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Abstract 

Dynamics of many real-world systems are naturally modeled 
by structured regression of representationally powerful 
Gaussian conditional random fields (GCRF) on evolving 
graphs. However, applications are limited to small and sparse 
evolving graphs due to high computational cost of the GCRF 
learning and inference. In this study, a new method is 
proposed to allow applying a GCRF model to large and 
extremely dense evolving graphs. Efficiency issues are 
addressed by graph partitioning and application of the GCRF 
model to each partition independently and in parallel. The 
hypothesis evaluated in this project is that the robustness of 
GCRF allows distributed learning of accurate regression 
models as long as most of the nodes after the graph 
partitioning are still linked to a subset of their heavily 
connected neighbors. To evaluate this hypothesis, GRCF-
based distributed regression experiments were conducted on 
synthetic and two real-world evolving networks. The obtained 
results provide evidence that the proposed approach greatly 
speeds up time needed for modeling large graphs while 
obtaining accurate models. Finally, a simple graph 
characterization is proposed that, when satisfied allows 
application of distributed GCRF regression to extremely big 
graphs without construction of the entire graph.  

Keywords: Evolving graphs, graph partitioning, Gaussian 
conditional random fields, citation networks. 

1 Introduction123 

Evolving graphs are an indispensable tool for 
representing, understanding, and analyzing relationships 
in many diverse domains.  For example, finding 
coevolution relationships of structure and function is an 
important task in structural genomics [1]. Evolving 
graphs are also studied in computer networks, where 
monitoring changes in dynamic topology can provide 
important insights about network configuration [2]. 
Similarly, analysis of the dynamics of large social 
networks can yield important findings in the domain of 
social science [3], [4].  

Modeling data by evolving graphs in order to utilize 
a greater portion of available information leads to a huge 
increase in the problem complexity as well as in the 
amount of data to be analyzed [5], [6], [7]. Nonlinear 
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data analysis techniques often do not scale to data of 
such dimensions. Also, another problematic aspect of 
analysis of large evolving graphs is that they can be 
heterogeneous with respect to the laws that govern the 
behavior of the phenomenon of interest. Thus, there is a 
need for efficient algorithms to identify more 
homogenous components in very large evolving graphs.  

In this paper we address the problem of applying the 
Gaussian Conditional Random Fields model (GCRF) [9] 
to large evolving fully connected weighted graphs in 
which hidden link weights are derived based on node 
similarity, with the goal of predicting values of the 
nodes’ attributes in the next time interval. The GCRF 
method is a computationally costly procedure that scales 
quadratically in the number of nodes in sparse graphs 
and cubically in dense graphs. We propose to address 
efficiency issues by graph partitioning and then applying 
the GCRF model to each partition in parallel. 

Contributions of this paper are the following: 
 Our approach greatly reduces the execution time 
needed for network modeling and significantly improves 
accuracy of the employed method. We confirm this on 
two real-world datasets (HEP-Th4 [10] and US patents5 
[11]). For example, when applying GCRF to the graph 
of 4,598 nodes without graph partitioning, large 
computational costs require neglecting the majority of 
edges in the graph. Applying the GCRF to a greatly 
sparsified graph took more than 5 times longer than 
when using the partitioning approach applied to the full 
graph. In addition, an application to a sparse graph 
resulted in R2 of 0.375, while our partitioning approach 
was much more accurate, achieving R2 of 0.563. 
 We provide evidence that the graph partitioning will 
not significantly hurt the prediction accuracy of GCRF 
as long as after partitioning most of the nodes are still 
connected to a small subset of their heavily connected 
neighbors. Two nodes will be called heavily connected 
if the link that connects them has a large weight as 
compared to link weights of other nodes. We find 
support for our hypothesis in both synthetic and real-
world citation network data. 
 We exploit the previous insight to allow distributed 
GCRF-based modeling of graphs that are too big to be 
constructed. This is achieved by random partitioning of 
big graphs prior to their construction followed by 
explicitly constructing only much smaller partitions. 
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The method we propose is based on the idea 
employed in a previous study (Peng et al. [8]) where 
graph partitioning is successfully used to improve 
prediction and runtime performance of predicting re-
tweeting decisions of Twitter users by a Conditional 
Random Field (CRF) based classification method. In 
that study partitioning the network into sub-graphs not 
only improved the runtime, but also improved the 
prediction accuracy of the model by exploiting 
heterogeneity of users’ decisions when re-tweeting. Our 
work is related to the work of Peng et al. [8]. However, 
significant differences include the following aspects:  
 Peng et al. consider a sparse network, while we 
show that a partitioning can be beneficial for dense and 
even fully connected graphs. 
 For partitioning, we use a local partitioning method, 
tailored to test our hypothesis, a purely random one, as 
well as METIS, a renowned global partitioning method 
in order to explore the robustness of GCRF. 
 Peng et al. consider a classification problem of user 
behavior, while we consider a regression problem of 
node attribute prediction by deploying Gaussian 
Conditional Random Fields. 
 Finally, Peng et al. explore only static graphs, while 
we model evolving graphs. 

