Comparison of Symbolic and Connectionist
Approaches to Local Experts Integration

Pedro R. Romero and Zoran Obradovié

School of Electrical Engineering and Computer Science

Washington State University, Pullman WA 99164-2752

Abstract— Monostrategy classification systems are
very limited in the type of knowledge they can use
for decision making. On the other hand, potentially
better results are achievable using multistrategy systems
that integrate two or more types of knowledge rep-
resentation and/or multiple inference underlying a
decision process. In this paper a decision tree and a
neural network technique for competitive integration
of heterogeneous local experts are proposed. The lo-
cal experts are either symbolic rule-based classifiers
or neural network based monostrategy learning sys-
tems. The integration is simple, as it involves no
modification of existing symbolic components. The
proposed competitive integration systems are tested
versus a previously used cooperative neural network
based approach. The experimental results on a small
financial advising problem indicate significant per-
formance improvements when using the neural net-
work based competitive integration approach as com-
pared to the results obtained from either the individ-
ual classifiers, a decision tree based symbolic inte-
gration or a cooperative neural network integration
method. The best competitive neural network re-
sults are achieved by incorporating prior knowledge
and a dynamic neural network local expert into the
integrated system.

I. INTRODUCTION

Despite their good performance on well understood domains,
expert systems tend to be costly in terms of development and
maintenance. In addition, they are incapable of synthesizing
new knowledge and adapting to changing environments. On
the other hand, neural networks technology is being increas-
ingly used on various prediction and pattern classification
problems in complex domains. While a neural network is a
powerful nonlinear system able to approximate well almost
any continuous function, its main weakness for learning in
noisy domains is that its ability is restricted to lower-level
knowledge extraction from limited sample data [1].

This paper proposes two novel approaches to the devel-
opment of muliistrategy classification systems consisting of
diverse monostrategy classification modules. In our experi-
ments those modules are pre-existing rule-based expert sys-

This work was supported in part by the National Science Foundation
under grant IRI-9308523 to Z. Obradovic.

tems and backpropagation based neural networks. The pro-
posed methods performances are compared to that of an
existing integration approaches that has been reported to
provide good results. The proposed and previously studied
integration approaches are described in Section 2. The ex-
perimental results on a simple financial advising problem are
presented in Section 3.

II. MULTISTRATEGY CLASSIFICATION SYSTEMS

The three multistrategy integration techniques compared in
this study are based on the combination of existing expert
systems (called local experts) for a given classification prob-
lem. A machine learning system is used to either select the
correct output from those given by the local experts or to
combine them in the most efficient way in order to produce
the correct response. The three approaches, one symbolic
and two neural network-based, differ both in the way they
combine the monostrategy system’s contribution and in the
input data they use. In the rest of this paper, the symbolic
learner approach is referred to as “decision tree”, while the
neural network-based techniques are respectively called “co-
operative network” and “competitive network”.

A. The Decision Tree Based Integration

This technique uses a decision tree as the integrating learning
system. The objective of the decision tree is to classify each
example according to which one of the expert systems, if
any, should be used to predict its class. For example, given
a system with two local experts, the objective of a decision
tree is to distinguish among four possibilities:

Class 0 None of the local experts classifies
this example correctly.

Class 1 Expert 1 alone classifies the ex-
ample correctly.

Class 2 Expert 2 alone classifies the ex-
ample correctly.

Class 3 Both local experts classify the ex-

ample correctly.

In general, given two local experts this decision tree com-
biner transforms an n-class classification task into a 4-class
problem. When n < 4, this could be interpreted as increas-
ing the complexity of the problem. However, even for binary
classification, the use of both local experts and a decision
tree combiner might actually simplify the input space deci-
sion regions, as shown in Figure 1. The figure on the left

2 classes

4 classes

R

Figure 1: Decision regions for the monostrategy and multistrategy classification problems.

x Input
vecbr
Expert 1 Expert 2 eo o o o Expert K
Y1 Y2 Yk
Decision z
tree

Selection Routine
(Seleds correct chsification output y; basedon
decisiontreés output z. Also, prodicescorrect
sdection classz” for decisiontreegeneration).

z
Output
vecbr y = sekckedy;

Figure 2: The Decision Tree Based Multistrategy System.

shows the decision regions for a 2-class problem. The figure
on the right shows a possible class distribution resulting from
using two expert systems as explained above. As it can be
seen, there are now four classes, but the distribution of exam-
ples among the different classes is simpler. The assumption
that this will be the case depends on the characteristics of
the classification problem to be solved.

