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Abstract. In this paper, we investigate the application of 
localized neural network-based distributional learning 
techniques for characterizing interesting groups and po-
tentially new types of disorder proteins. Instead of employ-
ing a single autoassociator model for learning global dis-
tributions of ordered and disordered classes, clustering-
based partitioning techniques are first applied independ-
ently to both ordered and disordered labeled data set to 
identify regions of similar characteristics. Subsequently, 
local autoassociators are employed on labeled data to 
learn distribution of each cluster.  These local autoasso-
ciators are used in testing phase to assign each tuple from 
the unlabeled data set to the cluster closest in distribu-
tional sense. Obtained partitions are analyzed for the 
presence and frequency of the expert-annotated keywords. 
Frequency comparison is applied to provide insight of 
keywords sensitive to the distribution heterogeneity and 
disorder/order labeling. Experimental results on a labeled 
database of confirmed order and disorder proteins and 
unlabeled data extracted from SWISS_PROT database are 
consistent with related literature and can provide further 
insight into relationship between protein similarity, key-
word labeling and the disorder property.  

1. Introduction 
Proteins are large complex molecules composed of amino 
acids that form the basic building blocks of life.  Due to 
their ability to control the structure, function, and repro-
duction, proteins are referred as the “workhorse” of the 
cell. However, they can only function based on the accu-
rate DNA blueprint found in the nucleus of each cell [17].  
With the complete sequencing of the human genome, post-
genomic era focuses on methods for estimating the struc-
ture and function of proteins. Emerging disciplines such as 
proteomics (the study of protein structure and their activ-
ity) and bioinformatics (a scientific discipline specifically 
aimed at using predicted biological functions from data in 
DNA sequencing) will be the focus of much research for 
years to come, and will help in solving many mysteries 
involved in the molecular basis of health and disease. 

One of the greatest challenges in the proteomics is to 
identify proteins that are partially or wholly unstructured 
[12]. In studies of the protein disorder property [5], disor-
dered proteins are characterized by long sequence regions 
that lack a fixed 3-D structure in their native states. To 
study this interesting property, known examples of disor-
dered proteins as well as of ordered proteins with a fixed 
3-D structure have been collected. However, due to 
experimental bias towards ordered proteins, examples of 

protein disorder are scarce in the existing databases of pro-
teins with determined structure. Many of these databases 
also exhibit heterogeneity, which means that rules identi-
fied among the observed attributes in certain subsets do not 
necessary apply elsewhere. A heterogeneous data set can 
be partitioned into homogeneous subsets such that learning 
a local model separately on each of them results in im-
proved overall prediction accuracy. For instance, our pre-
vious research work [19] has shown that disorder proteins 
may have several flavors (different behavior types). In 
addition, our previous results [13,20] have confirmed that 
attribute distributions in labeled protein datasets may be 
heterogeneous and related to the presence/absence of par-
ticular keywords assigned to the proteins. Therefore, parti-
tioning the set of disorder proteins into more homogenous 
ones may help in identifying and characterizing new types 
of disorder proteins. Similar methodology has been dem-
onstrated as successful in several data mining applications. 
For example, in spatial domain, DBSCAN clustering algo-
rithm [15] was used to partition the spatial fields into sev-
eral similar regions and then to build localized regression 
models on each of them in order to predict the wheat yield 
[9]. In addition, hierarchical partitioning followed by local-
ized prediction was used to detect damages in large com-
plex mechanical structures [11]. 

When different groups of disorder proteins are identi-
fied using a partitioning algorithm, each subset of disorder 
proteins needs to be characterized with a specific model. 
One of the standard techniques for characterizing data dis-
tributions is distributional learning, which is known as a 
difficult problem in machine learning [2]. In our approach 
we use autoassociator neural networks [2, 14] to learn 
class-conditional distributions for each class of labeled 
sequence data. While the autoassociators have been known 
as a promising approach to distribution learning, innova-
tions in our approach include sequence representation by 
an appropriate set of attributes, as well as using class and 
cluster information to optimize the architecture of autoas-
sociators. In our earlier work [20], multilayer autoassocia-
tors were used for qualitative enlargement of labeled data 
but without considering its potential distributional hetero-
geneity. 

