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Abstract 

A novel technique for providing fertilizer recommendation 
in precision agriculture is proposed. The method is based 
on the maximization of the profit function approximated 
using a decision support system based on artificial neural 
networks. The sofhyare implementation of the proposed 
approach is described and its use is illustrated on simulated 
realistic data. Experimental results suggest that the 
proposed technique is applicable for site-specific crop 
management. 

1 Introduction 

The production of maximal crop quantity, with an optimal 
cost and with restricted use of potentially hazardous 
materials such as fertilizers and pesticides, is the primary 

Soltanpour et al. [25] employed non-linear regression 
models to calculate nitrogen fertilizer recommendation rates 
for different yield goals and various cost/price ratios. 
However, they did not attempt to optimize fertilization of 
multiple nutrients and to apply their results in a site-specific 
setting although Watkins et al. [28] have argued that 
variable rate application of one input alone might be 
unprofitable and anticipated the necessity for this 
multivariate fertilization optimization. 

The objective of this study is to provide a tool for 
optimizing financial gain in agricultural business through a 
site-specific fertilizer application of multiple nutrients, by 
using neural network-based non-linear optimization 
techniques [12]. In the following sections we introduce 
methodology, describe software implementation and 
illustrate the effects of performed site-specific fertilization 
recommendations on simulated data sets. 

- 

aim in agriculture [6]. According to the economic law of 
diminishing returns [9], there is an optimum quantity of 
fertilizer that maximizes profit in agricultural business. On 2.1 Problem Statement 
the other side, in the past several years, the issue of A crop yield is considered to be a non-linear function of 
environmental protection received a lot of attention in controllable features (e.g. concentrations of various 
agriculture [13] and emphasized the marginal social Cost of nutrients, and irrigation intensity) as well as of non- 
pollution [91 as an additional important factor in controllable features (e.g. terrain attributes such as slope 
agricultural management. and profile curvature) on a two-dimensional field F. At 

Classic agriculture management considers the application of 
the constant fertilization rate to the whole cultivated field 
[I I]. This uniform fertilization rate is usually determined 
based on a limited soil sampling and an expert knowledge 
from fertilization recommendations. However, it has been 
demonstrated that by applying a variable fertilization rate, 
profit can be increased due to improved efficiency of 
resource management. For instance, Long et al. [16] have 
shown that by varying the concentration of applied nitrogen 
using a simple linear model, input efficiency of the 
fertilized nutrient can be improved resulting in increasing 
profitability. With challenging new technical advances, 
such as Global Positioning System (GPS), it is possible to 
gather a lot of data and perform more complex non-linear 
modeling of crop yield dependence on nutrients. Recently, 

each sampling location S=(X,Y)E F the concentration of 
controllable features fi(s) ,..., fm(s) can be increased in a 
fertilization process by application of treatments AJ(sI20 
i= I, ..., m, whereas the values of n uncontrollable features 
fm+,(s),  . . ., fm+,,(s) are independent of the treatment 
procedure. The goal is to determine non-negative treatments 
Af , . .  . ,Afm that maximize total profit on the field, defined as: 

Profi t (Af)  = I j (cAY(s) -  c w i A i ( s ) -  wo) ds ( I )  
F i=l ,m 

Here, c is the unit price of crop, AY@) is increment of crop 
yield due to treatments, w=[w, w2...w,IT is a vector of 
prices per unit of a particular feature and wo is a fixed unit 
cost of agriculture management. 
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In addition, we define the average profit per a unit area due 
to particular treatments Af as 

ProJit(Af) = Projit(Af)/area(F) (2) 

and the average cost of fertilization 

Due to additivity of (I) ,  the profit on field F is optimized if 
a localized profit p(s )  = CAY ( S )  - W; %. ( S )  - w0 is 

maximized on every point s of the field, resulting in a 
vector of optimal treatments 

i= l ,m 

Afopt (S)=[Af l ,op t (S)  A f ~ , o p r  (s). . 4 f m . o p t ( s ) l T  (4) 

that satisfy 

The result of a profit optimization procedure is the 
estimated treatment vector: 

&s)=['@*(s) &s> - * .  4fm(s)lT (6)  
which is ideally equal to Afop,(s). 