A problem with this method is that the number of classes
that the decision tree combiner has to recognize grows ex-
ponentially with the number of local experts used (8 classes
for three experts). This could be simplified by assigning ar-
eas where several experts are correct to just one of them,
according to some criterion.

Figure 2 shows an implementation of the proposed system.
Each training pattern consists of an input vector x and a
desired response y*, which represent the current pattern’s
correct class. Each local expert outputs a response y; which
is fed to a selection routine. This class information is used for
the decision tree generation. The selection routine compares

the local experts’ outputs to the desired response y*. Then, it
assigns the input x to a class z*. After the three is generated,
the system works as follows: The input vector x is fed to
the decision tree and to all local experts. The decision tree
produces a response z and each expert 7 outputs a response
yi. All these responses are given to the selection routine,
which, based on the value of z, selects one of the y;’s. The
selected value is then output as the system’s response.

When all experts are wrong, the system’s output can be
generated randomly or inferred from the data. The problem
studied in this paper consists of a binary classification task
with two local experts, so, if both local experts are wrong,
the system only has to output the opposite class from that
selected by both experts.

The construction of the decision tree can be carried out
using various decision tree generation methods. The method
used in this experiment is GID3* [4], which groups together
irrelevant attribute values before generating the three (us-
ing ID3). The classification problem addressed in this paper

Input

vecbr
Expert 1 Expert 2 eo o o o Expert K
Y1 Y2 Yk
O1
: A
Gating 92
Network | : ' g
K]
1
gZyZ ® ® o o
O1Y1 OV
y Output
vecbr

Figure 3: The Competitive Network Based Multistrategy System.

has real attributes which have to be discretized before us-
ing GID3*. This is achieved by using a multiple-interval dis-
cretization technique proposed in [3]. The common approach
is to discretize the attributes at each node of the decision
tree. For the problem studied here, we found that a single
discretization step performed before tree generation always
achieved better generalization, and so the results reported
here were obtained using the latter technique.

B. The Competitive Network Based Integration

The competitive selection approach is an extension of the
mixture of local experts architecture proposed in [5] which
uses a gating network to integrate the responses of all local
experts, selecting the most competent local expert for any
given example (see Figure 3).

In the original architecture from [5] all K local experts
are backpropagation neural networks. A supervised learning
process is carried out using a set of training examples, each
consisting of an input vector x= [z1, Z2, . .., #,] and a desired
response vector y*. As in the decision tree system, the input
vector x is applied to both the local expert networks and the
gating network.

The gating network is a one-layer neural network whose
K output units use a softmaz activation function to produce
their outputs, g; = e“/Zle e*s, for 1 < 1 < K. Here
8; = Z?:l w;z; 1s the weighted input sum of the sth out-
put unit, with w;; being the weight from the lth input to
the #th output unit. The system’s output y = Zle giyi
corresponds to a weighted average of the individual expert’s
outputs yi1,...,yYx. Notice that the softmax function is a
continuous version of the winner take all selection criteria.
This means that the gating network will usually select only
one expert (¢) by assigning a value close to 1 to its cor-
responding parameter (g;) and values close to zero to the
others (g;, j # %).

The system is trained to get a maximum likelihood esti-

mate response vector y* by optimizing the error function
K 1 * 2
e AR |
F = —angie 277
i=1

Here, 02 is a scaling term and E represents the log likelihood
of generating a response vector y*. This allows a competitive
learning process by training only the most competent local
expert(s) on a given example, because the backpropagated
error at each expert 7is a function of its corresponding g;.

In the competitive integration system used in this paper we
assume that the local expert components are not only neural
networks, but also classification systems of other types. We
will also assume that only the gating network and the neural
network components (if any) do the learning as explained
above, while the other expert components are fixed and can
only be used to respond to the input patterns. This approach
is more demanding for the gating network, which can not rely
on the fixed local experts to learn the correct classification
within their assigned regions. To the best of our knowledge
such models of heterogeneous mixtures of experts have not
been studied before.

C. The Cooperative Network Based Integration

The cooperative integration approach is based on a jury deci-
sion making process. It has been successfully applied to sev-
eral real-life classification problems including protein struc-
ture prediction [8]. This simple approach uses neural network
learning to integrate different local expert classification mod-
ules by combining the outputs from K local experts as shown
in Figure 4.

