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Abstract 

In this paper we propose several methods for improving 
prediction of protein disorder. These include attribute con-
struction from protein sequence, choice of classifier and 
postprocessing. While ensembles of neural networks 
achieved the higher accuracy, the difference as compared 
to logistic regression classifiers was smaller then 1%. Bag-
ging of neural networks, where moving averages over win-
dows of length 61 were used for attribute construction, 
combined with postprocessing by averaging predictions 
over windows of length 81 resulted in 82.6% accuracy for a 
larger set of ordered and disordered proteins than used 
previously. This result was a significant improvement over 
previous methodology, which gave an accuracy of 70.2%. 
Moreover, unlike the previous methodology, the modified 
attribute construction allowed prediction at protein ends. 
 
1 Introduction 
 
Each protein is defined by its sequence of amino acids, cor-
responding to an alphabet of twenty symbols. Proteins fold 
into specific three-dimensional structures, with the folding 
information residing in their amino acid sequences [1]. 
Since biological function follows from protein 3-D struc-
ture, determining this structure is important for activities 
ranging from basic understanding to drug discovery.  This 
sequence-to-structure-to-function paradigm is serving as the 
basis for the recently launched structural genomics initia-
tive.  
 
In contrast to the view that prior 3-D structure is necessary 
for function, several proteins have been shown to carry out 
function by means of regions that are incompletely folded 
or that are even completely unfolded, suggesting the need 
for a reassessment of the sequence-to-structure-to-function 
paradigm [17]. Thus, we recently proposed The Protein 
Trinity to explicitly link protein function with intrinsic dis-
order.  In this view, a whole protein or a segment can exist 
in one of a trinity of structures, called the ordered state, the 
molten globule and the random coil, with function arising 
from any member of the trinity or from structural transi-
tions between the members [6]. According to The Protein 

Trinity, intrinsic protein disorder rivals the importance of 3-
D structure. 
 
Starting from the assumption that amino acid sequence de-
termines structure, we proposed that sequence also deter-
mines intrinsic disorder as well. To test this, we developed 
network predictors of order and disorder. The predictions of 
disorder, with ~ 70% accuracy compared to the 50% ex-
pected by chance for the balanced datasets, supported our 
suggestion that sequence determines intrinsic disorder [15]. 
Here the goal is to improve predictions of intrinsic disorder.  
 
The first challenge is collecting an appropriate database of 
disordered proteins. Existing protein structural databases 
are strongly biased against disorder. As a result, in the pre-
vious work [14] just 32 proteins with disorder longer then 
40 amino acids were available. Here, about 110 more disor-
dered proteins were added. The next challenge is to repre-
sent the protein sequence appropriately. In previous work 
[15], attributes at a given position in the sequence were 
derived from a subsequence including 20 neighboring 
amino acids (with a window of size W = 21). Ten positions 
from the protein termini were not represented in the data 
set. In this study, we examine a range of possible window 
sizes without discarding information from the protein ter-
mini. We also enhanced the attribute set with a measure of 
entropy since there is evidence that low complexity amino 
acid sequences tend to be disordered [16].  
 
The third challenge is finding an appropriate method of 
classification. Predicting disorder is a binary classification 
problem with order/disorder decisions. Neural network pre-
dictors represent highly nonlinear functions, and they are a 
natural choice if the discriminant function is expected to be 
nonlinear. However, there is some evidence [10] that linear 
classifiers achieve comparable accuracy to neural networks 
when the same set of attributes is used. Bagging [3] and 
boosting [7] are ensemble methods for the aggregation of 
unstable predictors known to be able to significantly im-
prove accuracy as compared to single predictors. In this 
study, we compare different predictors in order to find the 
best choice for disorder prediction.  



Finally, we are interested in prediction of disorder for re-
gions longer then 40 consecutive amino acids, where post-
processing can further improve prediction accuracy. Since 
neighboring amino acids are likely to be part of the same 
ordered/disordered region, we exploit this notion by filter-
ing raw predictions using an output window of a proper 
length. In the Methods section, we explain in detail all pro-
posed methods for improvement of protein disorder predic-
tion. In the Experimental Results section, we explain the 
setup for building a disorder predictor and validating the 
results, and we present our results. 
 
2 Methods 
 
In this section, we describe the data sets used for building 
predictors of protein disorder, the representation of se-
quences suited for learning, and the various classification 
procedures for protein disorder prediction. 
 
