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Abstract— We propose a framework for distributed 
knowledge-mining that results in a useful clinical decision 
support tool in the form of a decision tree. This framework 
facilitates knowledge building using statistics based on patient 
data from multiple sites that satisfy a certain filtering 
condition, without the need for actual data to leave the 
participating sites. Our information retrieval and diagnostics 
supporting tool accommodates heterogeneous data schemas 
associated with participating sites. It also supports prevention 
of personally identifiable information leakage and preservation 
of privacy, which are important security concerns in 
management of clinical data transactions. Results of 
experiments conducted on 8 and 16 sites with a small number 
of patients per site (if any) satisfying specific partial 
diagnostics criteria are presented. The experiments coupled 
with restricting a fraction of attributes from sharing statistics 
as well as applying different constraints on privacy at various 
sites demonstrate the usefulness of the tool. 

Keywords - medical informatics; graph data mining; clinical 
decision support systems. 

I.  INTRODUCTION 
One of the five recommendations made for Clinical 
Decision Support (CDS) Systems in connection with the 
practice of Evidence-based Medicine was to “develop 
maintainable technical and methodological foundations for 
computer-based decision support” [1]. Also, medical 
domain is “characterized by much judgmental knowledge” 
[2]. Consequently, a Clinical Decision Support (CDS) 
system that can provide suggestive knowledge 
representations based on data sets with patient attributes that 
are similar to the attributes of the patient in context is 
valuable to a medical practitioner. Invariably, there are 
situations when the number of local samples to draw 
conclusions from, is none or few. Aggregating similar 
samples from other distributed (off-site databases) would 
help in making better decisions. As an example, for 
diagnosis and treatment of a specific patient that is 
an outlier in his/her medical practice, a physician would like 
to obtain information that goes beyond what is seen at that 
office and what might be available of a more general patient 
population externally (as this patient is quite 
different from a typical case). To support diagnostics in 
such situations we are providing a framework that can: 

1. Query other locations to retrieve summary diagnosis 
statistics for patients filtered based on specific properties 
(e.g. females in their twenties with normal body mass index 
who are type 2 diabetics and have a specific overall cardiac 
diagnosis based on Single Proton Emission Computed 
Tomography (SPECT) images); and 
2. Allow learning a diagnostics model (classifier) based on 
statistics on other attributes obtained from multiple sites for 
patients that satisfy the specific query of interest. (e.g. other 
attributes could be some of 23 partial diagnoses obtained 
from SPECT images obtained from sites that allow sharing 
statistics on some of these additional features) 

Due to legal and regulatory implications, dynamically 
acquiring patient data directly from other sites is difficult. 
Even if two sites agree to collaborate, the data schema in the 
two sites could be different. It is also vital to protect the 
confidentiality of medical data in clinical transactions [3]. 
Given these obstacles, it is advantageous to model a CDS 
system that makes use of statistics about the samples from 
distributed sites that are structurally similar to the current 
patient context, rather than model a CDS system that makes 
use of the actual data from other sites. We propose a 
framework for a CDS system that does not require the actual 
patient data from distributed sites. Also, it does not require 
the participating sites to have identical data schema and can 
accommodate local site policies that may prevent in 
divulging specific attributes.  

In our decision tree building method, the site-wide data 
schema (of attributes and classes) is dynamically generated 
with no apriori knowledge of local data schema. In addition, 
our work outlines a framework that encompasses the 
lifecycle of a distributed CDS system activity. This includes 
the query process, a clearinghouse channel, dynamic schema 
generation (with flexibility for local sites to enforce their 
attribute policies) and analytics among the sites. A typical 
starting point for a clinical transaction in such a system is a 
query issued by a medical practitioner for suggestions 
towards decision-making.  

We use a graph-based approach since data represented by 
graphs can capture the expressive power of the structure of 
data without requiring a specific relational data schema at 
multi-site situations which is often very difficult or infeasible 
to achieve. Representing transaction data in graph format 
allows graph data mining techniques [4,5] to be applied in 
enforcing business rules at local sites. A common theme that 
emerges from healthgrid (eg: MammoGrid [6], caGrid [7]) 



 

initiatives, RHIOs, HealthSystem Consortiums and HL7-
based web service initiatives [8] is that of a distributed 
network of sites. Graphs provide the theoretical formalism 
for modeling distributed networks. Hence we use graphs as 
the foundation for building a framework. 

