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1 Introduction

Prediction of a continuous response variable in spatial-temporal domains has re-
cently drawn attention in a data analysis community [4],[11]. Spatial-temporal
regression models, learned on systematically collected values of driving attributes,
can contribute to better understanding of complex phenomena studied in meteorol-
ogy, oceanography, environmental science, precision agriculture and other domains.
However, spatial-temporal modelling is often difficult due to various factors. For
example, due to a prohibitive cost of data collection or other constraints, it is often
not possible to systematically measure values of all attributes that have an influence
to the observed response [15]. In such applications, models estimated on available
attributes often have unsatisfactory explanatory power.

Possible solutions are auto-regressive models that use information from a spa-
tial neighborhood to perform a prediction at a specified location. Performance
improvements compared to ordinary regression models are often possible due to a
postulated spatial correlation of data. Typical spatial prediction methods have been
developed assuming non-uniform event-driven sampling [14], where the objective is
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interpolation at different spatial positions. Without modifications, these methods
are not applicable to prediction of unknown future response values using uniform
grid sampling.

Existing spatial-temporal prediction methods have difficulties to properly esti-
mate a temporal part of the model when the number of available time layers is rather
small. Also, a majority of spatial-temporal learning algorithms were developed for
stationary or time-constant processes. Data non-stationarity can significantly de-
crease the prediction quality and the applicability of such prediction models.

Finally, for non-linear phenomena, learning algorithms with a response vari-
able modelled as a non-linear function of driving attributes may be superior to
linear predictors. However, due to the presence of noise in the data, insufficient size
of a training set and interpolation error, linear models can in practice outperform
non-linear ones [13].

The purpose of this study is to examine the effect of including auto-regressive
modelling of ordinary regression error residuals for learning on spatial-temporal
data sampled on a uniform grid. The proposed method combines linear or non-
linear non-spatial and non-temporal regression models learned on data collected
over time with spatial-temporal auto-regression of residuals.

After a survey of related work presented in Section 2, the proposed method for
spatial-temporal prediction is described in Section 3. Experimental data properties,
the accuracy measure for model evaluation and the obtained experimental results
are reported in Section 4, followed by conclusions and directions for future work
discussed in Section 5.

2 Related Work

2.1 Spatial Auto-regression

In analysis of spatial data, numerous attempts were made to explicitly include
a spatial component into prediction models. In models with spatially correlated
residuals and with auto-regressive disturbance ([10],[7]) modelling consists of two
steps. First, the response variable is treated as non-spatial and a linear model is
applied. Then, the residuals of a linear model on training data are assumed to be
spatially correlated and their dependence is modelled through a ”neighborhood”
matrix using an auto-regressive approach.

In these models, the objective is to estimate the response y at a desired location
as a function of k attributes observed at that location and of the prediction errors
u = [ug,...,un]’ at given n training examples. So, a training set of consists
of n patterns {(x1,y1),---,(Xn,Yn)} With x; = [z;1...7;x]7 being k observed
attributes at a specific location in space and y; the corresponding response. In a
matrix representation, these models can be described as:

y=XB8+u
u=Wu+e (1)

Here, B = [Bofi ---Bk]T is vector of parameters for an ordinary linear regression
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model, X = | 1 ... ... ... | isn-(k+ 1) matrix containing a unit n-1
1 Tn,1 - Tnyk

vector and n vectors of k observed attributes, € = [e1...€,]7 is a vector of inde-

pendent identically distributed Gaussian disturbances and W = [w; jlnn isann-n
neighborhood matrix having zeros on the main diagonal and other, pre-specified,
positions.

An alternative representation of (1) is:

y=XB+W(y—-XB)+e (2)

Models (1)-(2) can be estimated using a generalized least squares method or max-
imum likelihood techniques [14] depending whether values of non-zero elements of
W are known in advance.