The approach proposed in this study consists of the fol-
lowing four steps: (1) partitioning labeled data using clus-
tering algorithm, (2) learning class-conditional distribu-
tions from clusters of labeled sequence data, (3) partition-
ing of unlabeled data according to distributional similarity 
to the labeled data clusters, and (4) preliminary analysis of 
functional properties of clusters’ learned distributions 



based on frequency of keywords.  

2. Methodology 
Starting from a set of labeled sequences assigned to two 
classes (subsets) of ordered and disorder proteins, the first 
step of the proposed method involves partitioning, using a 
clustering algorithm, independently of the subset of or-
dered proteins and of the subset of disorder proteins. The 
main motivation behind this is identification of more ho-
mogenous subsets of ordered (disordered) proteins, which 
could be more successfully summarized by localized de-
scriptive models than by the global ones. In the second 
step, we apply neural networks to learn distributions of 
data records in each cluster. The proposed distribution-
learning approach consists of learning data distributions 
separately for each cluster that is discovered within each 
class. Using local distribution models, we assign each pat-
tern from an unlabeled dataset to a labeled data cluster that 
is closest in distributional sense. Finally, we analyze the 
frequencies of keywords assigned to the corresponding 
proteins.  
Attribute construction. In our approach we represent 
each sequence position or a whole sequence with a set of 
attributes shown relevant to the studied property [20]. In a 
particular application, the attributes should be able to cap-
ture information relevant to the distributional properties of 
each of K classes. For instance, such attributes correspond-
ing to a given position in the sequence could be derived 
from statistics of a subsequence within a window centered 
at the position. More formally, given a labeled sequence s 
= {si, i =1,…,L} of length L, each position i is assigned a 
corresponding label yi ∈ {1,…,K}. An appropriate M-
dimensional attribute vector xi is constructed for each se-
quence position si. Finally, each sequence s is represented 
with a set of L examples {(xi, yi), i = 1, … L}. A labeled 
set S is then constructed by repeating this procedure on all 
N available labeled sequences. Since our goal is to develop 
a separate distribution model for each class, we construct 
training sets Sj = {(xi,yi), yi = j} composed of all examples 
from S labeled with the class j, j=1,,..,K. For the consid-
ered proteomics application, we distinguish among ordered 
and disordered proteins, hence K=2.  
Clustering. In this study, several clustering algorithms 
from the CLUTO clustering package [21] were employed 
to partition sets of ordered and disorder proteins into more 
homogenous ones. The applied clustering algorithms in-
clude k-way clustering algorithms with repeated bisections 
(RB, RBR), direct k-way clustering (DIR) and agglomera-
tive clustering (AGGL) approach. In the k-way clustering 
with repeated bisections, clusters are obtained by perform-
ing sequence of k − 1 repeated bisections. Here, the data 
set is first clustered into two groups, with one of the 
groups selected and subsequently bisected further. This 
process continues until the desired number of clusters is 
found. During each step, the bisection is performed so that 
the resulting 2-way clustering solution optimizes a particu-

lar clustering criterion function. We have used two variants 
of the k-way clustering. In the first one (RB), the criterion 
function is locally optimized within each bisection, while 
in the second one (RBR) the overall solution is globally 
optimized. Basically, the RBR approach uses clusters ob-
tained by the RB algorithm as initial cluster solution, and 
attempts to further optimize the clustering criterion func-
tion. However, the RBR is not necessarily better clustering 
solution due to this postprocessing step, since the global 
optimization does not necessarily give the best criterion for 
estimating the quality of obtained clusters. The direct k-
way clustering algorithm, as a variant of k-means algo-
rithm, simultaneously finds all k clusters. In general, com-
puting a k-way clustering directly is slower than clustering 
via repeated bisections. In terms of quality, for reasonably 
small values of k (usually less than 10–20), the direct k-
way clustering algorithm leads to better clusters than those 
obtained via repeated bisections. In agglomerative cluster-
ing approach, we first find the clusters by initially assign-
ing each object to its own cluster and then repeatedly 
merging pairs of clusters until a certain stopping criterion 
is met. Here, the desired clusters are computed using the 
agglomerative paradigm which goal is to locally optimize 
a particular clustering criterion function. The algorithm 
starts with clusters assigned to each data object, and pro-
ceeds with merging two closest clusters and stopping when 
k clusters remain.  

