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Using multiscale

networks, the exact
solution for graph-
based regression on
networks of millions
of nodes and
trillions of links can
be solved quickly,

as demonstrated

on a real-life

health informatics

application.
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C

onditional random fields (CRFs) are part of a broad functional frame-

work that allows for the efficient interaction over graphical models us-

ing an assumption of conditional independence of feature functions. Still, the

learning process for graphical models including CRFs remains a challenging

task.! The challenge is simplified in Gaussian
CRFs (GCRFs) by restricting feature func-
tions to the set of all quadratic functions. This
yields a CRF probability function that’s trans-
posable into a Gaussian multivariate prob-
ability function. Gaussian multivariate
distributions are convex and can be opti-
mized using the gradient descent algorithm.

A host of research has been done with
GCRFs.28 The models in general are faster
than other structured regression approaches.
Two advances that resulted in significant effi-
ciency improvement have focused on speed and
memory efficiency of the GCRF model: one
is based on using a mean field approximation
combined with fast filtering,® and the other uses
a single network with linear bounds on convex-
ity and fast calculation of gradients.! The work
presented here handles multiscale networks far
more efficiently than either of these two.

1541-1672/17/$33.00 © 2017 IEEE

GCRFs work as a multiple output regres-
sion (we present them as applied to multivar-
iate time-series data). The motivating task
in our study is to predict monthly hospital
admissions by disease for nearly 500 hos-
pitals in the state of California by learning
from millions of hospitalization records.
The traditional approach for this large a da-
taset would be to model each disease sepa-
rately at a specific hospital or in a network
of hospitals. Although efficient, that ap-
proach isn’t as accurate because it accounts
for neither disease comorbidities nor hos-
pital similarities. An alternative choice is a
locally weighted regression model, which
for this dataset takes the form of a vector
autoregressive integrated moving average
(VARIMA) model.!! However, the tradition-
ally efficient VARIMA model struggles with
scalability compared to GCRF for multiscale
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Figure 1. Network of disease similarities. The outer network (top left) is the
hospitals in our example, and the inner network (top right) is located in a node of
the outer network (diseases, in our example). A single link (bottom left) from the
outer network shows a relationship between hospitals in our example; two joined
inner networks (bottom right) represent a network of the relationships among all
disease admission rates at two different hospitals.

networks as proposed here, which we
call GCRF-MSN.

The input to a GCRF method is a
similarity network and feature func-
tions. Feature functions are the de-
scription of how targets, vy, interact
with observable data, X; a learner
function is one that directly mod-
els how x determines y. In GCREF,
learner functions are typically used
as feature functions. When learner
functions are input into another
method, that method is an ensemble
method. Learner functions are often
referred to as input functions. It has
been shown that an ensemble method
that uses inaccurate input functions
(often referred to as weak learners)
can combine to produce a state-of-
the-art prediction.213 A similarity
network is a unique collection of data
that describes a relation between two
or more outputs—for example, in the

dataset used, the similarity among
diseases is based on the number of
symptoms that they share.

In the motivating example, we pre-
dict admissions by disease for various
hospitals in California. Two networks
were obtainable—one compares dis-
eases to diseases, and the other com-
pares hospitals to each other. Intuitively,
we can visualize each hospital contain-
ing a network of disease nodes, with
the diseases interacting with each other
in and across hospitals. A network with
networks inside nodes is a multiscale
network, which can be modeled as a
Kronecker product of networks. An ex-
ample to illustrate our case is when we
have a network of disease similarities
(right side of Figure 1), and we also have
a network of hospital similarities (left
side of Figure 1). Each node on the left
has a graph within it that looks like the
graph on the right.
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Structured regression methods are
expected to achieve higher accuracy
compared to unstructured regres-
sion methods, but their drawback is
computational complexity. On prob-
lems similar to our motivating multi-
scale problem, GCRF-MSN computes
faster than VAR. When using struc-
tured methods, we must choose from
many network weight design choices
including robust weight updating,
sparse weight learning, or weights as
prior information. GCRF?2 uses net-
work weights as prior information,
which is by far the fastest approach.
The multiscale structured regression
approach described here finds the op-
timal solution to the GCRF problem.
When using multiscale networks, the
proposed method can handle trillions
of links in minutes while alternatives
require weeks or months.