2 Methodology 

The methodology for scalable training of GCRF we 
propose in this paper consists of the following steps: 
1. Aggregate given evolving graph G to obtain a static 

graph Gs such that the adjacency matrix of Gs is the 
average of adjacency matrices of graphs G for all 
time steps. 

2. Partition Gs by a graph partitioning method to obtain 
sub-graphs g1,...,gl such that each node from Gs 
belongs to one and only one sub-graph gi for i=1,...,l. 

3. Create a set V={V1,...,Vl} where Vi is a set of nodes 
of gi for i=1,...,l. 

4. Let Gt be a snapshot of G in time step t. Let ݃௧
௜ be a 

sub-graph of Gt induced by nodes Vi. The set of 
evolving partitions of G is 
{{ ଵ݃

ଵ,...,்݃
ଵ},...,{ ଵ݃

௟ ,...,்݃
௟ }}. 

5. Train a separate GCRF on each evolving partition of 
G in parallel. 

6. For each node v from G, use the predictive model 
corresponding to the partition v belongs to. 
The aggregation in the first step is performed for two 

reasons. Firstly, in the current implementation, the 
GCRF model assumes graphs to be stable in terms of 
nodes they are comprised of, i.e. all nodes need to be 
present in graph in all considered time steps. In other 
words, the current implementation is not aimed at 
modeling newly emerging nodes or nodes that are 
sometimes unobserved. Secondly, there is much larger 
variety of algorithms for partitioning static rather than 

evolving graphs, as well as algorithms for modeling 
static communities as opposed to algorithms for 
modeling evolving communities and they are more 
easily obtainable. Thus, in this article we focus on 
modeling stable communities and leave modeling of 
partially observed evolving communities as a task for 
future research. 

The maximal size of the individual subnetworks 
should be chosen so that it allows the feasible 
application of considered models. 

By modeling the extracted subnetworks 
independently, we are neglecting the influence that 
might exist among the nodes that belong to different 
partitions. It is clear that with such a partitioning 
introduced to speed up computation there is a risk of 
disregarding important connections between the nodes 
that were placed in different partitions. However, 
evidence will be provided in the results section that in 
practice this risk is not compromising prediction 
accuracy of GCRF-based regression by much.  

The parallelization in our implementation was 
achieved by using MPI (Message Passing Interface). 
We have employed a master-slave model of 
communication. In our implementation, the master 
process is responsible for graph partitioning. The master 
sends one partition to each of the available slave 
processes that work in parallel. After receiving a 
partition, the slave process is considered busy until it 
finishes processing the assigned partition. Each slave 
process first trains the GCRF model on the partition it 
was assigned and then uses the obtained model to 
predict future values for the nodes that belong to that 
partition. The slave process then reports back to the 
master with the results, after which it is considered 
available again and the master process can assign it with 
another partition, if needed. The master process keeps 
assigning partitions to slaves until all partitions have 
been modeled. 

In section 2.1 the GCRF model is described and the 
graph partitioning methods are described in section 2.2. 

2.1 GCRF model 

2.1.1 Continuous Conditional Random Fields. 
Conditional Random Fields (CRF) is a type of 
discriminative probabilistic graphical model designed 
to predict structured output. In was originally designed 
for classification of sequential data [12].  

In regression problems, the output yi is associated 
with input vectors x=(x1,…,xn), by a real-valued function 
called association potential A(α,yi,x), where α is a K-
dimensional set of parameters. Interactions among two 
outputs can be modeled through a real-valued function, 
referred to as interaction potential I(β,yi,yj,x), where β is 
an L-dimensional set of parameters. In general case, I 
can also depend on an input x. For the defined 



association and interaction potentials, CRF models a 
conditional distribution P(y|x), y= (y1,…,yn): 

 ܲሺݔ|ݕሻ ൌ ଵ

௓ሺ௫,ఈ,ఉሻ
exp ቆ

∑ ,ߙሺܣ ,௜ݕ ሻݔ
ே
௜ୀଵ ൅	
∑ ,ߚ൫ܫ ,௜ݕ ,௝ݕ ൯௝~௜ݔ

ቇ

Where j ~ i denotes that the outputs yi and yj are 
connected, and where ܼሺݔ, ,ߙ  ሻ is a normalizationߚ
function defined as 

 ܼሺݔ, ,ߙ ሻߚ ൌ ׬ ݌ݔ݁ ቆ
∑ ,ߙሺܣ ,௜ݕ ሻݔ
ே
௜ୀଵ ൅

∑ ,ߚ൫ܫ ,௜ݕ ,௝ݕ ൯௝~௜ݔ
ቇ ௬ݕ݀ 

Association and Interaction potential are usually 
defined as linear combinations of a set of feature 
functions in terms of ߙ and β [13]. 