In this architecture, each example for the combiner train-
ing process is constructed from an input vector x and a de-
sired response vector y*. First, a vector z = [y1y2...yk] is
assembled using the classification response vectors y1,ya, .. .,
yx obtained from K local expert classification modules when
presented with the input vector x. Second, vector z is fed
to the combining neural network, which finally produces the
output vector y. The combining module is then trained using
the desired response vectors (y*).

Input
vecbr

Expert 1 Expert 2 eeoeo o o Expert K
Y1 Y2 Yk
® ® o ©°
z=[y1¥2..Yxk] < Inputvedor
to the
Combining combining
Network neua network
y Output
vecor

Figure 4: The Cooperative Network Based Multistrategy System.

(1) if (savings_adequate and
income_adequate) then invest_stocks
(2) if dependent_savings_adequate then savings_adequate

TN TN
W
Nurusd

if assets_high then savings_adequate
if (dependent_income_adequate

and earnings_steady) then income_adequate

—
S O
~—

N TN
)
NN

if debt_low then income_adequate
if (savings > dependents x 5000) then dependent_savings adequate
if (income > 25000 +

4000x dependents) then dependent_income_adequate

(8) if (assets > income x 10
(9) if (ennual_debt < income x 0.30

) then assets_high
) then debt_low

Table 1: Financial advisor rule base.

I1I. EXPERIMENTAL RESULTS
A. A Financial Advising Model

The multistrategy classification systems are tested on a small
financial advising problem in which the objective is to advise
users whether to invest in the stock market or not, based
on several financial parameters. The problem is represented
by a rule base adapted from [7] and shown in Table 1. Al-
though this model is extremely simplified, it illustrates issues
involved in realistic financial advising.

The system’s input consists of six real variables, shown in
italics in Table 1. The system output invest_stocks is a bi-
nary variable, representing the recommendation on whether
to invest in stocks or not.

In this work, the rule base from Table 1 was used to gen-
erate training and testing data. The idea is to produce “im-
perfect” expert systems for this problem and try to combine
them as efficiently as possible by using the techniques ex-
plained before. In our experiments with the neural network
combiners the training and testing sets were generated inde-
pendently, with 1,000 examples in the training set and 10,000
in the test set. For the decision tree approach different train-
ing sets were used, ranging from 120 to 500 examples, and the
testing set was the same one used for the other approaches.
Pruned versions (i.e. with one or more rules missing) of the
rule-base were used to create four imperfect local expert sys-

tems with diverse performances, which were used as models
of real-life, rule-based financial advising systems developed
using incomplete knowledge. Also, a one-layer, backpropaga-
tion neural network with four hidden units (called NN) was
trained on the generated data and used as a local expert.

The expert systems shown in Table 2 can be separated
into three classes: pessimistic, optimistic and mixed. A pes-
simistic expert’s errors are always false negative predictions,
that is, errors in which the output is 0 (recommending to
stay out of stocks) when it should be 1 (recommending to
invest). On the other hand, an optimistic expert’s errors are
all false positive predictions (it outputs 1 when it should say
0). A mixed expert makes both kinds of errors.

B. Results and Analysis

The multistrategy approaches presented in Section 2 were
applied to the financial advising problem explained in Section
3.A. The local expert systems shown in Table 2 were used as
monostrategy classification modules.

Experiments were performed by applying the three inte-
gration approaches to different combinations of expert sys-
tems and/or neural networks. For comparison purposes, an
upper bound on the success rate of each combination was
computed for the given test data set. This upper bound
represents the maximum possible success rate achievable by

System | Success False prediction Pruned Expert
Rate negative | positive rules type
Expert 1 65% 100% 0% (2),(6) pessimistic
Expert 2 69% 100% 0% (5),(9) pessimistic
Expert 3 82% 100% 0% (3),(4),(7),(8) | pessimistic
Expert 4 73% 0% 100% (7),(4) optimistic
NN 87% 57% 43% not applicable mixed
Table 2: Local Expert Systems Performance.
Success rate on test data
Expert Upper | Decision | Cooperative | Competitive
systems bound tree network network
Experts 1 + 2 | 86.05% | 67.75% 86.05% 85.78%
Experts 1 + 3 | 90.37% 68.60% 90.37% 90.02%
Experts 2 + 3 | 95.56% 70.00% 95.56% 94.53%
Experts 1 + 4 | 100.00% | 68.60% 58.62% 90.60%