Background

In a CRF model, the observables, X,
interact with each of the targets, y,
directly and independently of one an-
other. For a general network structure,
the outputs, y, also have independent
pairwise interaction functions. Thus,
the CRF probability function takes
the form

_r
Z(X,a,B)
N

ZA(a,yi,X)+zI(ﬂ’yi’yi) :

i=1 i~

P(le)z exp

If we set the feature functions to
be the quadratic difference between a
function of observables, f(X), and tar-
gets, y, we produce a convex ensemble
method:

N K

Ale,yi X)= —22 o (i —Rk(X))z-

i=1k=1}

When we incorporate quadratic
pairwise interaction functions among
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outputs, y, we produce a convex gen-
eral graph structure ensemble method:

L

I(ﬁa)’i,y;): > BS; ()’i - )’/)2-

I=1i~j;

The GCRF model is a CRF model
with both quadratic feature and qua-
dratic interaction functions that can
be transposed directly onto a Gaussian
multivariate probability distribution:

P(ylx)= —,27:—|2|

-5 0= olv-n)]

When setting these two conditional
probability models equal to one an-
other, the result is a precision matrix,
Q, defined in terms of the confidence
of our input predictors and the pair-
wise interaction structure, measured
by o and B, respectively. Define L; as
the Laplacian matrix of pairwise in-
teraction structure matrix S. The
precision matrix is given by

exp

0=

Nl

L
akl + ZﬁlLl‘
=1

>~
1]

1

Representing input predictions as a
matrix, R, we can concisely write the
formula for the final prediction:

u=07"1Ra.

The only remaining constraint is
that Q is positive semidefinite, which
is a bound on convexity but also a by-
product of the multivariate Gaussian
assumption. As long as we satisfy the
positive semidefinite constraint, we
have a convex model and can opti-
mize it using gradient descent. When
first introduced,>? GCRF used a diago-
nally dominant assumption to guaran-
tee positive semidefiniteness, implying
that all links (similarities) and all pa-
rameters were strictly non-negative.
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In another study,!? the parameter con-
straints were relaxed because bounds
on positive
solved as a set of linear functions of
the hidden parameters. The discussed
method with faster optimization and
fewer link weight and parameter re-
strictions was referred to as unimodal
GCRF (UmGCRF) because it assumes
at most one link between each node.
UmGCREF operates on the precision
matrix, O, by diagonalizing the La-
placian matrix, L. Because L is a sym-
metric real valued matrix, L = UDUT,
where UUT =T and D is a diagonal
matrix. We can then substitute this
decomposed formula for L into the
formula for Q. This restricts the hid-
den parameters for GCRF, o and f3, to
be operators in a diagonal matrix:

semidefiniteness were

K
O=Yayl+ L=y oyl + pUDUT
k=1 k
= U[ZakUTIU + ﬁD]UT
k

:U[Zak1+ ﬁD]UT.
k

Using a traditional notation for a
diagonalized matrix, we can write Q
= UAUT and then define all combina-
tions of & and f that produce feasible
eigenvalues for Q. This formulation is
efficient because calculating the parti-
tion function for GCRF was previously
O(#%) and now is only O(n). Because
GCREF defines the hidden parameters o
and f with respect to the precision ma-
trix, we must invert the precision matrix
for every update of o and f. Instead of
inverting the entire precision matrix,
which would take O(#3) operations,
with the following equation we can
compute the log(lO7! )= Ef\illog(lfl)
in O(n) operations:

K
A=Y oy + Bd;.

k=1
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The first-order derivatives with re-
spect to the partition function would
also require inverting the precision
matrix, except that we only need the
trace of the inverse. Thus, we can use
the eigenvalue update mentioned pre-
viously to reduce computation time.
When GCRF was introduced, the
first-order derivatives were solved in

the form

ol 1/ T T )

L 2(y—u) R

. z(y y+2(y—u) Re+utpu
+%Tr(Q_1)

al

oa__1 (Y7 Ly+u"Lu)+ Lo,
B 2 2

With a couple of preprocessing
steps such as, C = UTR, we can de-
rive first-order derivatives that can be
computed in linear time. Previously,
inference was a component during
each iteration of learning, which is
an O(n?) process. It’s also possible to
remove inference from the learning
process, which brings learning down
to linear complexity. We use X to rep-
resent element-wise multiplication:

% - -% (a1 +2(Ce -x 27" )ca+aTcT a7 cal
k -1
%:—% (cz +ocTCT( (d X /l’z) X C)j
+ %dTl’l.