Another promising approach is the mixed regressive-spatial auto-regressive
model [7], which is a generalization of models proposed in [2],[7]. This model as-
sumes a spatially correlated response variable also dependent on attribute values
at the neighboring points. Spatial dependence is specified using a column vector
~ = [71---7]T of cross-correlation coefficients between attributes, an n - n neigh-
borhood matrix W and a proportionality coeflicient p:

y=XB+WX~+pWy +e (3)

Models (2) and (3) as well as other spatial regression models introduced in the
literature [2],[7] have the following common properties:

e Models are applicable for interpolation of non-uniform event-driven samples
and not for prediction on an unseen data layer;

e For a response variable, data-generation process (DGP) constant in time is
assumed;

e The response variable is assumed to be linearly dependent on driving at-
tributes.

2.2 Temporal Auto-Regression

Temporal data can be modelled using a serial-correlation model [5] where the re-
sponse variable is assumed to be a function of driving attributes, while residuals are
assumed to be serially correlated, satisfying AR(1) model [1]. Let x; = [l 1 ¢ ... 7k )7
contain k attribute values at time instant ¢ in addition to a constant 1 due to an
additive constant factor B¢ in a linear model. Let y;, u; and ¢; indicate the re-
sponse value, a correlated residual and a value of a white Gaussian noise at time
instant ¢, respectively. Then, serial-correlation of residuals is modeled using the
autocorrelation coefficient p:

ye =Po+ > wisfi+
i

U =p-u—1 + € 4)
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To estimate a serial-correlation model, one can perform the following iterative
procedure [5]:

1. Set autocorrelation coefficient p = 1;

2. Assuming p is a constant, estimate ordinary regression coefficients 8 in the
linear model:

Yt — pYi—1 = Bo(1 — p) + Z(wzt —pxit—1)0i + Uy (5)

3. Estimate ordinary regression residuals 4; and 4;_1;

4. Compute a value of p for the next iteration by estimating the regression model:
Uy = plig_1 + €&

5. Repeat steps 2-4 until a pre-specified convergence criterion is satisfied.

In this model, the stationarity of regression coeflicients 3 is implicitly assumed,
which is equivalent to imposing a modelling restriction 8, = 3,_;. To properly es-
timate a serial-correlation model, the existence of a relatively high number of data
time layers is necessary. Recall that these are strong and often unattainable re-
quirements for a number of spatial-temporal domains (e.g. in precision agriculture,
due to a recent adoption of a global positioning system-based measurement tech-
nology, spatial data currently exist for about 5 years). Also, observe that the serial
correlation model does not consider a spatial correlation of the data. Therefore, a
new class of spatial-temporal models has recently been developed.

2.3 Spatial-temporal Modelling

Spatial-temporal prediction can be performed using a generalization of the model
with auto-regressive disturbance, defined in equation (2). Here, a residual neigh-
borhood matrix W represents spatial-temporal correlation of residuals. This matrix
is estimated assuming that second-order statistics of residuals satisfy theoretical
spatial-temporal variograms [4]. Modelling includes estimation of linear regression
coefficients B and computation of residuals, as well as the estimation of spatial-
temporal variograms. When the model is estimated, prediction is performed using
a weighted sum of driving attributes and residual estimation obtained by spatial-
temporal kriging. Similar to serial correlation models, here regression coefficients
are constant in time and a relatively large number of temporal observations is nec-
essary for proper parameter estimation.

Another approach for regression of spatial-temporal data, proposed at [11],
is a generalization of the mixed regressive-spatial auto-regressive model, defined at
equation (3). Here, the neighborhood matrix is assumed to be a product of matrices
T and S related to time and space dependence, respectively. Each sample from the
training data is assumed to be dependent on a fixed number of spatial neighbors
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Figure 1. An illustration of the proposed method: Information from a
previous time instance at a desired location sample and its neighborhood is used for
predicting current time response at this location.

(regardless the time) and a fixed number of time neighbors (that immediately pre-
cede the observed sample). The main problem when applying this model is the
correct estimation of 7" and S. The model is developed for real-estate data, where
each sample occurs in a distinct time instant and the number of time neighbors con-
sidered is small. In contrast, in the case of a uniform grid considered in our study
there are a larger number of samples collected at each time moment. Hence, the
resulting matrix T is huge and the application of this method can be prohibitively
laborious.

