
Comparison of Symbolic and ConnectionistApproaches to Local Experts IntegrationPedro R. Romero and Zoran Obradovi�cSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752Abstract|Monostrategy classi�cation systems arevery limited in the type of knowledge they can usefor decision making. On the other hand, potentiallybetter results are achievable usingmultistrategy systemsthat integrate two or more types of knowledge rep-resentation and/or multiple inference underlying adecision process. In this paper a decision tree and aneural network technique for competitive integrationof heterogeneous local experts are proposed. The lo-cal experts are either symbolic rule-based classi�ersor neural network based monostrategy learning sys-tems. The integration is simple, as it involves nomodi�cation of existing symbolic components. Theproposed competitive integration systems are testedversus a previously used cooperative neural networkbased approach. The experimental results on a small�nancial advising problem indicate signi�cant per-formance improvements when using the neural net-work based competitive integration approach as com-pared to the results obtained from either the individ-ual classi�ers, a decision tree based symbolic inte-gration or a cooperative neural network integrationmethod. The best competitive neural network re-sults are achieved by incorporating prior knowledgeand a dynamic neural network local expert into theintegrated system.I. IntroductionDespite their good performance on well understood domains,expert systems tend to be costly in terms of development andmaintenance. In addition, they are incapable of synthesizingnew knowledge and adapting to changing environments. Onthe other hand, neural networks technology is being increas-ingly used on various prediction and pattern classi�cationproblems in complex domains. While a neural network is apowerful nonlinear system able to approximate well almostany continuous function, its main weakness for learning innoisy domains is that its ability is restricted to lower-levelknowledge extraction from limited sample data [1].This paper proposes two novel approaches to the devel-opment of multistrategy classi�cation systems consisting ofdiverse monostrategy classi�cation modules. In our experi-ments those modules are pre-existing rule-based expert sys-This work was supported in part by the National Science Foundationunder grant IRI-9308523 to Z. Obradovic.

tems and backpropagation based neural networks. The pro-posed methods performances are compared to that of anexisting integration approaches that has been reported toprovide good results. The proposed and previously studiedintegration approaches are described in Section 2. The ex-perimental results on a simple �nancial advising problem arepresented in Section 3.II. Multistrategy Classification SystemsThe three multistrategy integration techniques compared inthis study are based on the combination of existing expertsystems (called local experts) for a given classi�cation prob-lem. A machine learning system is used to either select thecorrect output from those given by the local experts or tocombine them in the most e�cient way in order to producethe correct response. The three approaches, one symbolicand two neural network-based, di�er both in the way theycombine the monostrategy system's contribution and in theinput data they use. In the rest of this paper, the symboliclearner approach is referred to as \decision tree", while theneural network-based techniques are respectively called \co-operative network" and \competitive network".A. The Decision Tree Based IntegrationThis technique uses a decision tree as the integrating learningsystem. The objective of the decision tree is to classify eachexample according to which one of the expert systems, ifany, should be used to predict its class. For example, givena system with two local experts, the objective of a decisiontree is to distinguish among four possibilities:Class 0 None of the local experts classi�esthis example correctly.Class 1 Expert 1 alone classi�es the ex-ample correctly.Class 2 Expert 2 alone classi�es the ex-ample correctly.Class 3 Both local experts classify the ex-ample correctly.In general, given two local experts this decision tree com-biner transforms an n-class classi�cation task into a 4-classproblem. When n < 4, this could be interpreted as increas-ing the complexity of the problem. However, even for binaryclassi�cation, the use of both local experts and a decisiontree combiner might actually simplify the input space deci-sion regions, as shown in Figure 1. The �gure on the left