II. RELATED WORK 
Epstein's [9] rendering of research methodologies 

underlines the interest in Clinical Data Mining. Due to recent 
worldwide interest in unifying medical data across the globe 
by various organizations, a great deal of research and 
prototyping has been done at the application level [10]. Data 
mining studies in specialties within medical domains (see 
[11], [12]) appear in the literature. The focus of this paper is 
a framework for CDS systems that will aid medical 
practitioners with knowledge mined from distributed systems 
using a graph-based approach.  

MYCIN [13] was one of the first Rule-based CDS 
Systems. The system had more than 500 pre-defined rules 
and was constrained to the identification of infectious 
bacteria (and antibiotics recommendation). CADUCEUS 
[14] was a medical expert system developed in University of 
Pittsburgh based on the principles of MYCIN.  Both MYCIN 
and CADUCEUS are self-contained systems. They cannot 
harness the “collective intelligence” of data available in 
distributed sites and cloud. These kinds of systems were not 
dynamic to accommodate ad hoc queries, which is one of the 
objectives of the framework explored in this study.  

Decision Tree provides a data structure for representing 
paths of traversals in a classification problem. We use 
decision tree as the vehicle for knowledge conveyance in the 
framework. A Graph-based Decision Tree induction was 
detailed by Nguyen et al [15]. However, this is not a 
distributed model. Extending this model directly to 
distributed systems would require the data to be shipped to a 
centralized broker and so would violate privacy policies. 
The distributed decision tree generation process we 
developed was inspired by the theoretical sketch suggested 
by Caragea et al [16]. Bar-Or et al [17] also used the 
principles outlined by Caragea et al to introduce a 
distributed decision tree induction. However, both models 
(Cragea et al & Bar-Or et al) assume identical relational 
data schema (i.e., homogeneous data schema) in all the sites 
and the schema be known to the central broker. Our model 
can accommodate non-identical data schema (i.e., 
heterogeneous schema) at participating sites and the broker 
does not need prior knowledge of any data schema. This 
gives the flexibility for sites to participate or not participate 
at will and also maintain data schema independence at 
individual sites. We propose graph databases as data 
containers. The two data partitioning models for distributed 
data sets outlined by Caragea et al [16] are horizontal & 
vertical fragmentation. In horizontal data partitioning, all 
data instances have identical attribute sets and the instances 
corresponding to a specific value of an attribute will be 
located in different sites. In vertical partitioning, the 
attribute set is subdivided and each site holds values for the 

attributes in the subdivision assigned to it. In this case, to 
get a complete data instance, the sub-tuples are to be 
combined from the different sites. The graph-based model 
we propose allows for a flexible hybrid model (see Fig. 1). 
In the hybrid model, there is no predefined set of attributes 
for each data instance. Since a graph structure is flexible to 
store only the attributes that have values, when the data 
instances are arranged in an equivalent row-column format, 
there can be ‘holes’ in the cells. Graph databases have the 
flexibility of associating attributes only with nodes that 
require those attributes. This is an advantage compared to 
relational databases, where adding attributes (and hence 
more columns) usually result in sparse tables. 

 
Figure 1.  Horizontal Data Fragmentation (left), Vertical Data 

Fragmentation (middle) and Hybrid Data Fragmentation (right). 

Due to the flexibility of graph databases, we do not 
require a single homogeneous schema to be enforced at each 
site. Our model can build the data attributes and classes on 
the fly for up to date information and does not restrict the 
local sites from making changes to their own database 
schemas. 

Our framework allows for a flexible localizable 
constraint enforcement mechanism to be used to assure that 
local policies related to Personally Identifiable Information 
and privacy constraints are implemented. In reported 
experiments we use attribute-based constraints. However, 
this can be replaced by any other localized constraint filters 
(eg: differential privacy [18]). Attribute-based constraints 
specify what attributes at particular sites should be blocked 
from being disclosed. 

III. METHODOLOGY 
There are 2 stages in our methodology. The first stage 

involves generating a global schema of the distributed data 
sets relative to a query. The second stage involves 
generating the statistics and decision tree nodes based on the 
global schema constructed in the first stage. In the algorithm 
presented in this paper we handle categorical attributes; 
however, continuous attributes can be accommodated as 
well with some extensions to our algorithm. For brevity of 
discussion, we do not deal with decision tree pruning. In 
each of the 2 stages, a two-phase scheduling [19] (local 
processing at the sites and global synthesis at the common 
broker) is made use of. 