Using the established formula for
eigenvalues of Q, positive semidefi-
niteness of Q is easily verified. If we
know that all the eigenvalues of QO
are greater than or equal to zero, then
Q is positive semidefinite:

K
Z(Xk +B do >0
k=1
00 p .
Z(Xk + ﬂdn—l >0
k=1
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These parameter boundaries allow
the model to include negative links
and remain positive semidefinite.
The method proposed here improves
UmGCRF’s computation speeds on
multiscale networks. Another ap-
proach for speeding up GCRF is
an approximate method called FF-
GCREF,? which uses a mean-field ap-
proximation for network interactions.
However, it requires a network to be
defined on a Euclidean space. The net-
work in our motivating example is
not, making this approach dependent
on an embedding preprocessing step.

All the discussed implementations
of GCREF use inputs the same way—
specifically, they use input learners
for feature functions and incorporate
network weight as prior knowledge.
We use a VARIMA model for the
structured regression benchmark.!!

GCRF-MSN Method

We introduce an implementation of
GCREF that operates on nested network
similarities, otherwise known as a
Kronecker product of matrices. This
method is much faster and requires
less memory than standard ap-
proaches, and it provides a framework
for incorporating various types of net-
work information into a structured
regression. To develop this model, we
formally introduce two properties of
Laplacians of Kronecker products cur-
rently absent from literature.

Despite the vast literature on Kro-
necker products and Laplacian ma-
trices,'#-17 there isn’t a reference that
contains the formula for the Lapla-
cian of the Kronecker products of
matrices. To define the Laplacian of
a Kronecker product, we use the fol-
lowing notation: similarity network,
S, has a diagonal sum matrix, D(S),
each entry of which is denoted D.
The Laplacian of S is L(S), and the
standard formula for the Laplacian is
written as L(S) = D(S) — S. We then

can formulate d; = D;; as a summation
of the entries of S, denoted s;

di = 251"/.
Vi

Claim: The Laplacian of a Kronecker

ij>

product is

L(S; ®S,)=D(S) ®D(S,) - ®S,.

Proof: The Kronecker product can be
concisely represented via block matrices.
The Kronecker of diagonal matrices is

particularly clean:
D(8;) ® D(S,)

diD(Sy) - 0

0 d,D(s,)

When we fully carry out the multi-
plication of the above block matrix,
it’s clear that the Kronecker product of
diagonal matrices is diagonal, and the
exact diagonals are easy to position
using ceiling and modulo indexing;:

didt 0 0 0
B 0 did} - 0 0
0 0 e d}ﬁ dﬁz 40

The above diagonal matrix shows
entries that are a product of the di-
agonal entries of smaller matrices,
which are computed by summing
across each row of the matrix. Now
compute the Kronecker product of
similarities, S; ® S,, and calculate
the diagonal of this matrix, verify-
ing that it equals the above matrix:

5® S,

12 1.2 12 12
S1,151,1 Ssiz S1181,m, -1 S1,151,m,

12 12 12 12
$1,152,1 S11822 S1,152,m,-1 S1,152,m,

12 12 2 12
S ASnyl Sm 1,2 SmymSmym—1 Smym Snym
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If we use index k to represent posi-
tions in the matrices §; ® S, and D(S;
® S,), it isn’t hard to verify

1

de=225

ll/lngll

{ } 7 [k mod m]

1 - .
Because s; ceill k] 1S independent of j,

m 1,
_ 1 2
dk—zs, .[k}zsf,[k mod ]
i—1 b ceil| — i=1
m

L1

Y

d?
1, 6611|: } [k mod n1:|
i= n

=d!
cezl{ :| [k mod n1:|
m

This is the same as the Kronecker
product of diagonals where k maps to
the ordering resultant of Kronecker
products.

Decomposition of a Regularized
Laplacian

With this new formula for the Lapla-
cian of the Kronecker of two adja-
cency matrices, we can formalize the
Eigen decomposition of the Laplacian
with respect to its input matrices. To
do this, we use a regularized Lapla-
cian of the form

L(S):I—D(S)_% S D(S)_%.

It has specific bounds on the sum
of its eigenvalues, and the rows and
columns of the S matrix are now nor-
malized. We denote the unnormal-
ized network weight matrix, Sj, and
we can obtain a regularized Lapla-
cian by normalizing S, by performing
the following operation:

D(S, )‘%

With our regularized Laplacian,
we have a Laplacian in which the

1
S = D(So)_z SO
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eigenvectors are determined en-
tirely by the eigenvectors of the in-
put adjacency matrix, S:

L(S)=1-S=1-UAU" =U(1-A)U".