Figure 1: Decision regions for the monostrategy and multistrategy classi�cation problems.
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zFigure 2: The Decision Tree Based Multistrategy System.shows the decision regions for a 2-class problem. The �gureon the right shows a possible class distribution resulting fromusing two expert systems as explained above. As it can beseen, there are now four classes, but the distribution of exam-ples among the di�erent classes is simpler. The assumptionthat this will be the case depends on the characteristics ofthe classi�cation problem to be solved.A problem with this method is that the number of classesthat the decision tree combiner has to recognize grows ex-ponentially with the number of local experts used (8 classesfor three experts). This could be simpli�ed by assigning ar-eas where several experts are correct to just one of them,according to some criterion.Figure 2 shows an implementation of the proposed system.Each training pattern consists of an input vector x and adesired response y�, which represent the current pattern'scorrect class. Each local expert outputs a response yi whichis fed to a selection routine. This class information is used forthe decision tree generation. The selection routine compares
the local experts' outputs to the desired response y�. Then, itassigns the input x to a class z�. After the three is generated,the system works as follows: The input vector x is fed tothe decision tree and to all local experts. The decision treeproduces a response z and each expert i outputs a responseyi. All these responses are given to the selection routine,which, based on the value of z, selects one of the yi's. Theselected value is then output as the system's response.When all experts are wrong, the system's output can begenerated randomly or inferred from the data. The problemstudied in this paper consists of a binary classi�cation taskwith two local experts, so, if both local experts are wrong,the system only has to output the opposite class from thatselected by both experts.The construction of the decision tree can be carried outusing various decision tree generation methods. The methodused in this experiment is GID3* [4], which groups togetherirrelevant attribute values before generating the three (us-ing ID3). The classi�cation problem addressed in this paper
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Figure 3: The Competitive Network Based Multistrategy System.has real attributes which have to be discretized before us-ing GID3*. This is achieved by using a multiple-interval dis-cretization technique proposed in [3]. The common approachis to discretize the attributes at each node of the decisiontree. For the problem studied here, we found that a singlediscretization step performed before tree generation alwaysachieved better generalization, and so the results reportedhere were obtained using the latter technique.B. The Competitive Network Based IntegrationThe competitive selection approach is an extension of themixture of local experts architecture proposed in [5] whichuses a gating network to integrate the responses of all localexperts, selecting the most competent local expert for anygiven example (see Figure 3).In the original architecture from [5] all K local expertsare backpropagation neural networks. A supervised learningprocess is carried out using a set of training examples, eachconsisting of an input vector x= [x1; x2; : : : ; xn] and a desiredresponse vector y*. As in the decision tree system, the inputvector x is applied to both the local expert networks and thegating network.The gating network is a one-layer neural network whoseK output units use a softmax activation function to producetheir outputs, gi = esi=PKj=1 esj , for 1 � i � K. Heresi = Pnl=1 wilxl is the weighted input sum of the ith out-put unit, with wil being the weight from the lth input tothe ith output unit. The system's output y = PKi=1 giyicorresponds to a weighted average of the individual expert'soutputs y1; : : : ;yK. Notice that the softmax function is acontinuous version of the winner take all selection criteria.This means that the gating network will usually select onlyone expert (i) by assigning a value close to 1 to its cor-responding parameter (gi) and values close to zero to theothers (gj, j 6= i).The system is trained to get a maximum likelihood esti-

mate response vector y� by optimizing the error functionE = � ln KXi=1 gie� 12�2i ky��yik2Here, �2i is a scaling term and E represents the log likelihoodof generating a response vector y�. This allows a competitivelearning process by training only the most competent localexpert(s) on a given example, because the backpropagatederror at each expert i is a function of its corresponding gi.In the competitive integration system used in this paper weassume that the local expert components are not only neuralnetworks, but also classi�cation systems of other types. Wewill also assume that only the gating network and the neuralnetwork components (if any) do the learning as explainedabove, while the other expert components are �xed and canonly be used to respond to the input patterns. This approachis more demanding for the gating network, which can not relyon the �xed local experts to learn the correct classi�cationwithin their assigned regions. To the best of our knowledgesuch models of heterogeneous mixtures of experts have notbeen studied before.C. The Cooperative Network Based IntegrationThe cooperative integration approach is based on a jury deci-sion making process. It has been successfully applied to sev-eral real-life classi�cation problems including protein struc-ture prediction [8]. This simple approach uses neural networklearning to integrate di�erent local expert classi�cation mod-ules by combining the outputs fromK local experts as shownin Figure 4.In this architecture, each example for the combiner train-ing process is constructed from an input vector x and a de-sired response vector y*. First, a vector z = [y1y2 : : :yK ] isassembled using the classi�cation response vectors y1;y2; : : : ;yK obtained fromK local expert classi�cation modules whenpresented with the input vector x. Second, vector z is fedto the combining neural network, which �nally produces theoutput vector y. The combiningmodule is then trained usingthe desired response vectors (y*).
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neural  networkFigure 4: The Cooperative Network Based Multistrategy System.(1) if (savings adequate andincome adequate) then invest stocks(2) if dependent savings adequate then savings adequate(3) if assets high then savings adequate(4) if (dependent income adequateand earnings steady) then income adequate(5) if debt low then income adequate(6) if (savings � dependents � 5000) then dependent savings adequate(7) if (income � 25000 +4000� dependents ) then dependent income adequate(8) if (assets � income � 10) then assets high(9) if (annual debt < income � 0.30) then debt lowTable 1: Financial advisor rule base.III. Experimental ResultsA. A Financial Advising ModelThe multistrategy classi�cation systems are tested on a small�nancial advising problem in which the objective is to adviseusers whether to invest in the stock market or not, basedon several �nancial parameters. The problem is representedby a rule base adapted from [7] and shown in Table 1. Al-though this model is extremely simpli�ed, it illustrates issuesinvolved in realistic �nancial advising.The system's input consists of six real variables, shown initalics in Table 1. The system output invest stocks is a bi-nary variable, representing the recommendation on whetherto invest in stocks or not.In this work, the rule base from Table 1 was used to gen-erate training and testing data. The idea is to produce \im-perfect" expert systems for this problem and try to combinethem as e�ciently as possible by using the techniques ex-plained before. In our experiments with the neural networkcombiners the training and testing sets were generated inde-pendently, with 1,000 examples in the training set and 10,000in the test set. For the decision tree approach di�erent train-ing sets were used, ranging from 120 to 500 examples, and thetesting set was the same one used for the other approaches.Pruned versions (i.e. with one or more rules missing) of therule-base were used to create four imperfect local expert sys-