Table 3: Integration of two experts.

always following the correct advise, i.e., selecting a correct
expert when at least one of the local experts is correct. When
the bound is below 100%, it means that there are cases where
all local experts are wrong, and so it is impossible to out-
put a correct answer either by selecting one of them, or by
combining their outputs. Notice that this bound is by no
means tight. For example, a pair of “dumb” experts, in
which one of the modules always outputs 0 and the other
always outputs 1, has an upper bound of 100% (they are
never both wrong), but the information they provide is nil.
Thus, the cooperative combiner network can only achieve a
very limited performance, while the gating network used in
the competitive approach is left with the task of learning to
classify the patterns by itself. Actually, the gating network
has the advantage of being fed the original input in addition
to the outputs of the “dumb” experts, and so it can learn to
some extent how to classify the patterns. For the financial
problem, a gating network combining two “dumb” experts
achieved a test set success rate close to 72%.

The results of integrating several pairs of expert systems
are shown in Table 3. The table presents the computed up-
per bound on the accuracy of each combination and the gen-
eralization (testing data) success rates obtained by imple-
menting the decision tree, cooperative and competitive net-
work, respectively. The results shown for the decision tree
approach are averaged over twelve training sets of different
sizes (120,200,300 and 500 examples). It is interesting to
note here that the monostrategy decision tree approach (i.e.,
using a decision tree to solve the original classification prob-
lem) gave a better result (74.75%) than all the decision tree-
based multistrategy systems tested here. Notice that, when
combining pairs of pessimistic experts, both neural network-
based methods produce excellent results. This is so because
it is very easy to combine either two or more pessimistic or
two or more optimistic experts by feeding their outputs to
an AND gate (if the experts are optimistic) or an OR gate (if
the experts are pessimistic). Obviously, both problems can
be learned by a single neuron.

In contrast, the combination of pairs of experts of differ-
ent types (144) proves to be much more difficult for the

cooperative combiner approach. In this case, the competi-
tive network achieves around 90% accuracy, and the decision
tree does a better job than the cooperative combiner.

The results of combining two of the expert systems with a
neural network are summarized in Table 4. The upper bound
for the success rate is measured using the symbolic expert
and the fixed neural network. The table shows two different
implementations of the competitive network. In the fixed
neural network case, the neural network shown in Table 2
was used as an expert system, i.e. it only responded to the
inputs, with no further training. In the dynamic learning
method, the neural network local expert was trained at the
same time as the gating network.

Notice that the introduction of a “mixed” local expert (the
neural network) degrades the performance of the cooperative
combiner. The gating network, on the other hand does a very
good job on integrating these systems, especially when the
local expert neural network is allowed to learn simultane-
ously with the gating network. The decision tree approach
managed to outperform the cooperative combiner in one of
the cases, but its results continued to be very poor.

In the final experiment, each pair of experts shown in Ta-
ble 3 is combined with a neural network in order to test the
performance of more complex heterogeneous systems. The
four systems shown in Table 5 are heterogeneous mixtures
of two symbolic experts and a backpropagation neural net-
work, using the cooperative and both competitive network
approaches as in previous experiments from Table 4.

It is apparent that the competitive network performs much
better than the cooperative network. We can also see that,
again, allowing the expert neural network to be trained si-
multaneously with the gating network produces a better re-
sult compared to using a fixed neural network expert. How-
ever, some combinations (1+3+NN and 1+4+NN) are not
improving as compared to the results obtained by their re-
spective experts when they are combined alone with a neural
network (see Table 4). By examining the results shown in
Table 5, it seems apparent that the performance of the com-
bined systems improves when the local experts have more
similar success rates.

Success rate on test data
Expert Upper | Decision | Cooperative Competitive network
systems bound tree network Fixed NN | Dynamic NN
Expert 3 + NN | 94.11% | 74.05% 72.10% 89.00% 93.24%
Expert 4 + NN | 96.62% | 66.10% 78.21% 91.45% 95.33%

Table 4: Integration of one expert and a neural network.