 ܣሺߙ, ,௜ݕ ሻݔ ൌ ∑ ௞ߙ ௞݂ሺݕ௜, ሻݔ
௄
௞ୀଵ 

 ,ߚ൫ܫ ,௜ݕ ൯ݔ,௝ݕ ൌ ∑ ௟ߚ ௟݃ሺݕ௜, ሻݔ,௝ݕ
௅
௟ୀଵ 

In this way, any potentially relevant feature can be 
included in the model and parameter estimation 
automatically determines actual relevance by feature 
weighting. The learning task is to choose values of 
parameters ߙ and β to maximize the conditional log-
likelihood of the set of training examples (we assume 
that interactions among outputs are defined over the 
whole training set): 

 ,ߙሺܮ ሻߚ ൌ ሻݔ|ݕሺܲ݃݋݈

 ൫ߙො, መ൯ߚ ൌ argmaxఈ,ఉ൫ܮሺߙ, ሻ൯ߚ

The inference task is to find the outputs y for a given 
set of observations x and estimated parameters α and β, 
such that the conditional probability P(y|x) is maximized  

 ොݕ ൌ argmax௬ሺܲሺݔ|ݕሻሻ

CRFs were originally designed for classification 
problems where the normalizing function Z is a sum 
over a finite set of possibilities. For regression, Z must 
be an integrable function, which can be very difficult 
and computationally expensive due to the complexity of 
interaction and association potentials. This issue can be 
addressed by representing P(y|x) as a multivariate 
Gaussian distribution, resulting in Gaussian Conditional 
Random Fields (GCRF) method [9]. 

2.1.2 Gaussian Conditional Random Fields. 
Functions f and g can be defined as quadratic functions 
in terms of y, for example: 

 ௞݂ሺݕ௜, ሻݔ ൌ 	െሺݕ௜ െ ܴ௞ሺݔሻሻଶ 

where Rk(x) is the unstructured (or baseline) predictor 
that predicts yi relying on any subset of x, but 
disregarding structure among predicted variables and 

 ௟݃൫ݕ௜, ,௝ݕ ൯ݔ ൌ െ݁௜௝
ሺ௟ሻ

௜ܵ௝
ሺ௟ሻሺݔሻሺݕ௜ െ ௝ሻଶݕ 

where ௜ܵ௝
ሺ௟ሻrepresents the similarity between outputs yi 

and yj, and ݁௜௝
ሺ௟ሻ ൌ 1 if an edge exists between yi and yj 

under the particular interaction potential l, and ݁௜௝
ሺ௟ሻ ൌ 0 

otherwise. In this case it can be shown that P(y|x) can be 
written as 

 ܲሺݔ|ݕሻ ൌ ଵ

ሺଶగሻ
ಿ
మ |ஊ|

భ
మ
exp	ሺെ

ଵ

ଶ
ሺݕ െ ݕሻ்Σିଵሺߤ െ ሻሻߤ

for some covariance matrix Σ and mean vector ߤ that 
can be effectively determined.Note that due to the 
matrix inversion (Σିଵ), the complexity of GCRF method 
is ܱሺܰଷሻ, where N stands for number of nodes. 
However, if Σିଵ is sparse, the training time decreased 
from O(N3) to O(N2). 
 In the case of evolving graph of N nodes spanning 
over T time steps, covariance matrix Σିଵ is obtained by 
arranging covariance matrices for each time step along 
the diagonal of N·T×N·T matrix. 

For the purposes of experiments in this paper, we 
have developed an implementation of GCRF in C++ 
code, by using PETSc (Portable, Extensible Toolkit for 
Scientific Computation) package. 

2.2 Graph partitioning.  

We hypothesize that for successful training of 
GCRF it suffices that each node is connected to only a 
small subset of its heavily connected neighbors and that 
we will not significantly hurt the predictive 
performance of GCRF by disregarding the rest of the 
node’s connections (both week and strong ones). Given 
that the graph has large enough underlying clusters (by 
cluster we informally mean a subset of tightly 
connected nodes, i.e. the group of nodes that highly 
influence each other) and that we choose large enough 
partition size, chances are that, regardless of the 
partitioning method, most of the nodes will be in the 
same partition as some of their heavily connected 
neighbors. In such cases, GCRF performance should be 
fairly robust to the choice of partitioning method, 
maybe even if random partitioning is performed. 
However, if these requirements are not met, we expect 
bad performance of random partitioning, as it may 
disregard important influences between heavily 
connected nodes by accidentally placing them into 
separate partitions. In this case, we expect that using 
more intelligent partitioning techniques would yield 
better performance of GCRF method. 
 In order to evaluate our hypothesis, we will employ 
several partitioning methods. The simplest partitioning 
approach we considered is random partitioning, which is 
used to test the robustness of GCRF training in the 
extreme case of partitioning which is blind to graph 
structure. Then, we design a simple Greedy Graph 
Partitioning (GGP) algorithm which relies only on the 
principle of keeping the most tightly connected nodes in 