The criterion function that we use here in all clustering 
algorithms is based on maximizing the similarity between 
each data record and the centroid of the cluster the record 
is assigned to. Specifically, if we use the cosine function to 
measure the similarity between a data record and a cen-
troid, then the criterion function may be defined to maxi-
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cord, Sr and Cr  correspond to the data assigned to r-th 
cluster and the cluster centroid respectively, r = 1, …, k . 
Distribution learning. As the distribution models we use 
autoassociators — a special class of multi-layer feedfor-
ward neural networks with logistic sigmoidal transfer func-
tions [2,14]. The number of inputs and outputs of autoas-
sociators corresponds to the number M of attributes. In 
addition to M input and M output neurons, autoassociators 
have three hidden layers with n13, n2, and n13 neurons, re-
spectively, where n2 < M. Each autoassociator is trained to 
reconstruct its input x at the output t and its parameters are 
optimized to minimize the Euclidian distance ||x−t||2. To 
achieve an accurate reconstruction, the autoassociator is 
implicitly forced to discover an appropriate nonlinear 
mapping of the original M-dimensional attribute space into 
a smaller n2-dimensional space that captures the properties 
of the underlying distribution [2].  

An important aspect of our approach is learning class-
specific autoassociators Aj for each cluster Sj of labeled 
set instead of learning a global model on all labeled data S. 



The main benefit of such decomposition is simplification 
of the learning task in the spirit of a mixture-of-experts 
approach to learning [8]. The autoassociators trained on 
labeled data are used to assign each tuple from the unla-
beled data set to the cluster closest in distributional sense.  
For each tuple from unlabeled dataset, we compute the 
norm of difference between the tuple and the output of 
each autoassociator. The tuple is subsequently associated 
to the distribution corresponding to the autoassociator for 
which this norm is the smallest (Figure 1). 

Figure 1. Using autoassociators to determine the closest 
distribution d to an unlabeled tuple x 

 
Keyword Frequency Analysis. Tuples identified as be-
longing to particular partitions are analyzed for the pres-
ence and frequency of the expert-annotated keywords. (For 
example, in SWISS-PROT [18], about 840 keywords are 
used to describe protein functional properties). It should be 
emphasized that the number of keywords assigned to a 
given biological molecule is dependent on its biological 
activity (e.g. some proteins could be involved in a number 
of biological processes, while others are highly specific), 
and on the extent of experimental research performed on 
the molecule (e.g. very related proteins could differ largely 
in the number of associated keywords). Therefore, each 
existing database of keywords assigned to biological mole-
cules is incomplete with a large fraction of missing infor-
mation. 

Another property of the existing biological databases is 
the presence of homologues – families of similar se-
quences with the common evolutionary origin. The pres-
ence of large homologous families could largely skew re-
sults of any analysis performed on these biological data-
bases. Our goal in this paper is to compare frequencies of 
keywords in the whole SWISS-PROT and in its partitions, 
and not necessarily make conclusions about the SWISS-
PROT as a “representative collection” of real-world pro-
teins. Hence, the sampling bias present in SWISS-PROT 
equally propagates to its partitions, so we do not need con-
struct its non-redundant subset [13, 20]. 

In our approach we first count the occurrences of the 
keywords in the whole database of unlabeled sequences, 
and in each partition of unlabeled sequences (identified by 
the clustering algorithm). Then, we compute the frequen-
cies of the keywords in both cases and using statistical test 
for each keyword, determine whether the frequencies 
differ significantly. Subsequently, we determine the set of 
keywords with the frequency discrepancy that is signifi-
cant for each cluster separately. The analysis of these 
keywords could provide insight of keywords sensitive to 
the distribution heterogeneity and disorder/order labeling. 
Particularly, this list of keywords could be compared to the 
keywords exemplified as associated with orders/disorders 
in other references [13,20]. 