2.1 Data sets 
The data set of disordered protein sequences is derived 
from a previously described data set [16].  Briefly, disor-
dered regions identified by NMR, circular dichroism or 
protease digestion were found by keyword searches of 
PubMed (http://www.ncbi.nlm.nih.gov). Starting from a 
subset of the Protein Data Bank (PDB) called 
PDB_Select_25 [9], we identified disordered regions in X-
ray crystal structures by searching for residues having 
backbone atoms that are absent from the ATOMS lists in 
their PDB files [15].  PDB_Select_25 contains a single rep-
resentative structure from PDB for protein families whose 
members have greater than 25% sequence identity.   
 
The disordered data set used in this study contains 145 of 
the 150 protein segments previously reported in [16]. The 5 
eliminated sequences contained segments of disorder that 
were too short by the criterion used here. The remaining 
145 segments contain a total of 16,705 disordered residues.  
Some of these disordered regions come from proteins that 
are completely disordered, and some come from proteins 
that also have ordered domains.  The data set that includes 
the entire protein sequence for each protein is called the 
complete D_145 data set. To provide a representative data 
set of ordered proteins for training the disorder predictors, 
O_130 was used. This data set consists of 130 non-
redundant proteins that are completely ordered from their 
N- to C-termini with a total of 32,506 residues.  This data 
set was also extracted from PDB_Select_25 and therefore 
contains sequences with less than 25% sequence identity.  

 
2.2 Data representation and attribute selection 
In this study, order/disorder properties at a given position in 
a sequence are predicted using a subsequence of neighbor-
ing amino acids within a window of size Win. In accord with 
previous work [15] and to prevent the “curse of 
dimensionality” [2], only first-order statistics of the 20 

within a given window were used as the first 20 attributes. 
For example, the value of attribute x

amino acids within a given window were used as the first 

ia at position i within a 
sequence of length N is calculated as the fraction of amino 
acid a, a ∈ {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, 
T, V, W. Y}, within a window of length Win, 
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where w’ = max(1, i−Win), w” = min(N, i+Win), δja = 1 if 
amino acid a is at position j, and δja = 0 otherwise. This 
approach differs slightly from our previous approach where 
Win/2 positions at the ends of each protein were not repre-
sented due to enforcing a fixed length Win [14]. 
 
This simplistic approach is motivated by results known 
about the incompressibility of protein sequence [11], show-
ing that very little information can be extracted from pro-
tein sequences beyond first order statistics. It is likely that 
useful information exists outside the window (some amino 
acids can be close in space but not close in sequence), but it 
is still an open question how to infer this from the protein 
sequence. Such simple knowledge representation is also 
favored because the small size of the training set may lead 
to problems resulting from the curse of dimensionality.  
 
Flexibility, Hydropathy and Coordination Number are nu-
merical attributes specific to each amino acid and are 
thought to be useful indicators of disorder [14].  We used 
only the Flexibility attribute xiFlex, calculated as 
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where Flex(j) is the flexibility value for amino acid at posi-
tion j. Corresponding attributes xiHydro for Hydropathy and 
xiCoord for Coordination Number were not included since 
their the correlation to Flexibility is larger then 0.7. There-
fore, they would add little to the overall prediction accu-
racy, and could cause collinearity problems [4].  
 
Finally, it has been shown that sequence complexity is rela-
tively highly correlated with disorder, i.e. low complexity 
protein sequences are likely to be disordered [16]. There-
fore, we used the measure of sequence complexity called 
K2 entropy as the final attribute. When measured over a 
window, K2 entropy attribute at position i is given by 
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where a is the symbol for one of the 20 amino acids. Thus, 
this formula calculates complexity as the number of bits 
needed to encode a given protein segment. So, for an alpha-
bet of 20 letters, 0 ≤ xiK2 ≤ log2(20) ≈ 4.3 bits. 
 
So far we have constructed a set of 22 attributes thought to 
be useful for disorder prediction. The next question is 



2.3 Accuracy measures and building predictors of pro-
tein disorder  

whether attribute reduction or transformation can result in a 
smaller, but still effective set of attributes. The protein in-
compressibility result indicates that, statistically, as a first 
approximation each protein sequence can be considered as a 
random sample from the underlying distribution. Since the 
20 amino acid attributes represent their fractions within a 
window, , and 20-dimensional vector {x1=∑ iax ia} can 
be considered as a random sample from a 20-dimensional 
multinomial distribution. As a consequence, knowledge of 
19 amino acid attributes uniquely determines the remaining 
amino acid attribute, and an arbitrary attribute should be 
excluded from the data set to obtain a nonredundant set of 
amino acid attributes. 