Decomposition of the Kronecker
Product of Matrices

Applying our definition of the Lapla-
cian of a Kronecker to our normal-
ized adjacency matrices, we get

L<S1®Sz)=ll ®12_Sl®52'

We can perform an Eigen decompo-
sition on each adjacency matrix in rel-
atively little time. It’s then possible to
exploit known properties of the Kro-
necker product of decomposed matri-
ces, as seen below:

=1 ®127(U1A1U1T) ® (UzAzUzT)

T
=1, ®L-(U;®U,)(A4 ®A4)U;OU,) .

To get the formula written in a way
that yields a computational speedup
for GCRF, we must project the identity
matrix onto the new orthonormal ba-
sis, which produces an identity matrix,
thus

L($; ® §,) =(U; ® Uy)
L ®L—A ®A) (U ® Uy)T.

We’ve diagonalized the Laplacian
of a Kronecker product of networks
by operating on the component net-
works before the Kronecker prod-
uct was taken. Diagonalizing in this
manner is magnitudes more efficient
than a naive approach. Revisiting
GCRF’s formulation for the precision
matrix, O, we can see

K
0= I+BL(S®S,)

k=1k

K
=(U; ® Uz)[Z(xkl - BA, ®A2] U, ®U,)T.
k=1
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GCREF provides a closed form so-
lution for the partition function, but
it’s computed in O(n3) operations.
In another study,!? the GCRF learn-
ing process was reduced from O(n3
x I) to O(n? + n - I). The remaining
bottleneck can be addressed with
GCRF-MSN, resulting in O(h3 + d3
+ n - I) such that w = b - d, where
b represents the number of nodes in
the outer graph (hospitals) and d the
inner graph (diseases). The speedup
varies according to the size of the
subnetworks. The optimally effi-
cient case of GCRF-MSN for two
networks can be seen by minimiz-
ing b3 + d3such that n = b - d, which
results in h=d=+n. Then, we
can see that b’ +d° =2\/Z3 =212,
which implies the entire GCRF
learning process would be O(n3/2 +
n - I). If we nest more than two net-
works, the speedups are even more
dramatic.

The current method is also more
efficient at storing information. In
our motivating example on Health-
care Cost and Utilization Project
(HCUP) data, the network changes
over time, which is often referred
to as an evolving network. We end
up with a unique network for every
year spanning nine years. Predict-
ing 250 diseases across 500 hos-
pitals means predicting 100,000
different node values each month,
meaning that each monthly net-
work has 10 billion links. GCRF-
MSN can optimize parameters
while not storing every link—to
do so, it needs only 312,500 links.
What’s more, we can capture the
interaction between these networks
without executing the Kronecker
product. The space requirement of
GCRF-MSN is only logarithmic
compared to traditional GCRF or
other network methods.

It was shown in another study!®
that

www.computer.org/intelligent

K
zak +ﬂ do >0
k=1
0-0« X .
Z(Xk + ﬁdn—l >0
k=1

Here, we show that we can extend
this definition to networks built on
the combination of multiple scales of
networks via the Kronecker product.
The new equivalent set of constraints
are given by the following lemma.

Lemma:
K L
Z(Xk + ﬁHdl,O >0
k=1 =1
K
QiO 4 Zak +ﬁd/',0 Hdl,nfl >0 V]
k=1 I#]
K L
Zak +ﬁHdl,n—l =0
k=1 I=1
Proof:

It was proven previously that only
the smallest and largest eigenvalues
must be greater than zero for all ei-
genvalues of Q to be guaranteed to
be greater than zero.!® We know the
multiplication of ordered positive
numbers maintains ordinal relation-
ships. If all the links are positive,
we know the diagonal of the Lapla-
cian has all non-negative entries, in
which case,

Mﬂx(/‘sl@)sz...@sL ) = H IL:IMax(ASI )

and

Min(As s, s, ) = | | FiMin( 4s, ).

If some of the links are negative,
there could be a negative diagonal
entry in any one of Ag. With the rea-
sonable assumption that the absolute
value of the maximum eigenvalue is
larger than the absolute value of the
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Table 1. Equation segmenting.*

Data points
Identifier Parameter sets per model
All 1 h-d-t
Disease d h-t
Hospital h d-t
Unique h-d t

*h is the number of hospitals, d is the number of diseases, and
tis the number of time steps.

minimum eigenvalue for each matrix
S, we can exhaustively search all pos-
sible minimums relatively efficiently
by multiplying the maximum of all
the matrices excluding one. We then
multiply that value by the minimum
eigenvalue of the excluded matrix.
Once cycled through all input ma-
trices, we’ve produced all possible
minimums

{PossibleMin (ASJ®SZ...®SL )}

= d/"o Hdl,nfl 2 0 V]

I#]

Because we can compute the pre-
cision matrix’s eigenvalues as linear
equations with respect to the Kro-
necker product of the diagonal ma-
trices of the network structures, we
can compute the maximum and min-
imum values of an eigenvalue and
then have linear bounds on positive
semidefiniteness.