Due to factors related to scalability, site registration, 
vetting and data privacy preservation, a query by a medical 
practitioner to mine decision-support information from 
distributed sites should be brokered through a Clearing 
House (CH). The query is channeled through an institutional 



 

gateway to the CH as a query graph. A query graph is a 
graph data structure used to communicate the query. 
Essentially, a query graph is a prototype graph that can be 
used for pattern matching against the graph databases in 
individual sites. A query graph can be composed of constant 
value for attributes (eg: gender=male) and list of values for 
categorical attributes (eg: headache ~ {mild, severe, acute}). 

A. Stage 1 
At the discretion of CH, the query graph is forwarded to 

k participating sites. In order for all these processes to take 
place, there has to be agents in all sites as well as CH for 
distributed and coordinated communications. We do not 
cover the details here. However, there are publicly available 
JAVA-based agents developed as part of distributed data 
mining projects (see [20]). When a site i receives a query 
graph (from the CH), the following processing is done 
locally. The graph database is traversed and individual 
patient record graphs are checked for a subgraph isomorphic 
match with an instance of the query graph. Let GMi denote 
the set of all such matching graphs. Let τi denote the local 
constraints in terms of local policies and PII (personally 
identifiable information) specific attributes. Applying the 
constraints τi on GMi results in the set of graphs GTi. Based 
on GTi, the site will generate the set Ai of attributes, the set 
V

i
x of unique values for each x ε Ai and the set Ci of classes. 

Let ni = |GTi|. Each site i constructs the metadata tuple 
<Ai,{V

i
x | x ε Ai},Ci,ni > and sends it to the CH. The CH will 

aggregate the metadata tuples to generate global schema 
using the following: 
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This can be represented in the following simple format: 
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<{a1,a2...,am}, {{v1
1,v2

1 ,..,vd1
1 },..,{v1

m ,v2
m ,..,vdm

m }},{c0,..ct }, n >  
For example, let the metadata from the only 2 participating 
sites be as follows:  
            <{a1,a2},{{med,high},{0,1}},3>             
            <{a1,a3},{{low,med},{positive,negative}},4>  
Then the global schema will be: 
    <{a1,a2,a3},{{low,med,high},{0,1},{positive,negative}},7>  

B. Stage 2 
The CH shares the global schema with the k sites 

selected in the previous stage. Each site generates crosstable 
matrices [17] for individual attributes in the global schema. 
For a given attribute u, the (x,y)th entry of the crosstable 
matrix represents the number of graphs in GTi for which the 
attribute u exists with value x and that the graph belong to 
class y. If an attribute u is not missing from any data graph, 
the sum of the elements of the crosstable matrix for u will 
be the same as |GTi|; otherwise, the sum of the elements of 
the crosstable matrix will be less than |GTi|. The crosstable 
matrices generated by the sites are sent to the CH. The CH 
will combine the site-specific crosstable matrices to create 
global crosstable matrices for each attribute. If there are k 

sites and CT
g
u represents the global crosstable matrix, while 

CT
l
u represents the local crosstable matrix for attribute u,  

CT
g
u 
(x,y)
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Each node of the decision tree is constructed using node 
selection criteria on the global crosstable matrices. Let the 
crosstable matrix for an attribute u with m values b1, b2, …., 
bm  and n classes c1, c2, …., cn be as follows: 
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Then, the weighted average impurity measure for u is: 
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This is based on Quinlan’s ID3 decision tree algorithm [21]. 
The attribute with the smallest value for the weighted 
average impurity measure is used for the split [22]. 

Algorithm 
The goal of our Distributed ID3-based Decision Tree 

(DIDT) algorithm is to derive the exact decision tree that 
would be obtained by applying ID3 decision tree on the 
combined set of all the graphs in the distributed sites when 
restricted to a subset of examples that satisfy a specific 
query filter. An important assumption is that GTi in each 
individual site i will remain the same throughout the 
processing of the algorithm (i.e., during the decision tree 
creation process). Another assumption is that all the 
distributed sites follow agreed upon attribute names, data 
types and class names (or database schema elements) from a 
common vocabulary (see Mathew & Obradovic [23]). An 
Interface Engine could mediate the standard naming 
conventions between the CH and the local site.  