In practice, crop yield and features are available only on a 
finite set of sampling points s within the field. In addition, 
due to finite accuracy of devices for on-the-field fertilizer 
application [4] feasible treatment rates can be treated as 
discrete: 

Here, 8; is the minimal portion by which the fertilization 
rate of the i-th controllable feature can be adjusted, 
dependent on technological characteristics of the fertilizer 
applicator, and AA.,- is the maximal allowed rate, related 

to environmental considerations [ 11, [23]. 

2.2 Optimization Method 
The problem of fertilizer recommendation is a special case 
of the constrained maximization [27]. However, here the 
localized profit function p is not known in the closed form, 
so the problem cannot be solved using the theory of non- 
linear constrained optimizations [ 181. To optimize this 
incompletely specified functional dependence in this paper 
we propose direct and inverse modeling, for optimization of 
a profit function approximation; 

In direct modeling, the crop yield Y at each sampling point 
is treated as a function of both controllable and. non- 
controllable features. The function 

is estimated using a non-parametric regression model, and 

the estimate f(s) is subsequently employed for constrained 
maximization of the following determinant function: 

i=l,m 

fi' 2 f i  ,i = 1, ..., m 

f;' =J;: , i = m + l , . . . , m + n  
Here, 

(9) 

wl*, i=l,  ..., m are costlprice ratios for each controllable 
feature-fertilized nutrient [25], and the estimated 
treatments, eq. (6) ,  are obtained as differences 

Aji(s) = fi' -fi,i = 1 ,..., m ( 1 1 )  

where f i ' , i  = 17...,m are the results of constrained 
maximization of the determinant (9). 

Using the direct modeling, a profit as a function of 
controllable features can be maximized by independent as 
well as by simultaneous optimization of site-specific 
treatment rates. In independent optimization, the optimal 
fertilizer concentration is obtained for each nutrient 
separately. For each controllable feature A, i=l, .  . .,m, the 
estimated treatment rate is obtained using eq. ( l l ) ,  where 
the value of i-th feature fi ' is chosen to maximize the 

discriminant value d ;  (fi ,... fj-l, fi, f i + l  ,... f m + , , )  

under the constraint f j '  2 , while the other features 
retaining their initial values. Independent optimization can 
in principle be performed using a linear search 1221. 
However, due to (7), it is sufficient to perform exhaustive 
search on a finite and fairly small set of allowed 
fertilization rates. Independent optimization works best 
when crop yield is a separable function of features that do 
not interact significantly. 

Simultaneous optimization aims towards a global 
maximization of financial gain as a function of all 
administered nutrients. Using standardized optimization 
techniques (e.g. [5] ) ,  through an iterative process, all the 
values f;', i=l, ..., m are simultaneously updated towards an 
increase of the determinant function. The main drawback of 
this method is potential danger of detecting a local instead 
of the global maximum and sensitivity on initial values for 
A' .  Also, due to nature of optimization algorithms, this 
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technique may be more time consumptive compared to the 
independent optimization. 

In inverse modeling, controllable features are regressed on 
crop yield and on non-controllable features. Since the same 
value of crop yield may correspond to different tuples of 
feature values, here we can model only the dependence of 
one selected controllable feature (1 5iIm) on the other 
features and yield. Hence, in inverse modeling, at each 
spatial location s we estimate the function 

When an estimate i (Y)of  function (12) is computed, the 

desirable level fi' = i ( Y )  of the i-th controllable feature is 
obtained to correspond to the crop yield that maximize the 
following discriminant function 
di(Y)= Y - wi' * j ( Y )  (13) 
When fertilization rates are being optimized for multiple 
features, the estimated rates are obtained through an 
independent optimization of each controllable feature, using 
equations (12) and (1 3). 