3 Methodology

In this paper, we propose a model with spatially correlated lagged residuals. The
proposed model is a generalization of the serial correlation model [5] that includes
residuals from the spatial neighborhood of an observed data sample. By this means,
spatial-temporal correlation of ordinary regression residuals can be exploited.

At time layer ¢, in the i-th sampling point, residual w;; of a (linear or non-
linear) regression model yq(x¢,;) with parameters a = [ ... am]T and the corre-
sponding attribute vector x;;, is assumed dependent on white Gaussian noise € ;
and residuals from the same sampling point and its neighbors at the previous time
instant, as illustrated at Fig.1. The dependence between residuals at the i-th ex-
ample at time instant ¢ and the j-th example at time instant ¢ — 1 is described by
the coefficient w; ; of the neighborhood matrix W.

The proposed model can be described as:

Yt,i = Ya(Xe3) Ui, i=1,...,n
w=Wu 1+e¢ (6)

where

uy = [ug1ug2 - - -Ut,n]Taet = [er,1€0,2 - -- €t,n]T
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Parameters of the proposed model can be estimated using minimization of the sum
of squared errors in time instant ¢. After parameter estimation, model is tested
on data from time instant ¢ + 1 using driving attributes collected in time instant
t+ 1 and residuals computed using response values and their predictions at time t.
Model coefficients are then re-estimated for the next time layer.

For pre-specified parameter values W and «, the response prediction at time
t is computed as:

Ui = Yo (Xe4) + Wye—11 — Ya(Xe—11) - - Yt—1m — Ya(Xe—1)], i=1,...,n (7)

Using an asymptotic analysis [5], it can be shown that parameter estimation
by minimization of the sum of squared errors

SSRy =Y (i — Y10’ ®)

i=1l,n

is consistent (true values and expectations of their estimates are equal) if the
stochastic process u; = Wu;_1 + €, is stationary. The sufficient condition for
this stationarity is that the matrix power series ) Wi converges, which is
satisfied when [9]:

i=1,00

miax Z |w,’7]‘| <1 9)

j=1l,n

We impose the following restrictions to the model in order to limit the in-
fluence of residuals to spatial neighborhoods of the example and to impose spatial
stationarity and isotropy:

e w;; = 0 unless two corresponding spatial samples are at most L-th order
neighbors.

Here, two examples are called the I-th order neighbors if maximal absolute
difference of their spatial coordinates is [A, where A is a sampling distance
(see an example at Fig.2). The maximal order L of neighbors is an input
parameter of the algorithm. For L = 0, prediction is performed using non-
spatial residuals (only a past residual at the same position). In that case,
the proposed model is equivalent to the serial-correlation model (4), but here
estimated on multiple realizations of time-series, each corresponding to an
example.

e w; j depends only on the distance between corresponding examples regardless
of their position at the spatial layer.

Due to spatial stationarity, each row of matrix W will consist of the same,
but permuted, values. Also, due to the imposed isotropy, radial symmetric
neighbors have the same coefficient values in W, which reduces the number
of relevant coeflicient values in each row of W to v = (L + 1) - (L + 2)/2 (For
L = 1,2 this can be easily confirmed on Fig.2b).
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Figure 2. Spatial neighborhoods of an example.
Due to imposed restrictions, model (6) reduces to:
Yt,i = Ya(Xe,i) + Bf Fr-1,i = Fa(Ke—1,i)) + €100 = 1,...,m (10)

where v-dimensional vectors §;—1,; and ¥4 (x;—1,;) contain response values and or-
dinary regression prediction values corresponding to neighbors up to the order L
at the previous time layer. Neighborhood dependence in (10) is modelled with
a v-dimensional vector w; . The first element of each vector corresponds to the
i-th sample at time layer ¢ — 1. Due to assumed isotropy, samples on positions
radial symmetric to the current sample should have equal weights. After an ordi-
nary regression model is evaluated, vectors §;—1; and ¥4 (x¢—1;) contain sums of
responses/ordinary regression predictions on radial symmetric positions. For exam-
ple, when L = 2 vector ¥;_;,; contains v = 6 values: the response at the observed
position and sums of responses at positions bearing equal numbers on Fig.2b (each
number corresponds to a distinct element of ;1 ;, ¥o(%¢—1,;)and Wy) .