The proposed distributed knowledge generation 
algorithm for clinical decision support consists of the 
following steps: 

01. A query by the medical practitioner in a clinical 
context is sent to local gateway.  

02. The local gateway qualifies the query, transform 
the query into a query graph and sends to the 
Clearing House (CH). 

Stage 1 
03. CH passes along the query graph to a selected 

number of sites S1, ……, Sk. 
04. At site i, query graph is checked for subgraph 

isomorphism with the data graphs. The set GMi of 
matching graphs is generated by site i. 

05. The site-specific constraints τi are applied on GMi. 
Let the set of resulting graphs be GTi. 

06. The set of all attributes Ai, the set of values for 
each attribute {Vx | x ε Ai} and the set of all 
classes Ci for the graphs in GTi as well as |GTi| are 



 

generated by site i. The metadata tuple in the form 
<Ai, {V

i
x | x ε Ai}, Ci, |GTi| > is sent to CH. 

07. CH creates a global schema using the tuple 
expression given in (1), which is an aggregation of 
all attributes, their possible values, classes and 
number of matching graphs in the k sites. 

Stage 2 
08. CH communicates global schema to the k 

participating sites in the form: 

€ 

<{a1,...am}, {{v1
1,..vd1

1 },..,{v1
m ,..vdm

m }},{c0,..ct } >  
09. Based on the attributes in the global schema, each 

of the sites Si generates uniform templates for the 
crosstable matrices for individual attributes. The 
crosstable matrix template for ax takes the form:  
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c0 c1 ct
v1
x

v2
x
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vdx
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The crosstable matrices for all attributes at each 
site are sent to the CH. 

10. The CH adds site-specific crosstable matrices for 
each attribute ax and creates global crosstable 
matrix for ax. 

11. The weighted average impurity measure for the 
attributes are calculated using (2) and the attribute 
for split is chosen based on smallest value of 
weighted average impurity measure (highest gain). 
Only attributes that span all the GTi’s are included 
in the impurity calculations. i.e., if the sum of the 
elements in the crosstable matrix of an attribute 
equals the total number of filtered instances from 
the k sites, it qualifies to be a candidate for the 
splitting node.  

12. To proceed to the next level of the decision tree, 
updated query graphs are generated for each 
branch of the decision tree, using the values of the 
attribute selected. The number of query graphs 
generated depends on the number of values for the 
attribute chosen. The process repeats from step 03 
with each of the query graphs until the classes are 
reached in the leaf nodes. 

13. The CH sends the final Decision Tree to the query 
originator. 

IV. EXPERIMENTS 
Various experiments were performed to validate the 
algorithm using SPECT Heart data set [24] of patients from 
UCI machine learning data repository. The dataset 
summarizes features of 267 cardiac Single Proton Emission 
Computed Tomography (SPECT) images. Each of the 
patients is classified as normal or abnormal based on the 
features. The SPECT Heart data set had 22 binary attributes 
and 2 classes. We labeled the attributes as a1, a2, …, a22. 

The two classes were labeled as c0 and c1. The data set had 
80 training and 187 test instances, for a combined total of 
267 instances. 11 duplicate data instances with all 0’s and 
class c0 were eliminated, resulting in 256 data instances. 
These 256 data instances were shuffled and equal number of 
instances were distributed to the sites in all series of 
experiments. Cross-validation for our DIDT algorithm is 
done by reserving one of the sites for testing and the 
remaining sites for training. 

Data graphs were distributed among simulated sites. The 
decision tree from the distributed data graphs generated by 
our algorithm is compared to the decision tree for the 
equivalent aggregate data set using public domain weka 
software [25] (for ID3 algorithm). 

In all experiments, a formal representation of queries, 
using the boolean expression operators shown in Table 1 
was made use of. 

TABLE I.  BOOLEAN OPERATORS 

symbol operation precedence 
! negation high 
∧ conjunction medium 
∨ disjunction low 

 

A. Learning from multiple sites that share statistics on all 
attributes 
We initially ran our DIDT algorithm on the 256 data 

instances distributed among 8 sites without any query. This 
creates the decision tree for the complete data set. For 
reference purposes, we will call this tree the ‘complete tree’. 
The result was compared to the complete tree generated by 
weka software against the combined 256 data instances. 