Observe that both direct and inverse modeling introduced 
here involve an estimation of regression models, which can 
be done using various parametric and non-parametric 
techniques. In this paper, in addition to linear regression 
using ordinary least squares [ 81, we advocate an application 
of multi-layer feed-forward neural networks with sigmoidal 
and radial-basis (RBF) activation functions [ 121. The 
topology of applied multi-layer neural networks is shown in 
Fig. 1 .  The networks have m+n inputs, and the output is a 
linear function of K hidden neuron activation functions 
h, (xl ,..., x,,, ), k=l,. . .,K. In multi-layer perceptrons, 
(MLP), activation functions hk are logistic sigmoids: 

m+n 

h, (x, ,..., x,+, ) = 1 / 1 +exp - vk,o + c vk,ixi) (14) 
i=l 

In radial basis functions network (RBF), the k-th activation 
function depends on the Mahalonobis distance between the 
input vector x=[xI,. . .,x,,,+,]~ and a vector CF[CI,L,. . .,c,+,,L]' 
that determines the center of the k-th basis function. The 
shape of the function is specified by a positive-definite 
matrix &. More precisely, 

i 1 
2 hk (XI ,. .., X,,, ) = -- (X - c k  )T xi1 (X - C ,  ) (15) 

Applied multi-layer neural networks can be trained using 
standard learning algorithms ([ 121, [17], [19]). 

2.3 Performance Evaluation 
When the fertilization recommendation is performed on 
real-world data, the true effects of the treatment can be 

n 

Figure 1: Topology of applied neural networks 

determined using single-factor analysis of variance [8]. 
However, these solutions are expensive and require the 
implementation of randomization strategies for 
experimental fields, which is difficult to properly 
accomplish when the fields are heterogeneous (e.g. with 
high variability of soil types and a complex topography). In 
contrast, for simulated data, we can compare obtained 
recommendations with known optima and thus determine 
true quality of provided estimates. 

There are several ways to evaluate the quality of fertilizer 
recommendations. Thus, one can estimate the coefficient of 
determination R 2  [8] as a measure of similarity between 

optimal and estimated treatments Afji.opf (s) and Afi (s) 
for the i-th controllable feature on the field. However, 
R 2  is not suitable when fertilizer recommendation models 
are biased (i.e. when averaged optimal and estimated 
treatments differ) since in this case, coefficient of 
determination can be negative, although the proposed 
fertilization recommendations may be still acceptable. 

Another possibility is to use Pearson's coefficient of 
correlation r between the predicted and optimal fertilization 
[8]. The coefficient of correlation measures the strength of 
the linear relationship between predicted and optimal 
fertilization rate but has a limited use when this dependence 
is non-linear. 

Observe that both r and R2 portray the quality of 
recommendations for each nutrient independently instead of 
providing a global assessment of the adopted fertilization 
policy. To rectify this problem and enable the comparison 
of the site-specific treatment recommendations with a 
uniform fertilization when the same total amounts of 
fertilizers are spent, we propose a comparison of the 

average profit Prof i t (Af ) ,  computed using eq. (2) when 

A ,. 
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A 

the recommended treatments AA, i = 1, ..., m are applied, 

with the mean profit Profit (Aiovg ) computed when the 

averaged recommended fertilization rates 

IIAA(s)ds ,i = 1, ..., m (16) 
1 - 

Af;:7avg - area(F) 
are applied uniformly on the whole field. In addition, we 
compare these averaged profits with the optimal average 
profit Profit (Afop, ) achievable through the optimal 

fertilization rates, eq. (5). 

3 Implementation 

The proposed method is implemented in MATLAB [lo] to 
accomplish a user-friendly process of treatment 
recommendations. The software consists of three modules: 
Model Training, Treatment Prediction and Visualization. 