tems with diverse performances, which were used as modelsof real-life, rule-based �nancial advising systems developedusing incomplete knowledge. Also, a one-layer, backpropaga-tion neural network with four hidden units (called NN) wastrained on the generated data and used as a local expert.The expert systems shown in Table 2 can be separatedinto three classes: pessimistic, optimistic and mixed. A pes-simistic expert's errors are always false negative predictions,that is, errors in which the output is 0 (recommending tostay out of stocks) when it should be 1 (recommending toinvest). On the other hand, an optimistic expert's errors areall false positive predictions (it outputs 1 when it should say0). A mixed expert makes both kinds of errors.B. Results and AnalysisThe multistrategy approaches presented in Section 2 wereapplied to the �nancial advising problem explained in Section3.A. The local expert systems shown in Table 2 were used asmonostrategy classi�cation modules.Experiments were performed by applying the three inte-gration approaches to di�erent combinations of expert sys-tems and/or neural networks. For comparison purposes, anupper bound on the success rate of each combination wascomputed for the given test data set. This upper boundrepresents the maximum possible success rate achievable by



System Success False prediction Pruned ExpertRate negative positive rules typeExpert 1 65% 100% 0% (2),(6) pessimisticExpert 2 69% 100% 0% (5),(9) pessimisticExpert 3 82% 100% 0% (3),(4),(7),(8) pessimisticExpert 4 73% 0% 100% (7),(4) optimisticNN 87% 57% 43% not applicable mixedTable 2: Local Expert Systems Performance.Success rate on test dataExpert Upper Decision Cooperative Competitivesystems bound tree network networkExperts 1 + 2 86.05% 67.75% 86.05% 85.78%Experts 1 + 3 90.37% 68.60% 90.37% 90.02%Experts 2 + 3 95.56% 70.00% 95.56% 94.53%Experts 1 + 4 100.00% 68.60% 58.62% 90.60%Table 3: Integration of two experts.always following the correct advise, i.e., selecting a correctexpert when at least one of the local experts is correct. Whenthe bound is below 100%, it means that there are cases whereall local experts are wrong, and so it is impossible to out-put a correct answer either by selecting one of them, or bycombining their outputs. Notice that this bound is by nomeans tight. For example, a pair of \dumb" experts, inwhich one of the modules always outputs 0 and the otheralways outputs 1, has an upper bound of 100% (they arenever both wrong), but the information they provide is nil.Thus, the cooperative combiner network can only achieve avery limited performance, while the gating network used inthe competitive approach is left with the task of learning toclassify the patterns by itself. Actually, the gating networkhas the advantage of being fed the original input in additionto the outputs of the \dumb" experts, and so it can learn tosome extent how to classify the patterns. For the �nancialproblem, a gating network combining two \dumb" expertsachieved a test set success rate close to 72%.The results of integrating several pairs of expert systemsare shown in Table 3. The table presents the computed up-per bound on the accuracy of each combination and the gen-eralization (testing data) success rates obtained by imple-menting the decision tree, cooperative and competitive net-work, respectively. The results shown for the decision treeapproach are averaged over twelve training sets of di�erentsizes (120,200,300 and 500 examples). It is interesting tonote here that the monostrategy decision tree approach (i.e.,using a decision tree to solve the original classi�cation prob-lem) gave a better result (74.75%) than all the decision tree-based multistrategy systems tested here. Notice that, whencombining pairs of pessimistic experts, both neural network-based methods produce excellent results. This is so becauseit is very easy to combine either two or more pessimistic ortwo or more optimistic experts by feeding their outputs toan AND gate (if the experts are optimistic) or an OR gate (ifthe experts are pessimistic). Obviously, both problems canbe learned by a single neuron.In contrast, the combination of pairs of experts of di�er-ent types (1+4) proves to be much more di�cult for the