TABLE II.  ACCURACY FOR COMPLETE TREE 

algorithm cross-
validation 

correctly 
classified 

accuracy 

Weka ID3 8 183/256 71.48% 
DIDT 8 181/256 70.70% 

 
The values in table II are normal since the cross-

validation sets in our algorithm need not match the cross-
validation sets in Weka.  

In the next 2 experiments, we used the query a3∧a5∧a8 
to restrict only to patients with positive partial diagnosis 
based on a3, a5 and a8 criteria. The 256 data instances were 
shuffled and distributed to x number of sites (x=8,16). There 
were 37 instances matching the query and these were also 
spread among all sites such that no site had more than 4 
such patients, which is insufficient for decision making 
according to local statistics. The following table shows the 
DIDT results and the results obtained by weka software on 
the combined data set. 

 
 



 

TABLE III.  ACCURACY FOR QUERY TREE 

algorithm number 
of sites 

cross-
validation 

correctly 
classified 

accuracy 

Weka ID3 n/a 8 32/37 86.49% 
DIDT 8 8 33/37 89.18% 
Weka ID3 n/a 16 32/37 86.49% 
DIDT 16 16 34/37 91.89% 

 
As mentioned before, these values are close enough and 
since the total is small, the higher accuracy does not mean 
any improvement due to our algorithm.  

To illustrate the working of our DIDT algorithm using 
the SPECT data set, consider the scenario of 16 sites. 
Shuffling records of 256 patients and distributing equal 
number of data instances to each site resulted in 16 data 
instances per site. Using the query a3∧a5∧a8 to filter data 
instances, following are sample statistics at some of the 
sites. 

TABLE IV.  SAMPLE RESULTS  

site attributes classes instances 
1 a1,a2,a4,a6,a7,a9-a22 c1 2 
7 <none> <none> 0 

14 a1,a2,a4,a6,a7,a9-a22 c0,c1 4 
  
So the metadata for site 1 was:   
       <{a1,a2,a4,a6,a7,a9-a22},{{0,1}…,{0,1}},{c1},2>  
Combining all metadata from the 16 sites, the global schema 
generated by the CH had the format: 
 <{a1,a2,a4,a6,a7,a9-a22},{{0,1}…,{0,1}},{c0,c1},37> 
Using the global schema, each site generated the crosstable 
matrices for the attributes. At site 14, the crosstable matrices 
for a1, a2 & a4 were as follows:  
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a1 a2 a4
1 3
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The rest of the crosstable matrices are omitted due to lack of 
space. Combining the crosstable matrices from all 16 sites 
resulted in the following sample matrices at the CH: 
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3 16
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⎠ 
⎟  

  Calculating the weighted average impurity measure for the 
attributes resulted in a13 having the lowest value. Hence 
a13 was chosen as the node for the split (see Fig. 2). Now, 
there were two paths to continue: 

a3∧a5∧a8∧a13  and  a3∧a5∧a8∧!a13  
Successively following each of these and down-level paths 
resulted in the tree shown in Fig. 2. 

 
Figure 2.  Decision Tree generated by the DIDT algorithm for the 

query a3∧a5∧a8 

B. Learning from multiple sites when some sites constrain 
certain attributes 
In these experiments, the number of sites was arbitrarily 

set at 16. The same query a3∧a5∧a8 was used for decision 
tree induction. The number of sites enforcing the constraints 
was set at 4 and 12. Enforcing the constraints was 
essentially blocking the attributes. In two sets of 
experiments, attributes a13 & a10 were blocked 
independently from being released. Note that a13 was the 
most dominant attribute in Fig 2. 

TABLE V.  RESULTS OF CONSTRAINING AN ATTRIBUTE 

 attribute 
blocked 

# of sites 
blocking 

cross-
validation 

correctly 
classified 

accuracy 

a13 4 16 35/37 94.59% 
a13 12 16 35/37 94.59% 
a13 16 16 35/37 94.59% 
a10 4 16 30/37 81.08% 
a10 12 16 30/37 81.08% 
a10 16 16 30/37 81.08% 

 
When no attribute was constrained from the distributed 

data sets, a13 was the dominant attribute in 13 of the 16 
cross-validations for the DIDT run shown in table III (4th 
row). In all these 16 cross-validation runs, attribute a10 
played a subdominant role in the structure of the decision 
tree. When attribute a13 was blocked (see table V), it was 
observed that a correlated attribute a20 took over as the 
dominant attribute and the trees for cross-validations 
stabilized. When a10 was blocked, the tree structure 
changed such that the node representing a10 was replaced 
by either a15 or a16 (with resultant down-level nodes). Both 
a15 & a16 were weakly correlated to a10 and this resulted in 
cross-validation trees with more errors (as shown in the 
latter half of table V). 