the same partition. Its purpose is not to outperform 
existing partitioning algorithms in any way, but only to 
clearly (thanks to its simplicity) demonstrate that the 
main principle expressed by our hypothesis suffices to 
provide good results in GCRF training. We expect it to 
outperform random partitioning. We also used Metis 
[14], an intelligent and renowned global partitioning 
method. Metis tends to group most heavily connected 
nodes into the same partition, which should, according 
to our hypothesis, yield good results in GCRF training. 
However, Metis is not a simple algorithm and 
distinguishing which of its properties contributes the 
most to the results is nontrivial. Therefore, we use it 
only as an additional tool in evaluating our hypothesis. 
If our hypothesis is true, Metis should not significantly 
outperform GGP, since GGP already implements the 
principle expressed by the hypothesis. 

2.2.1 Random graph partitioning. By random 
partitioning of a graph we mean a particularly simple 
approach of assigning nodes randomly to partitions, 
regardless of the way the nodes are connected. 

2.2.2 Greedy graph partitioning. Greedy graph 
partitioning (GGP) algorithm is a local partitioning 
algorithm we have developed aiming specifically to test 
our hypothesis that for successful GCRF training, such 
that each node only needs to be connected to a subset of 
its most influential neighbors. Each partition is created 
by selecting a random seed node and expanding from it 
by adding one node at a time until size limit is reached 
or a whole connected component of the graph is 
extracted. At each step, we add the node which is most 
heavily connected to the current partition and is not 
already assigned to some partition. The pseudo code of 
the algorithm is given in Figure 1. 

graphPartitioning(Graph G, int size) { 
 partitions = {} 
 n = pickFreshNode(G) 
 while(n <> null) { 
  P = findLocalPartition(n,size) 
  partitions = partitions  {P} 
  n = pickFreshNode(G) 
 } 
 return partitions; 
} 
findLocalPartition(Node n, int size) { 
 part = {n} 
 n.fresh = false 
 while(expandable(part) & |part|<size) { 
  m = bestFreshNeighbor(partition) 
  m.fresh = false 
  part = part  {m} 
 } 
 return part 
} 

Figure 1: Pseudo-code of Greedy graph partitioning algorithm 

 Node property fresh indicates if a node is assigned 
to partition. If this property is true for a node, we call it a 
fresh node and consider unassigned. We assume that 
function pickFreshNode(G) returns the first fresh 
node or null if such node does not exist. Function 

expandable(P) returns false if all the fresh neighbors 
of  nodes in P are also in P and returns true otherwise. 
Function bestFreshNeighbor(P) returns a fresh 
node from graph which is not in P, but is connected to 
some node in P by an edge of the greatest weight among 
such nodes.  

3 Experimental evaluation 

In this section, we report the results of experimental 
evaluation of our approach and our hypothesis. First, 
we use a synthetic dataset to check the hypothesis in an 
idealized setting. Then, we use a real-world citation 
network from the field of high-energy physics to show 
the usefulness of our approach. Lastly, we use random 
partitioning to facilitate processing of the large dataset 
of US patents citations, the graph of which is too big to 
be easily constructed in a reasonable time on a 
computer used in our experiments. 

All experiments are conducted on a Linux-based 
machine with 20 nodes, where each node has 12 Intel 
Xeon 2.8GHz cores and 12Gb memory. Note that on 
this platform the maximal number of communities that 
can be processed in parallel is 239 (20x12 – 1 master 
process). 

As the measure of the accuracy of the employed 
model, we use the predicted R2 measure: 

 Rଶ ൌ 1 െ
∑ ሺ௬೟ೝೠ೐

೔ ି௬೛ೝ೐೏
೔ ሻమ೙

೔సభ

∑ ሺ௬೟ೝೠ೐
೔ ି௬೟ೝೠ೐തതതതതതതതሻమ೙

೔సభ


where n is the number of nodes in the graph, ݕ௧௥௨௘
௜  is 

the true value for the node i, ݕ௣௥௘ௗ
௜  is the predicted value 

for the node i, and  ݕ௧௥௨௘തതതതതതത is the mean of the true values 
for all nodes. 