To test whether the frequency of a keyword in a par-
ticular cluster differs from the frequency in the whole da-
tabase, we use the Hypergeometric distribution [4]. Let N 
be the number of proteins in the whole database, Pi number 
of proteins having a specific i-th keyword in database, nj 
number of proteins represented in a j-th cluster and pi,j 
number of proteins having the i-th keyword in a cluster j. 
Frequency of keywords in the database is computed as 
F=P/N, while the observed frequency of the i-th keyword 
in the j-th cluster is fi,j =pi,j/ni. Under the null hypothesis H0 
that the distributions of the keywords in the cluster and in 
the whole database are actually the same, pi,j satisfies the 
Hypergeometric distribution h(x) with parameters  N, nj 
and Pi [4]. It can be shown that the Type I error (of reject-
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α  otherwise. The null hypothesis is re-

jected in favor of an alternative hypothesis (that the key-
word frequency in the partition is different from the fre-
quency in the whole database) if α<αthreshold where αthreshold 
is a pre-specified significance level.  

3. Experiments 
In this section we illustrate our techniques when SWISS-
PROT database [18] is used as the source of background 
information for discovering proteins underrepresented in a 
database of known ordered and disordered proteins.  

3.1 Experimental Setup 
Our data set of labeled sequences consists of 152 proteins 
containing disordered regions longer then 40 consecutive 
positions, and of 290 completely ordered proteins [6]. 
Some of disordered regions identified by NMR, circular 
dichroism or protease digestion were found starting from 
keyword searches of PubMed (www.ncbi.nlm.nih.gov) 
followed by a case by case confirmation based on detailed 
studies of relevant literature. Also, starting from a subset 
of the Protein Data Bank (PDB) called PDB_Select_25 
(based on grouping PDB proteins into families having > 
25% sequence identity), disordered regions in X-ray crys-
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tal structures were identified by searching for residues hav-
ing backbone atoms that are absent from the ATOMS lists 
in their PDB files. In total, our labeled data set consists of 
22,434 disordered amino acids and 67,548 ordered amino 
acids. 

We used 101,602 proteins listed in October 2001 re-
lease 40 of SWISS-PROT database [18] as a set of unla-
beled proteins. From SWISS-PROT we extracted amino 
acid sequences of each protein as well as the associated 
lists of keywords used in the evaluation of selected out-
liers. Overall, 840 keywords are used in SWISS-PROT to 
provide information about functional and structural proper-
ties of various proteins.  

To perform clustering and partitioning, we used seven 
attributes chosen in [20] according to our earlier experi-
ments and expert knowledge. These attributes are shown as 
correlated with order/disorder property [19] and for each 
protein residual are constructed using statistics of its 
neighboring amino acids. 

 All seven constructed attributes were employed to per-
form various clustering algorithms from CLUTO package 
with different number of resulting clusters. When referring 
results obtained using a particular method, we will use the 
method abbreviation followed by the numbers of clusters 
in disordered and ordered class (e.g., RBR(7,8) means  the 
repeated bisections algorithm by k-way refinement found 7 
clusters in disorder and  8 clusters in the order labeled 
data). Table 1 illustrates applied methods. Since maximiza-
tion of the I2 criterion function was used to optimize clus-
tering results, we started with a relatively large number of 
clusters (around 15) and we were observing the gain in the 
quality of clusters after merging selected clusters. When 
the gain significantly dropped, the clustering process was 
stopped. Due to several thresholds used in measuring gain, 
we have more than a single solution for an optimal number 
of discovered clusters.  