In the next set of experiments, attributes a13 and a10 
were blocked from being released simultaneously from 
different sites in exclusive and inclusive manner. In the 
exclusive experiments, at most one attribute was blocked 
from each site of interest. In the inclusive experiments, both 
attributes were blocked at the same time from sites of 
interest. For example, in an exclusive experiment of 8 sites 
of interest, we blocked attribute a13 from 4 sites and a10 
from the other 4 sites. In inclusive experiment of 8 sites of 
interest, both a13 & a10 were blocked from all 8 sites at the 
same time. 

TABLE VI.  RESULTS OF COMBINED BLOCKING OF a13 & a10 

type of 
blocking 

# of sites 
blocking 

cross-
validation 

correctly 
classified 

accuracy 

exclusive 8 16 32/37 86.49% 
inclusive 8 16 32/37 86.49% 

 
These results are not contradictory to the results in table 

V, since the number of sites chosen are dissimilar. 



 

C. Verification of Heterogeneous Schema Accommodation 
In order to verify the working of DIDT algorithm when 

sites have heterogeneous data schema, we used a set of 
experiments that parallel the ones in previous section B. In 
the experiments in section B, all the data instances were left 
intact and constraints were applied so that the attribute 
information does not leave the site. For the experiments in 
this section, we removed the attribute(s) under consideration 
from the data instances in the sites. This results in 
heterogeneous schema among sites. 

For ease of comparison of results, the number of sites 
was fixed at 16 and the same query a3∧a5∧a8 was used for 
decision tree induction in all cases. In the first two 
experiments, attributes a13 & a10 were removed from x 
(x=4,12) sites. In the third experiment, attributes a13 and 
a10 were removed from 8 different sites in exclusive and 
inclusive manner. The results were consistent with those in 
tables V & VI, as expected. 

V. CONCLUSION 
We have outlined a flexible secure graph-based 

framework for a clinical decision support system that can 
protect patient personal identifiable information as well as 
assure data privacy. We demonstrated that a clinical 
decision support intelligence tool in the form of a decision 
tree can be constructed by using just the statistics related to 
the data distributed among the sites even when different 
sites have different restriction rules on release of statistics 
related to specific attributes of patients. In the proposed 
protocol, the data do not leave the sites and no rigid data 
schema structure is enforced on the collaborating sites. This 
makes it a viable option for building knowledge from sites 
that cannot disclose clinical data records due to privacy 
issues.  

ACKNOWLEDGMENT 
This project is funded in part under a grant with the 

Pennsylvania Department of Health. The Department 
specifically disclaims responsibility for any analyses, 
interpretations, or conclusions. 

REFERENCES 
[1] I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan, H. 

Lehman, and P. C. Tang, “Clinical Decision Support Systems for the 
Practice of Evidence-based Medicine”, Journal of American Medical 
Informatics Association, Vol. 8, No. 6, Nov-Dec, 2001, pp. 527-534. 

[2] W. van Melle, “MYCIN: A Knowledge-based Consultation Program 
for Infectious Disease Diagnosis”, International Journal of Man-
machine Stuides, Vol. 10, Issue 3, May 1978, pp. 313-322. 

[3] E. D. Goldstein, “e-Healthcare”, Aspen Publishers Inc., Gaitherberg, 
MD, USA, 2000. 

[4] D. J. Cook, and L. B. Holder, “Mining Graph Data”, Wiley-
Interscience, Hoboken, NJ, USA, 2007. 

[5] C. C. Aggarwal, and H. Wang, “Managing and Mining Graph Data”, 
Springer, NY, USA, 2010. 