cooperative combiner approach. In this case, the competi-tive network achieves around 90% accuracy, and the decisiontree does a better job than the cooperative combiner.The results of combining two of the expert systems with aneural network are summarized in Table 4. The upper boundfor the success rate is measured using the symbolic expertand the �xed neural network. The table shows two di�erentimplementations of the competitive network. In the �xedneural network case, the neural network shown in Table 2was used as an expert system, i.e. it only responded to theinputs, with no further training. In the dynamic learningmethod, the neural network local expert was trained at thesame time as the gating network.Notice that the introduction of a \mixed" local expert (theneural network) degrades the performance of the cooperativecombiner. The gating network, on the other hand does a verygood job on integrating these systems, especially when thelocal expert neural network is allowed to learn simultane-ously with the gating network. The decision tree approachmanaged to outperform the cooperative combiner in one ofthe cases, but its results continued to be very poor.In the �nal experiment, each pair of experts shown in Ta-ble 3 is combined with a neural network in order to test theperformance of more complex heterogeneous systems. Thefour systems shown in Table 5 are heterogeneous mixturesof two symbolic experts and a backpropagation neural net-work, using the cooperative and both competitive networkapproaches as in previous experiments from Table 4.It is apparent that the competitive network performs muchbetter than the cooperative network. We can also see that,again, allowing the expert neural network to be trained si-multaneously with the gating network produces a better re-sult compared to using a �xed neural network expert. How-ever, some combinations (1+3+NN and 1+4+NN) are notimproving as compared to the results obtained by their re-spective experts when they are combined alone with a neuralnetwork (see Table 4). By examining the results shown inTable 5, it seems apparent that the performance of the com-bined systems improves when the local experts have moresimilar success rates.



Success rate on test dataExpert Upper Decision Cooperative Competitive networksystems bound tree network Fixed NN Dynamic NNExpert 3 + NN 94.11% 74.05% 72.10% 89.00% 93.24%Expert 4 + NN 96.62% 66.10% 78.21% 91.45% 95.33%Table 4: Integration of one expert and a neural network.Success rate on test dataExpert Upper Cooperative Competitive networksystems bound network Fixed NN Dynamic NNExpert 1 + 2 + NN 99.60% 76.20% 93.79% 96.47%Expert 1 + 3 + NN 97.71% 83.11% 88.40% 94.70%Expert 2 + 3 + NN 98.73% 76.13% 88.51% 96.98%Expert 1 + 4 + NN 100.00% 74.52% 91.63% 94.52%Table 5: Integration of two experts and a neural network.From all the results shown, it is clear that the competitivenetwork approach is a far better tool for integrating mon-ostrategy classi�cation systems than both the cooperativenetwork and the decision tree methods.IV. ConclusionsThe advantages of the multistrategy classi�cation systemsdiscussed in this paper are numerous:� They integrate pre-existing prediction systems withoutthe need for internal modi�cation, which allows the con-tinued use of the existing systems while improving theirperformance in a very inexpensive way.� They allow the adaptive combination of older predictionsystems into new, more powerful systems. The abilityto explain the reasoning used in reaching a solution ismaintained in the new system. When neural networksare incorporated in the multistrategy system this capa-bility is partially lost, as there will be no explanation forthe examples solved by a neural network component.� They lower the cost of developing new classi�cation sys-tems by allowing the combination of specialized expertsdeveloped for smaller sub- domains. This property isespecially important for large real-life problems, whichare usually easier to approach locally than globally.Several approaches to the development of multistrategyclassi�cation systems starting from existing monostrategymodules are compared on a simple �nancial advising prob-lem. The proposed competitive neural network approach wasfound to be superior to the other integration methods andto each monostrategy classi�cation system tested. Despiteits poor performance on the studied problem, the decisiontree approach could be useful on classi�cation problems withmany classes, providing local expert systems are available.It should be noticed that the gating network used in thecompetitive integration approach was originally designed tocombine adaptive backpropagation local experts. Thus, thegating network is a powerful, yet simple, integrator that par-titions the input space among the local experts by meansof simple hyperplanes. Each local expert can then learn acomplex decision surface within its assigned subregion. Incontrast, when combining �xed experts as in this paper, thegating network is forced to �nd a more complex partitioning
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