Before building a disorder predictor, a reasonable perform-
ance measure must be defined. Previous pessimistic esti-
mates [5] on the commonness of disorder in proteins indi-
cated that at least 11% of all the residues in the Swiss Pro-
tein data bank belong to disordered regions of length 40 or 
longer, while this estimate is much higher in some eu-
caryotic genomes (up to 30%). Since ordered protein se-
quences outnumber examples of protein disorder, we report 
separately on the percent of true negatives (TN, ordered 
positions predicted to be ordered) and true positives (TP, 
disordered positions predicted to be disordered). However, 
for convenience, we also report on the average accuracy 
between order and disorder where an accuracy above 50% 
indicates that the predictor is better then a random guess.  

 
Additionally, Flexibility xFlex is a linear combination of 
amino acid attributes. Therefore, another amino acid attrib-
ute should be eliminated from the data set of attributes. 
Note that Entropy xK2 is a nonlinear combination of amino 
acid attributes, and it would not cause collinearity prob-
lems. In this study, we (rather arbitrarily) excluded amino 
acid attributes xD and xF. Therefore, this resulted in the set 
DD_145 with 16,705 disordered 20-dimensional data 
points, and the set OD_130 with 32,506 ordered 20-
dimensional data points. These data sets were used in build-
ing the protein disorder predictors. 

 
Since proteins and their disordered regions can be of very 
different lengths we measure accuracy on each protein se-
quence, and report an average TN and TP rate over a set of 
ordered and disordered proteins. Occasionally, we will also 
use a standard accuracy measured as an average TN and TP 
rate over available examples of order and disorder. Protein 
disorder predictors can be useful for a range of applications 
starting from aiding protein crystallization to measuring the 
commonness of protein disorder, where costs of false posi-
tive and false negative prediction can differ. A popular ac-
curacy measure suited for applications where costs of mis-
classification are not well defined is the ROC curve. 

 
Regarding the choice of window length Win, it is not clear 
which length is optimal for disorder prediction. A similar 
problem occurs in  predicting protein secondary structure. 
Qian and Sejnowski [13], using slightly different sequence 
representation, showed that a window size of 13 resulted in 
the best accuracy for this problem. However, it should be 
noted that the length of secondary structures (α-helices, β-
strands, coils) could be just several amino acids long. Since 
we are examining long regions of protein disorder (>40 
amino acids), it is likely that longer windows than in our 
previous studies (with Win = 21) would be better. One goal 
of our study is to determine the optimal length of Win. 

 
The ROC curve assumes that classifiers give real-valued 
predictions, where the user can chose the decision thresh-
old. If the problem is binary classification and the two 
classes are encoded as 0 and 1, the threshold θ = 0.5 is as-
sumed to be the default value. However, depending on ap-
plication some other threshold can be suitable. The ROC 
curve is a plot obtained by changing the value of the 
threshold and measuring true positive (TP) against false 
negative (FN) prediction rates. A predictor can be regarded 
as successful if its ROC curve is high.   

An interesting question regarding the DD_145 disordered 
data set with 16,705 examples, and OD_130 ordered data 
set with 32,506 examples is what is the information con-
tained in them. The sampling theorem (e.g., [12]) claims 
that a time signal with spectral bandwidth F can be per-
fectly reconstructed by its sampling at each 1/2F time units. 
It should be noted that amino acid attributes xa can be ap-
proximated by low-pass filtering of a binary signal {δia} to 
a signal with spectral bandwidth ~1/Win, where δia = 1 if 
amino acid a is at position i, and δia = 0 otherwise. Thus, it 
can be stated that a data set containing 20-dimensional data 
points from each Win/2-th position within a sequence would 
contain approximately the same information as the full data 
set with data points taken from each sequence position. As 
a result, the effective size of DD_145 is 2*16,705/Win, 
while the effective size of OD_130 is 2*32,506/Win.  

 
In this study we examine logistic regression (LR) (e.g, [4]) 
and neural networks (NN) to build predictors of protein 
disorder. LR is a linear predictor suited for binary classifi-
cation requiring an iterative parameter fitting procedure. 
NN are known as universal approximators, capable of rep-
resenting highly nonlinear relationships. They require 
abundant data, have relatively slow training, and give un-
stable solutions sensitive to the initial conditions and train-
ing procedures.  
 