Success rate on test data
Expert Upper | Cooperative Competitive network
systems bound network Fixed NN | Dynamic NN
Expert 1 + 2 + NN | 99.60% 76.20% 93.79% 96.47%
Expert 1 + 3 + NN | 97.71% 83.11% 88.40% 94.70%
Expert 2 + 3 + NN | 98.73% 76.13% 88.51% 96.98%
Expert 1 + 4 + NN | 100.00% 74.52% 91.63% 94.52%

Table 5: Integration of two

From all the results shown, it is clear that the competitive
network approach is a far better tool for integrating mon-
ostrategy classification systems than both the cooperative
network and the decision tree methods.

IV. CoNcLUSIONS

The advantages of the multistrategy classification systems
discussed in this paper are numerous:

e They integrate pre-existing prediction systems without
the need for internal modification, which allows the con-
tinued use of the existing systems while improving their
performance in a very inexpensive way.

e They allow the adaptive combination of older prediction
systems into new, more powerful systems. The ability
to explain the reasoning used in reaching a solution is
maintained in the new system. When neural networks
are incorporated in the multistrategy system this capa-
bility is partially lost, as there will be no explanation for
the examples solved by a neural network component.

e They lower the cost of developing new classification sys-
tems by allowing the combination of specialized experts
developed for smaller sub- domains. This property is
especially important for large real-life problems, which
are usually easier to approach locally than globally.

Several approaches to the development of multistrategy
classification systems starting from existing monostrategy
modules are compared on a simple financial advising prob-
lem. The proposed competitive neural network approach was
found to be superior to the other integration methods and
to each monostrategy classification system tested. Despite
its poor performance on the studied problem, the decision
tree approach could be useful on classification problems with
many classes, providing local expert systems are available.

It should be noticed that the gating network used in the
competitive integration approach was originally designed to
combine adaptive backpropagation local experts. Thus, the
gating network is a powerful, yet simple, integrator that par-
titions the input space among the local experts by means
of simple hyperplanes. Each local expert can then learn a
complex decision surface within its assigned subregion. In
contrast, when combining fixed experts as in this paper, the
gating network is forced to find a more complex partitioning

experts and a neural network.

in order to better use prior knowledge from fixed experts.
This is a difficult task for the single layer gating network
used here. Our current work involves examining alternate
approaches that can overcome this limitation. Those include
constructing more powerful gating networks and using a hi-
erarchical competitive integration scheme as proposed in [6].

Observe that once the different local experts are efficiently
integrated, the obtained system can be used as prior knowl-
edge when developing other types of multistrategy classifi-
cation systems. In particular, in our current study a multi-
strategy integrated system consisting of two symbolic local
experts is embedded in a constructive neural network archi-
tecture described in [2] for further generalization improve-
ment.

REFERENCES

[1] Y. Abu-Mostafa, “Financial Market Applications of
Learning from Hints,” in Neural Networks in the Cap-
ital Markets, First Int. Workshop, A.N. Refenes (ed.),
Willey, England, 1994.

[2] J. Fletcher and Z. Obradovic, “Combining Prior Sym-
bolic Knowledge and Constructive Neural Networks,”
Connection Science Journal, vol. 5, Nos 3 & 4, 1993,
pp. 365-375.

[3] U.M. Fayyad and K.B. Irani, “Multi-interval discretiza-
tion of continuous-valued attributes for classification
learning”. Proc. of IJCAI-93, 1993, pp. 1022-1027.

[4] U.M. Fayyad, “Branching on attribute values for deci-
sion tree generation”. Proc. of the 12th National Con-
ference on Artificial Intelligence , 1994, pp. 601-606.

[5] R. A. Jacobs, M. L. Jordan, S. J. Nowlan and G. E.
Hinton, “Adaptive Mixtures of Local Experts,” Neural
Computation, vol. 3, 1991, pp. 79-87.

[6] M.I. Jordan and R. A. Jacobs, “Hierarchical Mixtures of
Experts and the EM Algorithm,” Neural Computation,
vol 6, no. 2, 1994, pp. 181-214.

[7] G.F. Luger and W.A. Stubblefield, Artificial In-
telligence and the Design of Ezpert Systems, Ben-
jamin/Cummings, 1989.

[8] X. Zhang, J. Mesirov, and D. Waltz, “Hybrid System for
Protein Secondary Structure Prediction,” J. Molecular
Biology, vol 225, 1992, pp. 1049-1063.