The stationarity condition (9) implies that least-squares estimation of (10) is

consistent when
D el <1 (11)
i

In the rest of the paper, this consistency will be assumed.

Observe that model (10) is non-linear, since W; multiplies ¥,(-). Hence, pa-
rameters w; and a can be estimated using standard methods for non-linear opti-
mization [5]. However, when an ordinary regression component y,(-) is non-linear,
such methods become computationally expensive, so the following procedure can
be applied:

¢ Estimate non-spatial ordinary regression models on data from time layers ¢t —1
and t and compute the corresponding estimated residuals G, l;—1;

e Perform spatial autoregression of i1y on 4; 1 and estimate Wy.

Observe that this technique is similar to the first iteration of Cochrane-Orcutt algo-
rithm [5] that takes into consideration lagged neighboring residuals. However here,



due to instability of the initial estimation w; (because of errors in the computa-
tion of estimated residuals), further iterations in an algorithm analogous to that of
Cochrane-Orcutt cannot result with useful estimation.

Unlike a serial correlation model which is time-series oriented, the proposed
method relies on spatially organized data and can exploit the fact that the number
of spatial sample points is large compared to the number of observed time instants.

Similar to spatial-temporal auto-regression [11], the proposed model considers
the influence of time and space neighbors separately. Further, in both models the
maximum size of a spatial neighborhood influence must be pre-specified. However,
in contrast to the spatial-temporal auto-regressive model, the proposed model does
not involve a spatial regression on attributes. Also, in the proposed model, the
maximal time lag of considered residuals is one, which makes prediction less time-
complex and potentially more resistant to data non-stationarity.

Residuals in the proposed model are correlated with residuals in neighboring
points, similar to disturbance in spatial auto-regression models [2],[7],[10]. However,
in the proposed model this correlation is established with residuals in the time layer
prior to the predicted value, making the prediction of response values in the future
feasible.

The proposed method is similar to a spatial-temporal auto-regressive model
proposed in [16], in sense that both methods employ spatial-temporal correlation of
data to improve prediction accuracy. However, in contrast to the former approach,
the method we propose performs auto-regression on residuals of the attribute mod-
eling rather than directly on the response variable.

Compared to generalization of the model with auto-regressive disturbance [4],
the proposed model has more degrees of freedom and therefore potentially higher
explanatory power.

4 Experiments

4.1 Properties of Experimental Data

Experiments were performed on data generated using our spatial-temporal data
simulator [12]. Data with controllable complexity were generated to satisfy pre-
specified spatial and temporal statistical properties. Simulated agricultural data
consisted of five time layers. Data contained samples of 5 simulated driving at-
tributes and the response variable. Each time layer consisted of n = 6561 samples
from a 80 * 80m? rectangular field, with 10m sampling distance. The mean and
standard deviation of the simulated crop yield were similar to that of real-life data.
Driving attributes were generated through a multistep process of grid deter-
mination, generation of spatially correlated attributes and cluster generation [12].
For each attribute, time layers were generated using kriging of a random seed vector
[3]. Using Cholesky decomposition, a seed vector was generated to satisfy specified
spatial and temporal correlation ([12]; Pokrajac, Obradovic, unpublished results).
Five simulated attributes had a spatial correlation similar to the following
real-life agricultural variables: nitrogen (N), phosphorus (P), potassium (K), profile
curvature (C) and slope (S). Attributes C and S were assumed constant in time,
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Table 1. Spatial and temporal statistic parameters of simulated driving attributes.

(I Attribute name [ NJ] PJTKJC] s ]
Spatial Range(m) | 200 | 300 | 400 | 100 200
parameters | Nugget(%) 0 0 0 0 0
Temporal % temporal 80 20 10 attributes do
parameters variability not change
Correlation | 0.9 0.9 | 0.7 over time

while the remaining attributes were modelled as time-dependent. In the absence
of real-life data temporal statistics, percentage of total variability due to temporal
variance was varied in the range 10 — 80%, while the auto-correlation of successive
time layers was chosen according to expert estimation (see Table 1).