[6] Mammogrid project, https://savannah.cern.ch/projects/mammogrid 

[7] caGrid project, http://cagrid.org 
[8] N. K. Janjua, M. Hussain, M. Afzal, and H. F. Ahmad, “Digital 

Health Care Ecosystem: SOA Compliant HL7 based Health Care 
Information Interchange”, Proceedings of 3rd IEEE International 
Conference on Digital Ecosystems and Technologies, Istanbul, 
Turkey, May 2009, pp. 329-334. 

[9] I. Epstein, “Clinical Data Mining, Integrating Practice and Research”, 
Oxford University Press, New York, NY, USA, 2010.  

[10] M. Cannataro, “Handbook of Research on Computational Grid 
Technologies for Life Sciences, Biomedicine, and Healthcare”, Vols I 
& II. Medical Information Science Reference, Hershey, PA, USA, 
2009. 

[11] J. C. Prather, D. F. Lobach, L. K. Goodwin, J. W. Hales, M. J. Hage, 
and W. E. Hammond, “Medical data mining: knowledge discovery in 
a clinical data warehouse”, Proceedings of AMIA Annual Fall 
Symposium, 1997, pp. 101-105. 

[12] Q. Wang, E. Karamani-Liacouras, E. Miranda, U. S. Kanamala, and 
V. Megalooikonomou, "Classification of brain tumors using MRI and 
MRS", Proceedings of the SPIE Conference on Medical Imaging, 
2007. 

[13] B. G. Buchanan, and E. W. Shortliffe, “Rule Based Expert Systems: 
The MYCIN experiments in the Stanford Heuristic Programming 
Project”, Addison-Wesley, Reading, MA, 1984.  

[14] D. G. Bobrow, S. Mittal, and M. J. Stefik, “Expert Systems: perils 
and promise”, Communications of the ACM, Vol 29, Issue 9, Sep 
1986, pp. 880-894. 

[15] P. C. Nguyen, K. Ohara, A. Mogi, H. Motoda, and T. Washio, 
“Constructing Decision Trees for Graph-Structured Data by 
Chunkingless Graph-Based Induction”, Advances in Knowledge 
Discovery and Data Mining, Lecture Notes in Computer Science, 
Volume 3918, Springer Berlin, 2006, pp. 390-399. 

[16] D. Caragea, A. Silvescu, and V. Honavar, "A Framework for 
Learning from Distributed Data Using Sufficient Statistics and its 
Application to Learning Decision Trees", International Journal on 
Hybrid Intelligent Systems, Vol 1, Issue 1-2, April 2004, pp. 80-89. 

[17] A. Bar-Or, D. Keren, A. Schuster, and R. Wolff, “Hierarchical 
Decision Tree Induction in Distributed Genomic Databases”, IEEE 
Transactions on Knowledge and Data Engineering, Vol. 17, No. 8, 
Aug 2005, pp. 1138-1151. 

[18] A. Friedman, and A. Schuster, “Data Mining with Differential 
Privacy”, Proceedings of 16th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining, Washington D.C., July 
2010, pp. 493-502. 

[19] P. Luo, K. Lu, Z. Shi, and Q. He, “Distributed Data Mining in Grid 
Computing Environments”, Future Generation Computer Systems, 
Vol. 23, Issue 1, Jan 2007, pp. 84-91. 

[20] S. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, Fan, W. Dave, and 
P. K. Chan, “JAM: Java Agents for Meta-Learning over Distributed 
Databases”, Proceedings of 3rd International Conference on 
Knowledge Discovery and Data Mining, Newport Beach, CA, ISBN 
978-1-57735-027-9, 1997, pp. 74-81. 

[21] J. R. Quinlan, “Induction of Decision Trees”, Machine Learning, Vol. 
1, 1986, pp. 81-106. 

[22] P. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining”, 
Pearson Addison Wesley, Boston, MA, 2006. pp. 160. 

[23] G. Mathew, and Z. Obradovic, “Vocabularies in Collaboration 
Channels”, Proceedings of the 6th International Conference on 
Collaborative Computing: Networking, Applications and Work 
Sharing, Chicago, IL, Oct 2010. ISBN: 978-963-9995-24-6 

[24] SPECT Heart Data Set: available at – 
http://archive.ics.uci.edu/ml/datasets/SPECT+Heart  

[25] I.H. Witten and E. Frank, “Data Mining: Pratical Machine Learning 
Tools and Techniques”, Morgan Kaufmann, San Francisco, CA, 2nd 
edition, 2005. 

 