3.1 Synthetic dataset.  

As a first step, we perform an experiment on 
synthetic data, which enables us to control the 
parameters of the network we consider important, 
namely the size of node clusters in the network. Also, 
we design it to suit the GCRF model, so that, at this 
first experiment, we need not worry about peculiarities 
of real-world data, but focus on the phenomenon of 
interest in its simplest form.  

3.1.1. Synthetic data generation. The experiments 
rely on data sampled from GCRF treated as a 
generative model. The data are constructed to have a 
naturally clustered structure with the cluster size used 
as a parameter. In order to produce such data from a 
generative model, we specified the graph size, number 
of time steps, parameters  and , values of the 
unstructured predictor, and a similarity/weight matrix. 
In all experiments we have chosen the graph size to be 
1000 nodes, and number of time steps to be 16. The 
objective was for GCRF to display large improvement 



over the baseline predictor, and thus we have 
empirically selected the parameters  and  so that the 
unstructured predictor achieves R2 around 0.3 and 
GCRF applied to the full graph improves R2 to around 
0.6. For a node, the prediction values rt of the 
unstructured predictor were randomly generated. The 
matrix of similarities/weights between the nodes was 
constructed as a block diagonal matrix where each 
block represents a node cluster, which is more heavily 
connected within itself than to the other clusters. The 
values within the blocks are randomly generated from 
the interval [0,1], while the values outside of the blocks 
were randomly generated from the interval [0,1/M], 
where M is the number of blocks in the matrix. The 
strength of the links between clusters was by 
construction dependent on the cluster size, because in 
networks with smaller clusters there are more links 
between clusters than in networks with larger clusters, 
and the summed influence of those weights could 
overpower the influence within the cluster. The 
similarity matrix is kept constant for all time steps. 
Finally, we sample target values yt according to the 
GCRF generative model. 

3.1.2 Experiments on generated data. We observe 
the behavior of three partitioning approaches. We 
expect to see significant deterioration of predictive 
performance with the decrease of cluster size in the 
network when random partitioning is employed. Greedy 
graph partitioning should exhibit much more robustness 
if our hypothesis were true. We also expect METIS to 
behave well, being an intelligently designed and 
renowned partitioning algorithm.  

 We sample 10 evolving graphs for each 
cluster/partition size: 5, 10, 25, 50, 100, 200 such that 
each graph contains equal-sized clusters. For each 
graph, we perform training on 15 steps and evaluate the 
model on the last step. Maximal partition size used for 
each partitioning approach corresponds to the cluster 
size in the generated graph. We have tested both 
accuracy (in terms of achieved R2 measure) and 
execution time for GCRF applied on the whole graph, 
which we will refer to as No partitioning, as well as for 
our partitioning approaches, which we will refer to as 
Random, and GGP, depending on the method used to 
extract partitions. We refer to the performance of the 
unstructured predictor as Baseline. The reported 
execution time and R2 for each setting were averaged 
over five different runs of the same experiment. The R2 
measures for these settings are shown in Figure 2, and 
their execution time is shown in Figure 3. 

As we can observe from Figure 2, on the networks 
generated to have large cluster size (≥100 nodes), all 
partitioning settings, including Random, achieve 

approximately the same R2 as GCRF applied on the 
whole graph without partitioning. 

 
Figure 2: Synthetic data: R2 accuracy of regression for graph 
partitioned to clusters of 5 to 200 nodes is shown. The GCFR 
regression is applied to the entire graph (No partitioning) and 
distributed GCFR regression is applied to partitions obtained by 3 
methods (Metis, GGP and Random). Baseline results are obtained by 
the unstructured regression model applied to the corresponding 
partitions. 

However, as the cluster size decreases, the number of 
links between the nodes from different clusters 
increases, and although the weights of those links are 
very small, their combined influence becomes stronger. 
On such graphs GCRF applied to partitions resulting 
from Metis and GDP partitioning achieves smaller R2 
than No partitioning setting; however this loss in 
accuracy is small. However, there is a significant drop 
of accuracy for Random setting as the cluster size of the 
generated graphs decreases. We conclude that the more 
intelligent partitioning techniques like Metis and GGP 
were able to identify tightly connected clusters and thus 
did not hurt the performance of GCRF. 