After the generation of correlated attributes, four clusters in the space of
topographic attributes C and S were formed. To generate attribute clusters, corre-
sponding cluster ”seeds” were chosen and each data point was ”moved” towards the
nearest cluster seed. The intensity of the shift proportional to the distance to the
seed point was adjusted to control cluster aggregation. ”Perturbation” noise with
variances proportional to that of the attributes was introduced to avoid unnaturally
clear separation between clusters. Crop yield, the response variable, was generated
using two different models to simulate linear and non-linear data generation process
(DGP).

A linear DGP was simulated using linear model to generate crop yield as
a linear combination of attribute values. Non-linear DGP was simulated using
linear plateau models (particularly suitable for agriculture applications) where the
response variable was the product of linear plateau functions corresponding to each
driving attribute. Here, linear plateau functions were assumed constant in time.
The relative influence of particular attributes on the simulated response and the
shape (slope and thresholds) of linear plateau functions were varied according to
expert knowledge. Both homogeneous and heterogeneous DGP were simulated. In
the homogeneous case, a single model parameterization was used to generate the
response in all simulated data points while the response for a heterogeneity scenario
was simulated by applying a separate model to each attribute cluster.

To investigate temporal variability of the response variable influenced by an
external factor, an additional temporal component of a response, unexplainable
by driving attributes, was simulated with AR(1) models [1]. An AR(1) process
with autocorrelation coefficient 0.5, that comprised 10% of the total variability of
simulated response, was applied using both ” cluster-wise” and ” point-wise” assign-
ment methods. In a ”cluster-wise” assignment, one realization of an AR(1) process
was assigned to each attribute cluster, consequently modelling a real-life situation
that particular zones of a spatial area behave differently in time. In contrast, in a
”point-wise” assignment, one independent realization of a specified AR(1) process
was generated per each simulated spatial point.
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4.2 Accuracy Evaluation

Before regression was performed, data were normalized such that driving attributes
and the response variable have zero mean and unit standard deviation. Linear
regression was performed using the OLS method [6]. Non-linear modelling was per-
formed by feedforward neural networks with 1 hidden layer, containing 4 neurons,
and sigmoidal activation. Networks were trained using the Levenberg-Marquardt al-
gorithm [8]. Since our primary intention was not to achieve an ”optimal” non-linear
model, further optimization of neural network topology and training algorithm was
not performed.

The prediction accuracy at a time instance ¢t was estimated by measuring
explained response variability using the coefficient of determination R?, defined as:

SSR
2 t
Ry SST;
where (12)
1
SST, = > (wi—9)*0= - Yi
i=1,n i=1,n

For useful prediction models R? ranges from 0 to 1, with larger scores obtained
by more accurate predictors, where 0 score corresponds to using a trivial mean
predictor and 1 represents the ideal case of no prediction error. To obtain a correct
estimate of non-linear model accuracy, experiments with non-linear models were
repeated 10 times each and average R? values were reported. The training of the
proposed method required data from two successive layers, and therefore trained
models were tested on data from time layers 3,4 and 5 of five generated layers.

The proposed method that takes into consideration spatial residuals (L > 0)
was compared to ordinary regression models and a serial-correlation model (where
L = 0). Since these models are special cases of the proposed model with constraints,
a likelihood ratio-type test [5] was applied. To perform the test, SSR values for the
proposed (unconstrained) and an alternative model (constrained) were evaluated
and for each time layer the ratio:

SSRunconstru,ined - SSRconstru,ined
SSRunconstrained/(n - p)

was calculated, where p denotes the number of parameters in an unconstrained
model. According to asymptotic theory [5], the Ir ratio has an asymptotically
x? distribution, under a null hypothesis that there is no significant difference in
performance due to releasing of constraints (an introduction of the proposed instead
of an alternative model). The degrees of freedom for x? distribution is equal to
v — 1, when proposed model was compared to a serial-correlation model or v, when
compared to the ordinary regression models. Here, v is the dimension of vectors
Vi—1,i and ¥4 (x¢—1,;) from equation (10). The null hypothesis was rejected whenever
Ir ratio was larger than the 99.9% quantile of a x? distribution, ensuring 99.9%
confidence in the rejection.

