1 project [Kalnay et al., 1996]:
Lagrangian tendency of air pressure (omega), precipitable
water, relative humidity, temperature, zonal and meridional
components of the wind, which are commonly used to pre-
dict climate parameters (data available on NOAA website:
http://www.esrl.noaa.gov/psd/). We have utilized these vari-
ables to estimate the precipitation levels. Predictive models
were trained by randomly selecting 250 months from the ini-
tial 400 months repeated 10 times, while structured models
were learned on the remaining 150 months and performance
was assessed on the future 308 months. We have generated
the interaction structure by creating a spacial proximity graph
based on three nearest locations, as it is expected that nearby
sites will have similar climates.
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In both experiments on real applications, the DGCRF
model was more accurate as compared to the alternative mod-
els (Table 3.2). The unstructured model used for predictions
in both of the structured approaches is Gaussian Process Re-
gression (GPR) with Gaussian kernel, where hyperparameters
were tuned on the training data by maximizing the marginal
likelihood. Improvement in the accuracy of DGCREF, as com-
pared to the baseline GCRF, in a two-sided t-test was statisti-
cally significant (p-value 2.5e-9 and 7.8e-8 on rain and sepsis
datasets, respectively). The overall results suggest an advan-
tage in using the distance based interaction potential model
DGCREF over the baseline GCRFE.

Method RAIN SEPSIS
Unstructured-GPR | 1.799 4+ 0.010 1.272 +0.020
Structured-GCRF 1.790 £+ 0.007 1.265 4 0.020
Structured-DGCRF | 1.767 +=0.004 | 1.238 +=0.018

Table 3.2 Prediction error (RMSE) on two real world
applications. The best performance is marked in bold.

4 Conclusion

In this study we have proposed modeling the interaction be-
tween the response variables in a network based on distance
and have provided evidence that such an approach is more
accurate than similarity based alternatives used in published
methods. This is achieved by reformulating the GCRF model
and extending the model to allow a nonzero mean parameter
in the interaction potential. An additional degree of freedom
introduced by the DGCRF model has resulted in increase in
prediction accuracy over the commonly used baseline model,
as demonstrated on number of synthetic and two real world
datasets. Moreover, the proposed extension haven’t jeopar-
dized attractive computational properties of a closed form in-
ference and convex learning of parameters in structured re-
gression. Although the presented distance based interaction
modeling is particularly suited to the GCRF models, it is not
limited to use only in such models, and other graphical meth-
ods can be easily improved by the proposed approach as well.
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