On the other hand, there is a significant drop of 
accuracy for Random setting as the cluster size of the 
generated graphs decreases, since in a small randomly 
chosen partition it is more likely for a node to be 
isolated from all the nodes from its cluster. These results 
support our hypothesis – if the underlying clusters are 
large enough and we have used large enough partitions, 
regardless of the partitioning method used, GCRF 
performance is not hurt. As random partitioning is the 
least complex method, it is best suited for huge networks 
with large underlying clusters. In case that the clusters in 
the network are very small, more intelligent partitioning 
techniques than random partitioning should be used. 
 It should be noted that even with random 
partitioning, GCRF still succeeded in significantly 
improving the performance of the baseline predictor. 
Thus, even in case the clusters in the network are very 
small, random partitioning can still be useful if other 
approaches are not applicable for some reason. 
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Figure 3: Synthetic data: execution time of distributed GCFF 
regression (Metis, GGP and Random graph  partitioning to clusters of 
5 to 200 nodes) versus time for centralized GCRF regression (No 
partitioning) 

 As we can observe from Figure 3, the execution 
times for all partitioning settings are comparable due to 
the small size of the graph. We can see the significant 
drop in execution time as the partition size drops. 
However, when the partition size drops to 5, we can 
actually see that the computational time increases. This 
is due to the fact that GCRF training time is already very 
low for partitions of size 10 and for lower partition sizes 
other factors such as communication and 
synchronization overhead take over due to the increased 
number of processes. 

Execution time for No partitioning setting was 1023 
seconds, which is more than 50 times longer than 
execution time for any of the partitioning-based 
alternatives. Thus, by partitioning the graph we are able 
to greatly reduce the computational requirements of 
GCRF without significantly compromising accuracy of 
GCRF-based regression.  

3.2 High-energy physics citation dataset.  

High-energy physics theory (HEP-Th) is a 
bibliographic network which was extracted from arXiv 
for the 2003 KDD Cup competition [10]. The network 
consists of 29,955 nodes (papers) and 352,807 links 
(citations) spanning over 11 years. 

We have preprocessed the datasets with the goal of 
selecting the fixed group of nodes (i.e. the group of 
nodes whose presence in the network does not change 
over the observed time period) as in [15]. We have kept 
all the papers published before January 2000. We have 
observed the citation numbers for these papers received 
after January 2000 on a monthly basis, thus obtaining 
data for 39 time points. We have eliminated all papers 
that have less than 3 citations over the whole observed 
time period. The intuition behind this is that papers 
which have very low citation in a prolonged period of 
time are very unlikely to be cited in the future. 
Therefore, it would be better to reduce the problem 
dimensionality for a computationally expensive method 

by removing such nodes from the prediction and 
predicting their citation count by some cheaper method 
(e.g., unstructured predictor of GCRF or simply 0). 
After preprocessing, we were left with 4,598 papers. 

In the experiments performed in this study, our goal 
was to predict the number of citations each scientific 
paper will receive in the next unobserved time step. To 
do this, we have constructed the evolving graph in the 
following way. Scientific papers were treated as graph 
nodes, and number of citations the scientific paper 
received in time step t was used as the attribute of the 
node representing that paper in time step t. The links 
among the nodes (in this case scientific papers) and their 
weights are determined based on the similarity of 
sequences of citation numbers of two papers, which we 
refer to as citation histories. We define the distance 
between nodes a and b in time step t as 

(2.11)  ݀௔,௕,௧
ଶ ൌ ∑ ሺܽ௧ି௜ െ ܾ௧ି௜ሻଶ

௡
௜ୀଵ , 

where ܽ௟ and ܾ௟ denote the number of citations of papers 
a and b in time step l, respectively. We want the weights 
to approximate the actual similarity of the nodes a and b 
in the time t, which we define to be by ݁ିሺ௔೟ି௕೟ሻ

మ
. We 

cannot calculate this similarity directly because we do 
not know the citation numbers ܽ௧ and ܾ௧ for time step t 
that we want to predict. Therefore, we estimate it by 

݁ି௞∙ௗೌ,್,೟
మ
 for a suitable k and use it as a weight between 

a and b. We learn the coefficient k by minimizing 

(2.12)  ∑ ሺ݁ି௞ௗೌ,್,೟
మ
െ	݁ିሺ௔೟ି௕೟ሻ

మ
ሻଶ௔,௕	∈ௌ,

௧ஸ்
 

with respect to k, where S is the random sample of graph 
nodes and T is the last time step used for training. It 
should also be noted that calculating this similarity 
measure has time complexity of ܱሺܶ ∙ ܰଶሻ, because we 
have to compare every pair of nodes for each time step 
we are considering. This poses no problem for graphs of 
a few thousand nodes, but may be the problem for huge 
graphs. In our experiments we have used the citation 
history of n=19 time steps. 

The complexity of GCRF depends on the number of 
nodes. So, in our experiments, we try different sizes for 
the partitions which we model. Also, the complexity of 
GCRF is dependent on the graph density6. By following 
the described graph constructing procedure we create a 
fully connected graph.  
 As the unstructured predictor for GCRF, we used the 
citation count from the previous time step. For training, 
we used the first 29 time steps, and for testing we used 
the remaining 10 steps. We compare the performance of 
the same partitioning settings used in 3.1. 
 First, we present our partitioning approach applied to 
the fully connected graph. Application of No 

                                                           
6 The complexity of the GCRF model on a fully connected graph is 
ܱሺܰଷሻ, but it can be reduced to ܱሺܰଶሻ if the graph is sparse. 



partitioning setting on this graph is infeasible due to the 
memory limitations. The R2 measure for these settings is 
shown in Figure 4, and their execution time is shown in 
Figure 5. 