Spatial correlation of ordinary regression residuals was estimated using a ro-
bust estimation of spatial semi-variograms [3].

Ir=

(13)
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4.3 Results

Prediction results on simulated data are shown in Tables 2-5. In each table, the
prediction accuracy is shown for three models of temporal dependence of the re-
sponse and for two sets of attributes used for prediction. For each temporal de-
pendence/attribute set combination, an ordinary regression model, along with the
proposed method for no-spatial (L = 0) and spatial (L > 0) temporal residual
regression, is evaluated for three time layers. For each time layer, a statistically
significant improvement of the non-spatial model vs. an ordinary regression model
was denoted with t. Asterisk (*) was used to denote a significant improvement due
to the application of the proposed method for L > 0.

Prediction results on data generated using linear data generation process
(DGP) are shown in Table 2. Assuming access to all driving attributes and no
temporal variability of the response, a linear model was capable of explaining the
complete variance of response (R? = 1). The presence of temporal variability
decreased the prediction accuracy. When the proposed method with L = 0 was
applied, significant performance improvement compared to an ordinary regression
model was achieved with AR(1) disturbance added point-wise to the response. How-
ever, with a ”cluster-wise” temporal disturbance (where a realization of a AR(1)
process was assigned to each cluster), the improvement was achieved in only two
of three time layers (time instants 3 and 5). Since in the ”cluster-wise” case the
number of actual realization of AR(1) process was equal to the number of clusters,
the proposed model could not predict correctly parameters of temporal dependence.
However, with a large number of AR(1) realizations (as in the point-wise case where
the number of realization was equal to the number of points), the proposed method
correctly estimated the correlation of AR(1) process, which resulted in improved
accuracy. Since temporal dependency was not spatially correlated, the inclusion of
neighbors could not improve the prediction: hence, there is no further increase of
R? when the proposed method was applied with L = 1. With temporal attributes
missing (not used for training and prediction), residuals of ordinary regression were
spatially and temporally correlated (due to DGP linearity in missing temporal at-
tributes). The proposed method with L = 0 improved accuracy when there was
no temporal disturbance, or when such disturbance could be correctly estimated
based on available samples (i.e. when AR(1) disturbance was applied point-wise).
In these cases, due to spatial correlation of ordinary regression residuals, significant
improvements were achieved when spatial residuals were introduced in prediction
model (L = 1). No further improvements were achieved with L = 2 (these results
are omitted from Table 2).

When data were simulated using a homogeneous non-linear DGP, we wanted
to confirm a spatial-temporal structure of residuals prior to testing the proposed
method that would exploit such a structure. Indeed, ordinary linear regression
residuals were spatially correlated, as illustrated on Fig.3 for time layer 4. Compared
with an approximately flat normalized semivariogram of a spatially uncorrelated
noise, the semivariograms of residuals for all time layers significantly increase with
distance, Fig.4, thus confirming spatial correlation of residuals. Spatial-temporal
correlation was verified modeling residuals at ¢ + 1 by linear regression on residuals
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Table 2. Comparison of the proposed method and ordinary linear regres-
sion. Ezperiments were performed on simulated data generated using a linear data
generation process (DGP).

TEMPORAL TIME PREDICTION ACCURACY (R?)
DISTURBANCE | LAYER No missing attributes Temporal attributes
OF THE (N,P,K) missing
RESPONSE Ordinary | Proposed method | Ordinary | Proposed method
regression | L=0 L=1 regression | L=0 | L=1
by OLS by OLS
No temporal 3 1 1 1 0.31 0.60T | 0.64*
variability 4 1 1 1 0.66 0.897 | 0.90*
5 1 1 1 0.66 0.927 | 0.95*
Clusterwise 3 0.70 0.747 0.74 <0 <0 | <0
AR(1) 4 0.88 0.60 0.60 0.60 0.37 | 0.34
5 0.44 0.717 0.71 0.21 0.627 | 0.66*
Pointwise 3 0.89 0.92f 0.92 0.28 0.567 | 0.59*
AR(1) 4 0.89 0.927 0.92 0.31 0.607 | 0.64*
5 0.89 0.92f 0.92 0.66 0.897 | 0.907
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Figure 3. Spatial placement of ordinary linear regression residuals for
temporal layer t = 4 on data generated with non-linear homogeneous DGP.

at t =1,2,3,4. Using a LR-type test, a significant (confidence 99.9%) improvement
in prediction accuracy was shown when prediction was performed using a spatial
neighborhood of each residual.