In Model Training, user selects the type of modeling (direct 
or inverse) and performs the training of the chosen 
regression model. The user can specify names of input files 
containing data for parameter estimation, relevant features 
that influence the crop yield and the technique of regression 
model estimation. In the current version of the software, we 
support multi-layer networks with logistic (MLP) and radial 
basis (RBF) transfer functions of hidden neurons and linear 
ordinary least-squares (OLS) models. For a regression 
model, the user can specify model parameters and choose 
the learning algorithm. For instance, when using RBF, in 
addition to a simple learning algorithm with a fixed number 
and parameters of radial basis functions, we support self- 
organized maps [15] and regression trees [19] for an 
automatic initialization of hidden layer parameters (see Fig. 
2). When MLP networks are used, the input parameters 
include the number of hidden neurons and the maximal 
number of epochs as well as a choice among various 
learning algorithms such as Polak-Ribiere conjugate- 
gradient, Quasi-Newton, resilient backpropagation and 
Levenberg-Marquardt algorithm 171. 

The treatment prediction module is activated automatically 
once regression model coefficients are estimated in Model 
Training. In addition, the user can started this module with 
loaded pre-computed coefficients. In this mode, the user 
specifies controllable features and an optimization 
algorithm (independent or simultaneous optimization). 
Before the computation of treatment prediction actually 
begins, the user should also specify treatment parameters 
for each feature (nutrient): maximum fertilizer rate 
AA.,,=, fertilizer unit cost wi , and application 

resolution &.,i = 1, ..., m. Additional input parameters are 
the constant cost of fertilization w, (independent of the 
quantity of applied fertilizer) and the unit price of crop c 

Figure 2: Parameters of a RBF regression model 

(see Fig. 3). Depending on the size of the field, the number 
of controllable features, the application resolution and the 
type of algorithm (independent or simultaneous 
optimization), the computation of estimated fertilization 
rates can elapse from 10 minutes to 2-3 hours on a Pentium 
I11 processor with 866MHz and 256MB RAM. The user can 
keep track of the estimation progress and stop or pause the 
computing. The final output in this mode is the file with 
estimated treatments rate for each controllable features on 
every discretized spatial location of the field. 

Figure 3: Parameters for treatment recommendation 

In Visualization mode, the user can inspect the properties of 
the trained regression model and examine the estimated 
fertilizer recommendations. When the experiments are 
performed on simulated data, the user can also compare the 
obtained results with a known optimum and thus evaluate 
the performed estimation process. For a chosen controllable 
feature, the user can visualize final results as the maps of 
estimated and optimal fertilization rates and compare 
average profits on the field achievable using recommended, 
uniform and the optimal fertilization. 

4 Experimental Results 

The proposed techniques provide potentials to explore 
various issues of crop management in agriculture. Due to 
space limitations, in this paper we only demonstrate the 
applicability of the direct modeling technique on simulated 
agricultural data. More extensive experiments will appear 
in a forthcoming paper [21]. 
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For experimental evaluation, data were generated using our 
simulator of spatial data [20] and consisted of two fields - 
the training and the test dataset. Each dataset consisted of 
simulated crop yield and five features representing soil 
nitrogen, phosphorus, and potassium, land slope and profile 
curvature. The spatial statistics of the features roughly 
corresponded to ranges obtained from a real-world data set 
[ 141 and all features were approximately normally 
distributed. Data were generated on a 10m sampling grid 
and the size of each field was 800m X800m, such that each 
simulated field consisted of 6561 examples. Yield was 
generated using a plateau model [20] with parameters set 
using fertilizer recommendation guides [ 31 and regression 
results from a real-world data set [ 141. 

Using the direct modeling, we examined the applicability of 
neural networks for fertilizer recommendation and 
compared networks with radial basis (RBF) and sigmoidal 
(MLP) hidden neurons to ordinary least squares (OLS) 
linear models. In RBF networks, the hidden layer consisted 
of 100 hidden neurons. Matrices & were pre-specified and 
identical for all hidden neurons while centers ck were 
randomly selected from the training set. MLP networks had 
10 hidden neurons and were trained using the Levenberg- 
Marquardt algorithm. Since the purpose of experiments was 
not to determine the ultimate performance of the proposed 
methods, no further optimization of network structure and 
parameters has been attempted. 