This enables us to utilize improve-
ments introduced elsewhere,! in
which a more representationally
powerful implementation of GCRF
called UmGCRF was developed,
which achieves greater accuracy in
less time than the original implemen-
tation of GCRF.

Experimental Design and
Baselines

For the first set of experiments, time
trials were conducted in which the
proposed GCRF-MSN was com-
pared to three structured regression
alternatives (GCRF, UmGCREF, and
FF-GCREF). Then, we ran and evalu-
ated a real-world data experiment in

terms of execution time and mean-
squared error (MSE). The task is to
predict monthly admissions for each
disease for each hospital in the state
of California. The data comes from
the California HCUP database,
contains 35,844,800 inpatient dis-
charge records collected over nine
years, and uses the CCS disease cod-
ing schema.

Any datasets in which structured
regression is applicable could alter-
natively use independent functions
for each node. In our motivating da-
taset, this corresponds to giving each
disease within each hospital its own
time-series function. In Table 1, we
label this scenario unique. If we use
the following representations, where
b is the number of hospitals, d is the
number of diseases, and ¢ is the num-
ber of time steps, then we can see that
n="h-d-t In the unique scenario,
we have b - d equations and ¢ data
points per equation.

These various data segmentations
are useful for understanding the dif-
ferences between models. VARIMA
and GCRF-MSN use a weighted mix-
ture of unique and all. A VARIMA
model with a network in which ev-
ery weight was equal to one would be
an ARIMA model in the all scenario.
Because GCRF inputs unstructured
predictions, we train regressions
on all the above possible segmenta-
tions and then input those predic-
tions into GCRF. This is interesting
because GCRF can balance the gains
of each. Some of the algorithms are
very poor performers, but collectively
they can produce a much more accu-
rate prediction.

Autoregressive integrated moving
average (ARIMA) models in particu-
lar have been favored by the research
community due to their general ap-
plicability.’® Only autoregressive
(AR) was feasible due to well-known
restrictions of the ARIMA model.
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When using AR or vector autore-
gressive (VAR), it’s important to
determine the appropriate lag, per-
haps via a preliminary correla-
tion analysis. Unsurprisingly, in a
monthly time-step model, the ob-
servations 1 month and 12 months
back were the most informative, so
we ran our AR and VAR implemen-
tations with a lag of 12. We trained
on months 13 through 80 and tested
on months 81 through 107. We
start on month 13 because we use
a 12-month lag as our window size.
Thus, x; has 12 features for each
yi, which are the previous 12 val-
ues for y. The experimental setup
was the same for every model,
the only difference being that VAR
and GCRF-MSN incorporate rela-
tional data that isn’t input to un-
structured methods. We applied a
Z-score normalization to the data
before applying any model. Both
a neural network (NN) and VAR
model were used for experimental
comparison.

The structure used for VAR and
GCRF-MSN boils down to 72 pair-
wise relations, with each relation mea-
sured by a weight that’s input to both
methods as prior information. For the
disease similarity network, we use
symptom similarity scores'® in which
biomedical literature was parsed and
binary indicators for correlated symp-
toms were generated. The relation-
ship weight is calculated by taking the
cosine similarities of each symptom
vector. The disease network from an-
other study!® was built using MeSH
terminology, but our dataset uses
CCS codes, so we built a translation
table by hand for CCS codes to MeSH
terminology (http://astro.temple.edu~
tud25892). The matching is not one
to one: sometimes, we mapped several
MeSH terms to a single CCS code. In
these cases, we took the average of
similarities.
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Another prior used was a hospital
similarity network. For this purpose,
we used a hospital similarity network
built in a previous study® to capture
the overlap in specialization that each
hospital has. Specifically, the special-
ization is represented by the distinct
rate at which hospitals treated various
diagnoses in the previous year. For in-
stance, cardiovascular hospitals only
treat a subset of diseases and therefore
will have large similarity values with
one another.