In this study we also examined bagging [3] and boosting [7] 
which are popular methods for combining predictors known 
to reduce prediction variance while retaining a small bias of 
unstable predictors. In bagging, an ensemble of predictors is 
learned on bootstrap samples of the training data, and a 



We examined different combinations of windows Win, Wout 
with lengths taken from the set {1, 9, 21, 41, 61, 81, 121}, 
except that Win = 1 was not examined. For the majority of 
proteins in the database, the length of 121 covered all or 
nearly all of their disordered regions. Only 6 of 145 avail-
able disordered regions were longer then 200 amino acids, 
with one region being 1,800 amino acids long. Note that Win 
longer than the protein length corresponds to representing a 
whole protein with only one data point, so resolution is lost. 
Similarly, Wout longer then the protein length also corre-
sponds to loss of resolution, giving an average prediction 
for the whole protein. 

classification is a majority vote from the ensemble. In 
boosting, an ensemble of predictors is constructed so that 
subsequent predictors are trained on samples biased to-
wards examples where previous predictors failed. Both 
methods are known to significantly improve the accuracy of 
neural networks on a large range of problems, while boost-
ing appears to achieve better accuracy on the majority of 
benchmark machine learning data sets.  
 
Regardless of the applied prediction algorithm, we propose 
to perform a post-processing step on the raw predictions.  
Since we are interested in predictions of long protein disor-
der/order regions, it is to be expected that neighboring 
amino acids belong to the same disordered/ordered region. 
However, raw predictions allow cases where, for example, 
the region predicted to be overly disordered has scattered 
positions predicted to be ordered. These scattered positions 
are likely to be misclassified. Therefore, we propose to use 
the output window of length Wout to smooth-out the raw 
predictions and to correct occasional predictions that differ 
from neighboring predictions as 

 
For each length Win, we performed one run of cross-
validation with logistic regression predictors, 10 runs with 
neural network predictors, one run with a bagging ensemble 
of 10 neural networks, and one run with a boosting ensem-
ble of 30 neural networks. Neural networks used in this 
study had one hidden layer with 5 hidden nodes and a sig-
moid output node.  A relatively small number of 5 hidden 
nodes was proper for the relatively small available data sets. 
One hundred iterations of resilient backpropagation were 
preformed to train the neural networks, since this number 
was determined to be sufficient for successful training 
without significant overfit. 

∑
+

−=+−
=

"

'1'"
1 wi

wij
ji y

ww
z  

where {yi} are raw predictions, {zi} are smoothed-out pre-
dictions, w’ = max(1, i−Wout), w” = min(N, i+Wout), and N is 
the sequence length. 

 
3.2 Experimental results 
In Table 1 we compare predictions of logistic regression 
(LR), neural networks (NN), bagging, and boosting for Win 
∈ {9, 21, 41, 61, 81, 121} with Wout = 1.  True positive 
(TP), true negative (TN), and average (TN+TP)/2 accuracy 
are given for each predictor. As seen, a surprising result is 
that LR is superior to NN for all examined Win lengths. 
While ensembles of neural networks were superior to indi-
vidual NN, they appeared to achieve only up to 1% better 
accuracy then LR. The difference between bagging and 
boosting appeared to be small. These results indicate that 
the discriminant function between order and disorder can be 
considered as approximately linear. 

 
3 Experiments 
 
3.1 Experimental parameters 
In all the experiments we used balanced data sets with the 
same number of examples of order and disorder. Since 
moving averaging over window of length Win for attribute 
construction effectively reduces the information contained 
in the data sets OD_130 and DD_145, all training sets used 
in this study had 1,000 examples of order and 1,000 exam-
ples of disorder randomly chosen from available examples 
of order and disorder. 

  
Another result is the increased accuracy of all the models 
with the increase of Win that appears to level out at Win = 
81. We note that NN learned with Win = 21 and without 
using the entropy attribute corresponds to our previous pre-
dictors [14, 16]. An average accuracy of 10 such NN pre-
dictors was 70.2% (TP = 67.8%, TN = 73.6%). Interest-
ingly, the true positive accuracy (accuracy on disordered 
protein regions) was considerably lower than the true nega-
tive accuracy (accuracy on ordered protein regions), al-
though all predictors were trained on balanced data sets. 
This phenomenon supports our hypothesis that ordered se-
quences occupy a more compact region of the attribute 
space. As a consequence, the decision boundary is expected 
to be more biased towards ordered examples, which are less 
scattered. 