After the training of regression models, the fertilization 
rates for nitrogen, phosphorus, and potassium were 
estimated on the test field using the techniques of 
independent and simultaneous optimization. We employed 
the following values of treatment parameters. Maximum 
fertilizer rates were 320, 48, and 272 lb/acre (181, 27, and 
154 kgha) per nitrogen, phosphorus and potassium, 
respectively, fertilizer unit cost was $0.25/lb (55c/kg), and 
the resolution of fertilizer application was 1 Ib/acre (0.565 
kgha) for all nutrients. We assumed the unit crop price of 
$3/Bu of wheat (1 lcents/kg) and a zero constant cost of 
fertilization. Due to stochastic character of the applied 
algorithm for learning neural network coefficients, 
corresponding experiments were repeated 10 times. 

Experimental results suggest the applicability of the 
proposed direct modeling method for fertilization rate 
recommendations. Since the plateau model employed to 
simulate crop yield does not introduce feature interactions, 
independent and simultaneous optimization techniques 
resulted with similar effects. The obtained fertilization rates 
using neural networks were correlated with the optimal 
rates (coefficient of correlation larger than 0.5) but due to 
the bias of applied non-linear models, the average 
recommended rates differ from the average optimal ones, 
which sporadically resulted with a negative coefficient of 
determination. 

At Table 1 ,  comparison of the averaged fertilization costs 
and profit obtained using uniform and site-specific 
fertilization rates (estimated by direct modeling and 
independent optimization technique) to the known optimum 
is presented. Site-specific fertilization rates provided using 
neural networks resulted with an average profit close to the 
optimal value. For instance, using RBF networks, we 
achieved average profit of $2lO/acre compared to the 
average optimal profit of $247/acre. The profit was similar 
using either MLP or RBF networks, but the networks with 
radial basis neurons generally provided treatment 
recommendations with a smaller fertilization cost and hence 
reduced environmental impacts. This was probably caused 
by the known tendency of radial basis functions to not 
extrapolate far from training examples [ 121. 

When neural network regression models were applied, the 
application of site-specific treatment rates instead of a 
uniform fertilization resulted with significant profit gains. 
Thus, the same total amounts of fertilizer resulted with an 
average profit of $169/acre when applied uniformly and 
with $213/acre when applied according to the treatment 
recommendations obtained with MLP networks. In contrast, 
the application of the proposed optimization methods with 
linear OLS models did not result with significant 
improvements compared to uniform fertilization. 
Furthermore, the application of linear models was inferior 
to neural networks. For instance, by using OLS average 
profit per acre was $42 smaller, while the average cost of 
fertilization was $74 more than in a site-specific 
fertilization by RBF networks. 

5 Conclusions and Work in Progress 

In this paper we presented a method for neural-network 
based optimization of fertilization rates in precision 
agriculture and described a software for providing site- 
specific treatment recommendations based on direct and 
inverse modeling of crop yield. 

Preliminary experimental results suggest that the proposed 
technique has a high potential to significantly increase 
financial gain and substantially reduce average fertilization 
rates compared to the traditionally performed uniform 
fertilization and the application of linear regression models. 

Work in progress includes theoretical and practical 
modeling aspects, such as the choice of modeling type 
(diredinverse, independenthimultaneous optimization) and 
comparison of particular regression models 

In addition, using the proposed techniques, we currently 
explore important aspects of fertilization rate estimation 
that arise in the agriculture practice such as the influence of 
unobserved features relevant for yield prediction, the 
significance of sampling resolution and presence of sensor 
and measurement errors in features and yield ([2], [24], 
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[26]) as well as the impact of cost/price ratio on the 
optimized fertilization rates. 

Treatment Average Average 
fertilization profit 
cost (%/acre) (%/acre) 
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