The prediction results of a linear model on data simulated by a homogeneous
non-linear DGP are shown in Table 3. Using a non-spatial variant of the proposed
method (L = 0), significant improvements were achieved regardless of the presence
and type of temporal dependence at the response. As earlier, improvements were
larger when temporal driving attributes were unobserved. When all driving at-
tributes were available for training a prediction model (no missing attributes), the
application of the proposed method using neighboring residuals (with L = 1) led
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Figure 4. Semi-variogram comparison of simulated uncorrelated noise
(-x-) and ordinary linear regression residuals on data generated with non-linear
homogeneous DGP for three time instants: t=38 (>-),t=4 (-A-) and t=5 (~-).

Table 3. Comparison of the proposed method and ordinary linear regres-
sion. Ezperiments were performed on simulated data generated using a homogeneous
linear data generation process (DGP).

TEMPORAL TIME PREDICTION ACCURACY (RZ)
DISTURBANCE | LAYER No missing attributes Temporal attributes missing
OF THE Ordinary | Proposed method | Ordinary | Proposed method
RESPONSE regression | L=0 | L=1 regression | L=0 | L=1
by OLS by OLS
No temporal 3 0.79 0.90F | 0.91* 0.20 0.53F | 0.59*
variability 4 0.83 0.917 | 0.86 0.52 0.547 | 0.55*
5 0.77 0.887 | 0.89* 0.30 0.707 | 0.74*
Clusterwise 3 0.68 0.84% | 0.87* <0 0.217 | 0.35
AR(1) Z <0 <0 | <0 <0 <0 | <0
5 0.77 0.777 | 0.71 0.33 0.737 | 0.58
Pointwise 3 0.64 0.77F | 0.78* 0.16 0.45T | 0.50*
AR(1) 4 0.69 0.817 | 0.83* 0.44 0.72T [ <0
5 0.62 0.767 | 0.77* 0.24 0.597 | 0.64*

to the significant improvement of R? when the response variable had a point-wise
temporal component. Further increment of the neighborhood size (L = 2,3...) did
not result in a significant accuracy improvement (hence in Tables 3-5 only results
for L = 0,1 were reported).

When temporal attributes were missing, the prediction accuracy was improved
using the proposed method with L = 1 if no additional temporal dependence of
response was present. The lack of improvement of L = 1 vs. L = 0 in other
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Table 4. Comparison of the proposed method and ordinary linear regres-
sion. FEzperiments were performed on simulated data generated using a heteroge-
neous linear data generation process (DGP).

TEMPORAL TIME PREDICTION ACCURACY (R?)
DISTURBANCE | LAYER No missing attributes Temporal attributes missing
OF THE Ordinary | Proposed method Ordinary | Proposed method
RESPONSE regression | L=0 | L=1 regression | L=0 | L=1
by OLS by OLS

No temporal 3 0.24 0.807 | 0.82* <0 0.287 | 0.30*
variability 4 0.24 0.827 | 0.83* 0.07 0.717 | 0.57
5 0.12 0.707 | 0.72% <0 0.617 | 0.64*

Clusterwise 3 0.26 0.357 | 0.35 0.30 <0 <0
AR(1) 4 0.16 <0 0.44% <0 <0 0.37*
5 0.05 0.697 | 0.69 <0 0.637 | 0.64*
Pointwise 3 0.18 0.607 | 0.65* <0 0.347 | 0.47*
AR(1) 4 0.20 0.707 | 0.73% 0.06 0.477 | 0.58*
5 0.11 0.547 | 0.56* <0 0.807 | 0.49*

examined cases is owing to the fact that the spatial structure of residuals did not
refl