Our major goal in this study was to demonstrate the po-
tentials of the methods but not to investigate its final fron-
tiers. Hence, although we tested several different configu-
rations of the autoassociators (different numbers of neu-
rons n13 and n2) we did not perform systematic topology 
optimization. Here, we report results obtained using the 
networks with n13 = 8 and n2 = 4 that are consistent to re-
sults obtained using other network topologies. The autoas-
sociators were trained using the Levenberg-Marquart algo-
rithm [3]. The optimal number of training epochs was de-
termined empirically with training terminated when the 
improvements in training error were diminishing. We 
needed 100 epochs to achieve stable training error on la-
beled clustered data. 

3.2 Results 
Using the proposed technique, we first independently par-
titioned the unlabeled ordered and disordered datasets into 
subsets where each subset is the most similar to one of 
clusters identified on labeled data. Then, for each subset 

we identified SWISS-PROT keywords whose frequency is 
significantly different (αthreshold=1e-6) from the correspond-
ing frequency on the whole unlabeled dataset. For each 
method, we identified keywords that have frequencies sig-
nificantly different for all clusters. 

The set of identified keywords primarily depends on 
the clustering method and on the number of clusters in the 
set of disordered proteins. This means that there is really 
heterogeneity in disorders (and clear separation between 
orders and disorder property) while the set of ordered pro-
teins seems to be fairly homogeneous (in contrast to our 
initial assertion that ordered protein set is also heterogene-
ous). 

With the large number of clusters, the proposed tech-
niques tend to be over-restrictive (e.g., using the RBR 
method that identified 11 disorder clusters, there were no 
keywords with significant frequency difference in all dis-
ordered clusters). Generally, the smaller number of clus-
ters, the larger the number of discovered keywords. The 
larger number of clusters on labeled data leads to the 
smaller number of data for training each autoassociator, 
which can lead to overfitting and incorrect assignment of 
an unlabeled tuple to the partition that is actually not the 
closest in distributional sense.  

Depending on the number of clusters and the clustering 
technique, we were able to detect the majority of keywords 
identified elsewhere as associated to the protein disorder 
property [13, 20]. For instance, complete proteome, trans-
membrane, hypothetical protein, and inner membrane, that 
were also identified as keywords associated with underrep-
resented sequences in PDB25 are detected as significant in 
all clusters, when RBR(7,8) clustering is used. Similarly, 
the keywords repeat, nuclear protein, dna-binding, devel-
opmental protein, chromosomal protein and microtubules, 
identified as disorder-correlated [20] appear associated to 
the disorder property using some of examined clustering 
methods. 

Out of the keywords that are associated with disorders 
by our techniques, alternative splicing, lyase, oxidoreduc-
tase, phosphorylation, transmembrane and transport are 
exemplified by at least 50% of the examined clustering 
methods, as shown in Table 1. It is interesting to denote 
that, according to our best knowledge, for some of these 
keywords (e.g. transport) other methods could not demon-
strate clear association with disorder property [20].  

Observe that the keywords may be overrepresented or 
underrepresented in only some clusters. In fact, such key-
words may be particularly interesting since their frequen-
cies are associated with particular data regions (parti-
tions), where the keywords have significant frequency 
mismatch. To further examine this important property of 
data, we extracted keywords that are underrepresented in at 
least one partition, for partitions corresponding to protein 
orders and to protein disorders. To reduce the number of 
presented keywords, in Table 2 we show only the key-
words which frequency differs for more than 5% in com-