We used cross-validation to test accuracy in the following 
way. The D_145 set of proteins was randomly partitioned 
into 15 subsets, while the O_130 set was randomly parti-
tioned into 13 subsets. Then, a predictor was trained using 
1,000 random disorder examples from 14 disorder subsets, 
and 1,000 random order examples from OD_130. The accu-
racy of this predictor was measured on the remaining disor-
der subset. This procedure was repeated 15 times each time 
using different disorder subset for testing. Similarly, 13 
predictors were trained using 2,000 random disorder exam-
ples from DD_145, and 2,000 random order examples from 
12 order subsets. The accuracy of these predictors was 
measured on the corresponding remaining order subset. In 
this way, by learning 15+13 predictors it was possible to 
test the accuracy on the complete OD_130 and DD_145 
data sets. 
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Table 2. The best accuracies for the bagging predictor and 
different Win. We report accuracies averaged by protein 
and the accuracies averaged by residue. Wout

* is the optimal 
length for a given Win. 

Accuracy by protein Win Wout
* 

TN TP Average 
Accuracy  
by residue 

9 81 93.5 65.2 79.3 81.1 
21 81 93.5 71.5 82.5 84.3 
41 81 90.3 73.7 82.0 84.5 
61 81 88.8 76.5 82.6 85.3 
81 61 86.1 77.9 82.0 85.3 
121 61 85.3 76.8 81.0 85.4 

 
The main observation from Figure 1 and Table 2 is that, for 
each choice of Win, the accuracy can be significantly im-
proved by increasing Wout. Another result is that the output 
window with length Wout = 81 or 61 seems to be the optimal 
value for all choices of Win, and that the accuracies 
achieved by these lengths are similar over a range W  
Figure 1. Results for bagging predictors comparing 
(TP+TN)/2 accuracies averaged over proteins for Win = 
{9: dashed, 21: solid, 61: dash-dotted} over a range of 
Wout = {1, 9, 21, 41, 61, 81, 121}. 
in
lengths. This is a rather interesting result as compared to 
Table 1, where the choice of Win seemed to be very impor-
tant for accuracy.  

 
Table 1. Accuracies of each predictor of protein disorder 
measured as the average accuracy over all  data sets 

 Accuracy Model Win 
TN   TP  Average 

9 68.9 63.3 66.1 
21 76.0 68.6 72.3 
41 79.7 69.9 73.5 
61 81.2 75.9 78.6 
81 83.0 76.8 79.9 

LR 

121 83.3 75.6 79.4 
21 74.1±1.0 67.6±0.7 70.8 
41 79.2±1.3 72.5±1.4 75.8 

NN 

81 82.0±1.2 76.0±1.4 79.0 
9 69.7 60.9 65.3 
21 78.0 68.5 73.3 
41 81.4 72.8 77.1 
61 82.8 74.5 78.7 
81 83.2 78.5 80.9 

Bagging 

121 82.7 77.8 80.3 
Boosting 41 81.5 73.1 77.3 

In Figure 2, we compare ROC curves for bagging neural 
networks with two sets of window lengths: (Win = 21, 
Wout = 1) corresponding to our previous predictors, and 
(Win = 61, Wout = 81) corresponding to the best predictor 
from our experiments. The accuracies were measured by 
averaging over residuals. Since ROC curves depict the ac-
curacy for different choices of threshold, they can be very 
useful for determining the optimal threshold given misclas-
sification cost. If we are interested in accuracy (TP+TN)/2, 
the optimal predictor can be obtained by threshold 0.41 
which achieves 86.5% accuracy as compared to 85.3% ac-
curacy with threshold 0.5 (see Table 2). 
 
In our previous work we noted that the accuracy of predict-
ing disorder is stronger at protein ends then elsewhere 
within a sequence [10]. We wanted to examine to determine 
if the same effect occurs for our new predictors. We com- 

In Figure 1 we present average accuracies of the bagging 
predictors for different choices of (Win, Wout) pairs. Results 
of a similar nature were obtained for LR and NN, but are 
not included due to lack of space. In Table 2, we report on 
the best accuracy results for different choices of bagging 
predictors and Win. We report both on the accuracy aver-
aged over proteins and on the accuracy averaged over 
amino acids. Note that the accuracy averaged over proteins 
is slightly lower. This is mainly caused by one protein with 
a 1,800 residue disordered region, that composes more than 
10% of the D_145 amino acids. The accuracy on this pro-
tein increases as the lengths Win and Wout increase for each 
of the predictors. This protein biases the accuracy results 
averaged over amino acids slightly upwards for large win-
dow lengths. 
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Figure 2. ROC curves for bagging prediction with (Win = 
21, Wout = 1, dotted) and (Win = 61, Wout = 81, solid).  



may provide a useful strategy for the initial characterization 
of putative disorder.    
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