As we can observe on Figure 4, Metis and GGP 
have very similar performance. Random has somewhat 
worse performance than other settings, but this 
difference is small. However, it should be noted that all 
partitioning settings, including Random, achieve a 
significant improvement over the unstructured 
predictor. It should also be noted that the partition size 
did not significantly influence the prediction accuracy. 

 
Figure 4: HEP-Th: R2 accuracy of regression for graph partitioned to 
clusters of 10 to 250 nodes is shown. The GCFR regression is 
applied to the entire graph (No partitioning) and distributed GCFR 
regression is applied to partitions obtained by 3 methods (Metis, 
GGP and Random). Baseline results are obtained by the unstructured 
regression model applied to the corresponding partitions. 

We can see the significant drop in execution time as 
the partition size drops (Figure 5). As in synthetic data, 
we experience the increase in execution time when the 
partition size drops to 10. This is due to the limit of 
240 cores, such that we cannot process all 459 
communities in parallel. Again, graph partitioning 
time is negligible compared to the overall execution 
time. 

 
Figure 5: HEP-Th: Execution time for distributed GCFR regression 
for clusters of 10 to 250 nodes  by Metis, GGP and Random graph 
partitioning. 

Due to the large number of nodes and time steps, 
direct application of GCRF to the whole network of this 

fully connected graph is computationally infeasible. In 
order to apply GCRF to the network, we must cut some 
edges to make the graph sufficiently sparse. We have 
successively removed half of the edges of the lowest 
weight until GCRF application on all nodes was 
feasible. In this way, we ended up with a graph that had 
5·10-4 % of edges of the full graph. Applying GCRF to 
this sparse graph took 2,123 seconds, which is more 
than for any of the partitioning settings applied to the 
fully connected graph. Furthermore, the R2 measure 
achieved by GCRF in this way was 0.357. This means 
that, in order to apply GCRF to all nodes, we were 
forced to neglect so much information that GCRF was 
unable to improve upon the unstructured predictor. We 
can conclude that, in the case that it is infeasible to 
apply GCRF to the whole graph, partitioning can not 
only reduce the execution time, but also improve the 
prediction accuracy by enabling us to include more 
information in the model. 

In order to get a better feeling of how the 
partitioning affects the prediction accuracy and 
execution time in the case where it is feasible to apply 
GCRF without discarding edges, we have applied all 
settings on a smaller subset of 400 top cited nodes of 
HEP-Th dataset. The R2 measure for different settings is 
shown in Figure 6, and the execution time is shown in 
Figure 7. 

As we can observe from Figure 6, Metis and GGP 
outperformed No partitioning setting in terms of 
accuracy, for all partition sizes, except for partition size 
10, where they have approximately the same accuracy. 
As expected, Random achieved lower accuracy than 
GGP and Metis. However, for partition sizes of 50 and 
more, its accuracy is roughly equal to accuracy of No 
partitioning. 

 
Figure 6: Top 400 HEP-Th: R2 accuracy of regression for graph 

partitioned to clusters of 10 to 200 nodes is shown. The GCFR 
regression is applied to the entire graph (No partitioning) and 
distributed GCFR regression is applied to partitions obtained by 3 
methods (Metis, GGP and Random). Baseline results are obtained by 
the unstructured regression model applied to the corresponding 
partitions. 
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In accordance with our hypothesis, accuracy of 
Random drops as the size of the partition drops. Finally, 
it should be noted that all approaches provide significant 
improvement in accuracy over the unstructured 
predictor. 

Partitioning the network also results in significant 
decrease in execution time (Figure 7). For example, our 
partitioning approach for partition size of 50 nodes, 
where both Metis and GGP achieve better performance 
than No partitioning, is more than 100 times faster than 
GCRF applied to the whole graph. From Figure 7, we 
can also observe that the execution time drops with the 
decrease of partition size to around 50 nodes. Choosing 
partition size of less than 50 nodes did not bring much 
improvement in terms of reducing the execution time, 
as the increased number of processes increases 
execution time due to factors such as communication 
and synchronization overhead. 

 
Figure 7: Top 400 HEP-Th: Execution time for distributed GCFR 

regression for clusters of 10 to 200 nodes by Metis, GGP and Random 
graph partitioning is compared to centralized GCRF regression (No 
partitioning). 

We may conclude that partitioning can not only 
significantly reduce the execution time of GCRF, but 
also help improve prediction accuracy. This is in 
accordance with results presented in [8].  