Results

We start by comparing the method
proposed in this article to previ-
ous fast implementations of GCRE,
as shown in Table 2. The relative
speed of UmGCRF, FF-GCRF, and
GCRF was investigated elsewhere,0
but that analysis was done on a sin-
gle static graph over two time steps.
In the HCUP dataset, the network
changes over time. The speed perfor-
mance we examined is for optimizing
evolving graphs with 100,000 nodes
at each time step across 72 time
points. Critically, this network can
be segmented into two networks on
different scales.

GCRF-MSN has a subquadratic
preprocessing step, with linear
learning time and inference. FF-
GCRF has quadratic learning com-
plexity, but within each iteration it
requires another entire optimiza-
tion procedure. FF-GCRF’s gains
are principally on Euclidean space
where the process can be brought
down to a linear cost with fast filter-
ing techniques. As it’s implemented,
FF-GCRF requires a cubic prepro-
cessing step to be run on datasets
that have similarities that aren’t de-
fined as a distance on a Euclidean
space. UmGCRF has a cubic prepro-
cessing step that takes nearly a day
per network, with nine networks,
which means it takes more than a
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week. GCRF has cubic complexity
at every iteration of gradient descent
and takes months to complete learn-
ing on a dataset this size.

We used the four AR setups as our
input learners for GCRF-MSN be-
cause they were all computable in
around a minute or less. The com-
parison algorithms took hours (NN)
or days (VAR), as shown in Table 3.
In fact, the faster of two alternatives
(NN) takes 36 times longer than
GCRF-MSN and produces worse re-
sults. FF-GCRF is omitted because
it requires that the network be de-
fined in a Euclidean space, which
this dataset is not. UmGCRF and
GCREF-MSN produce the exact same
answers except that GCRF-MSN is
much faster, and the traditional im-
plementation of GCRF is unfeasible
for this dataset. The training set con-
sisted of 68 months, and the testing
was 27 months. The total number of
testing points across all hospitals and
diseases for the testing period is over
1.5 million. Results are averaged and
standard error is reported.

GCRF-MSN used a combination
of weak learners to outperform the
next two most accurate regression
methods. This is important because
those weak learners weren’t as ac-
curate, but they were much more
efficient to compute. VAR utilizes
a network structure and learns a
unique prediction function for each
disease at each hospital, but this
prediction function can closely be
approximated when only using neigh-
bors’ prediction functions. The VAR
model has particularly reasonable
assumptions and nice imputation of
missing functions if the network is
well built. The time to compute VAR
demonstrates the scaling difficulty
of VAR as opposed to GCRF-MSN
in this scenario. VAR is tradition-
ally one of the most efficient struc-
tured approaches, taking O(n? - I)
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Table 2. Algorithm runtime.
GCRF-MSN UmGCRF FF-GCRF GCRF

10 min 1.1 weeks 1 week 2months

Table 3. Runtime and accuracy (mean-
squared error) on HCUP data.

Test MSE
Train  (standard
Model Time MSE error)*
NN 6.7 hrs  0.0214 0.0574 (3.71e-4)
VAR 166 hrs 0.0189 0.0548 (3.84e-4)
GCRF- . 0.0531 (3.08e-4)
MSN 10 min  0.0178

*Using a two-sided difference in means, there’s a p-value
<0.001 that these differences in error come from similar
distributions.

time. However, in the case where
the structure can be represented as
a Kronecker product, GCRF-MSN
runs much faster.

he GCRF method is a repre-

sentationally powerful struc-
tured regression algorithm and a
framework that provides a closed-
form solution for the partition func-
tion. Recent speedups for the GCRF
method have allowed for exact solu-
tions for networks of up to 100,000
nodes and 10 million links.!'® This
solution also enabled negative link
weight interactions, which has re-
sulted in increased accuracy in vari-
ous experiments.

Multiscaled networks are a natu-
rally occurring type of information,
as we presented here. Such structures
have exploitable properties that en-
able them to scale up to millions of
nodes and trillions of links. To use
these special properties, we had to de-
fine the Laplacian of the Kronecker
product of matrices, which is surpris-
ingly absent from the literature cov-
ering both Laplacians and Kronecker
products, even though many sources
state that the Kronecker product of
Laplacian matrices is not itself a La-
placian. By applying our findings to
diagonalize a regularized Laplacian,
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we uncover a self-affine parameter-
ization of the eigenvalues of the pre-
cision matrix for the GCRF model,
as was done for UnGCRF. GCRF
and GCRF-MSN outperform state-
of-the-art VARIMA models in terms
of accuracy, and GCRF-MSN can
solve systems much faster than the

VARIMA model. M
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