parison to the frequency in SWISS-PROT. These results 
suggest that heterogeneity in distribution of the examined 
dataset, efficiently discovered by the proposed method, is 
correlated to underlying properties of the data. For in-
stance, Iakoucheva et al. [7] discovered that proteins re-
lated to regulatory function (and associated with the trans-
ferase keyword) have been linked with disorder property. 
It would be interesting to examine further biological mean-
ing of our findings. 
Using our technique, it is possible to look at keywords 
frequencies in each partition corresponding to disordered 
labeled data and to further analyze proteins corresponding 
to each partition. For each of 7 “disordered” partitions dis-
covered by RBR(7,10), the keywords that have signifi-
cantly higher (+) and significantly lower (-) frequencies in 
comparison to the frequencies in SWISS-PROT are shown 
in Table 3. Again, we show only the keywords which fre-
quencies differ for at least 5% from the frequency in 
SWISS-PROT. As we can see, discovered partitions are 
correlated with underrepresentation or overrepresentation 
of particular keywords. For instance, sets of keywords 
over-represented in the partition 1 and the partition 2 are 
distinct. Furthermore, some of the keywords, (e.g., dna-
binding, nuclear protein, transmembrane, transport) are 
overrepresented in one, while underrepresented in another 
partition. This clearly illustrates that our technique can 
distinguish not only keywords associated with disorders, 
but also the keywords associated with particular subclasses 
of unlabeled data, close in distributional sense. The follow-
up examination of discovered subsets of keywords and 
related proteins may put new insight on better understand-
ing different kinds of disorders and their relationship to the 
protein function. Here, none of the keywords from Table 3 
appeared as underrepresented or overrepresented (with 
more than 5% frequency difference) in partitions 3 and 5. 
According to this example we can also observe that al-
though keyword representation is correlated with obtained 
partitions, it is not necessary that keyword frequencies 
differ in each partition. 

4. Conclusions 
In this study we have presented a localized partitioning-
based knowledge discovery technique that is applied to 
keyword-annotated protein databases to potentially help in 
discovering novel groups of proteins and their association 
with potentially unknown classes of protein disorders.  

The principal goal of the study is to demonstrate the 
usefulness of the approach and not to explore its ultimate 
performance. Hence, we did not perform extensive re-
search on technical details such as the choice of number of 
clusters, network topology (number of neurons in hidden 
layers), optimal learning algorithm, and comparison of the 
proposed autoassociator-based technique with other exist-
ing methods for distribution learning. Research on these 
important aspects is currently in progress. In addition, we 
are working on a follow-up expert analysis of discovered 

protein partitions and on application of the proposed 
method on other keyword annotated protein databases 
(e.g., PIR, GenPept/Gene [1]). 
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Clustering Method RBR AGGL RB DIR 

Disorder 11 5 7 4 6 8 4 7 8 Number of 
clusters Order 10 8 10 8 10 8 11 7 8 11 7 8 11 7 8 6 8 6 8 8 

alternative splicing         * * * * * *  * * * * * * * * * * * 
lyase         * * * *  * *     *  * * * *  
oxidoreductase   * * * * * *  * * *  *  *    * 
phosphorylation   * * * * * * * * * * * * * * * * * * 
transmembrane   *  * * * * *   *    * * *   K

ey
w

or
d 

transport   *  * * * * *  * * * * * * *  *  
Table 1. Keywords with frequencies significantly different in each disordered cluster vs. the frequency in the whole 
dataset for each examined clustering algorithm. The keywords identified significant by at least 50% of examined 
methods are annotated as bold. 

Clustering Method RBR AGGL RB DIR 
Disorder 11 5 7 4 6 8 4 7 8 Number of 

clusters Order 10 8 10 8 10 8 11 7 8 11 7 8 11 7 8 6 8 6 8 8 

complete proteome   * * * * * * * * * * * * * * * * * * 
dna-binding     *                
glycoprotein       *     *         
hydrolase   *    *     * *       * 
hypothetical pro-
tein    *   * * * * * * * * * * * * * * 

nuclear protein     *                
oxidoreductase   * * * * * *  * * * * * * * * * * * 
signal            *         
transferase   * * * * * * * * * * * * * * * * * * 
transmembrane * * * * * * * * * * * * * * * * * * * * 

K
ey

w
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d 

transport * * * * * * * * * * * * * * * * * * * * 
Table 2. Keywords identified be underrepresented (having significantly lower frequency in at least one partition 
corresponding to protein disorders as compared to the whole SWISS-PROT database). 
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Table 3. Keywords significantly overrepresented (+) or underrepresented (-) in partitions corresponding to disor-
dered tuples obtained using RBR(7,10) clustering technique. Only the keywords significant with αthreshold=1e-6  with 
frequencies at least 5% different from the frequencies on the SWISS-PROT are presented. 