Interestingly, even a light-weight technique such as 
Random was able to significantly improve the prediction 
accuracy, and, for the large enough partition size, its 
accuracy was equal to GCRF applied to the whole 
graph. 

3.3 US patents citations dataset  

US patents citations dataset7 [11] comprises detailed 
information on almost 3 million U.S. patents granted 
between January 1963 and December 1999 and over 16 
million citations made to these patents between 1975 
and 1999. 
 We have preprocessed the US patent dataset in the 
same way as the HEP-Th dataset. We have observed the 

                                                           
7http://www.nber.org/patents/ 

citation numbers that patents published before January 
1980 received after January 1980 on a 6-month basis, 
thus obtaining data for 40 time points. We have 
eliminated papers that have less than 5 citations over the 
observed time period. After preprocessing, we were left 
with 748,090 papers. Similarly to our experiments on 
HEP-Th dataset, our goal was to predict the number of 
citations each patent will receive in the next unobserved 
time step. The patents represent the graph nodes, and 
number of citations the patents received in time step t 
was used as the attribute of the node representing that 
patent in time step t. We define the links among the 
nodes (patents) and their weights based on their citation 
histories of n=19 time steps.  
 As we have mentioned earlier in section 3.1, creating 
the graph by calculating link weights has complexity 
ܱሺܶ ∙ ܰଶሻ, because we have to compare each pair of 
nodes in each time step. In the case of the US patents 
dataset, constructing such a large graph would be very 
time consuming and memory demanding.  
 Metis and GGP would require all link weights to be 
known in advance in order to start partitioning, which 
may result in very long graph construction time. 
Moreover, most of the calculated similarities will be 
discarded by partitioning and will not influence the final 
performance of the model. Finally, in order to apply 
partitioning, we would need to load the whole graph in 
the memory, which may be infeasible for very large 
graphs. However, Random can be applied without prior 
graph construction, and still give us a reasonable 
accuracy, given that the assumptions about sufficiently 
large underlying clusters and partitions are true. Thus, 
on US patents dataset, we randomly partition the graph 
by assigning the nodes randomly to different partitions 
and, since the links between the nodes that belong to 
different partitions are discarded, only construct the 
small sub-graphs defined by random partitions. 

As the unstructured predictor for GCRF we used the 
citation count from the previous time step. For training, 
we used the first 35 time steps, and for testing we used 
the remaining 5 steps. The R2 measure for all tested 
setting is shown in Figure 8, and their execution time is 
shown in Figure 9. 

 
Figure 8: R2 accuracy of distributed vs centralized GCFR regression on 
US patents dataset for partitions to clusters of 10 to 250 nodes. 
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Figure 9: Execution time of distributed GCRF regression for partitions 
to clusters of 10 to 250 nodes on US patents dataset 

 As we can observe from Figure 8, Random 
partitioning achieved a significant improvement over the 
Baseline. The performance of Random was robust to the 
choice of the partition. Applying GCRF to the full graph 
of 748,090 nodes was infeasible due to both memory 
and execution time limitations. However, by using 
Random setting with partition size of 50 nodes, we were 
able to give predictions in 927 seconds. We may 
conclude that, with the help of random partitioning, we 
were able to achieve a significant improvement over the 
performance of the unstructured predictor, without the 
need of calculating and loading into memory all weights 
of the large time evolving graph. 

4 Conclusion 

In this paper, we explored a way to apply GCRF, a 
structured regression method, to large fully connected 
graphs. The proposed approach is based on partitioning 
the graph to smaller sub-graphs and training 
independent GCRFs on separate partitions. We 
evaluated our approach on the problem of citation 
prediction in the domain of high-energy physics. We 
achieved huge speedup and significant accuracy 
improvement compared to training on all nodes at once, 
which can be done only on a sparse graph, leading to 
loss of information. Moreover, we confirmed the 
hypothesis of robustness of GCRF with respect to the 
partitioning technique employed. It turns out that a 
particularly simple approach – random partitioning – 
behaves like other partitioning methods if the clusters of 
nodes in the graph are sufficiently large. This enables us 
to train GCRF even on graphs which are too big to be 
constructed in whole. We do that by constructing only 
the partitions of the graphs (and not the whole graph), 
which are obtained by randomly assigning the nodes to 
those partitions. We demonstrate good performance of 
our approach on the problem of citation prediction on 
the large US patents dataset. 

In the future, we intend to apply this partitioning 
approach with other powerful, but computationally 
complex, models for graph analysis. With that in mind, 

we are currently developing an easily extendible library 
based on this approach which would allow users to 
easily apply various prediction models to very large 
graphs. Also, we intend to work on data other than 
citations and on prediction of different kinds of 
attributes. 
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