
Supervised Learning 
 
Basic Assumption: 

D is a random sample from the underlying distribution D defined by the probability density 
function p(x,y). 
Example: 

The following Data Generating Process (DGP) completely describes a particular joint 
distribution p(x,y). This DGP is very popular and is commonly used in Machine Learning. 
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Homework question: derive expression for p(x,y) (Hint: (x,y) is an M+1 dimensional 
multivariate Gaussian random variable, so you only need to calculate the mean vector and 
the covariance matrix)  

 
Most General Objective: 

Given data set D = {(xi,yi), i=1, 2, …N} estimate the underlying probability density function 
p(x,y). (Note: the objective is extremely difficult for all but the simple uni-variable scenarios) 
Example: 
 Assuming that the functional form f is given, we need to estimate (μ, Σ, θ, σ) from D 

 
More Focused Objective for Supervised Learning (probabilistic prediction): 

Given data set D = {(xi,yi), i=1, 2, …N} estimate conditional probability p(y|x). (Note1: p(x,y) = 
p(y|x)p(x); Note2: the objective is still difficult) 
Example: 
 We only need to estimate (θ, σ)  

 
Practical Objective (point prediction): 

• Given D learn the mapping f: X→Y such that y is “accurately” predicted from f(x), for any 
example taken from the underlying distribution. 

• Since we only have a sample D from the underlying distribution, the objective translates to: 
Given D learn the mapping f: X→Y such that y is “accurately” predicted from f(x), for all i = 
1, 2, …N. 

• Learning the mapping f is called the supervised learning. 
 
Open Questions in Supervised Learning: 

• What does “accurately” mean in practice, i.e. what is the accuracy criterion? 
• What is the appropriate choice of the functional form f ? 

 



Standard Accuracy Measures 
 
In order to assess accuracy of a predictor, we need to define a loss function , where y is true 
output, and  is the prediction. Loss function is sometimes denoted with R (risk function). 
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Given a predictor  its accuracy is defined as , where E is expectation and D is the 
distribution. In words,  is an expected loss over an example randomly taken from an 
underlying distribution. 
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Having the notion of an accuracy measure, we can refine the goal of supervised learning – the goal is to 
minimize prediction loss. Accuracy measures for regression and classification are different. 
 
Regression 
 

Most popular loss function for regression is , known as squared loss. Accuracy 
of a predictor in that case is called Mean Squared Error (MSE), 
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Math note: For a scalar x and any function f, , where p(x) is the probability 

density function (pdf). 
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In general, a loss function can be arbitrarily defined, although typically loss is zero for correct prediction, 
and lager than zero if the prediction was not correct. 
 
In practice, the available data set is finite. Assuming there are N examples MSE can be estimated as 
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Classification 
In general, jiji CfCylfyL ∈∈= )(,,))(,( , xx , assuming that we have several distinct types of objects, 
i.e., K possible classes:  { }KCCCCy ,,,, 321 L∈

In practice, 0-1 (zero-one) loss is typically used:  
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Examples:  Suppose we are testing a blood sample for a certain disease. Thus, there are two classes, 

, where  means that a person has the disease, and  means that we 
predicted that the person has the disease. The 0-1 loss function is defined as follows: 
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f(x) 
 

0 1 
0 0 1 

y 
1 1 0 



 
What is the price of a mistake? How much would be the cost of a specific kind of a 
mistake? We may wish to penalize specific kind of mistakes differently: 

f(x) 
 

0 1 
0 0 100 

y 1 0 610  
 
If the cost of a mistake is high, we might want to design a very conservative predictor 
which predicts disease if there is a slightest chance for it.  

 
 



Optimal Predictors 
 
Regression 
The optimal prediction function  minimizes MSE:  )(xf
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Therefore, for any given input we want to minimize x
dyypAyAg ⋅⋅−= ∫ )|()()( 2 x , 

where with A=  (remember that in the inner integral  is fixed, so it can be considered as a constant). )(xf x
 
Regression problem is now reduced to:  

Find an optimal value of A that minimizes the integral g(A).  
 
Math Background:  

Unconstrained optimization  
 

  Problem: Given a function g(x) find its minimum (i.e. minimize g(x)) 
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  Necessary condition for a data point x* to be a minimum:  
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What is the sufficient condition for a data point x* to be a minimum? 
Example:  



   
   

If we observe the figure we notice that several points satisfy the necessary condition 
: point A is the global maximum, point B is the global minimum, point C is a 

local maximum, point D is a local minimum, points E, F, G are saddle points.  
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Sufficient condition for a data point x* to be a minimum:  
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Back to Regression 
To find minimum of g(A): 
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Therefore, the optimal regression function that minimizes MSE is: [ ]xx |)(* yEf =  

   
 

[ x|yE ], the optimal function that minimizes the error, is called the regression function (hence the term 
regression).  
 

[ ]x|yENote: The optimal solution is a theoretical result. We still have to learn how to estimate  as good 
as possible given a finite data set D. 
 
 



Classification 
The optimal prediction function  minimizes the classification loss:  )(xf
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Therefore, to minimize Loss we need to minimize the inner integral for any given .  x
 
Note that for classification y is a discrete variable. Therefore, the inner integral is actually a sum  

)|())(,(
1

xi

K

i
i CyPxfCyL ∈⋅∈∑

=

. 

Notation:  is called posterior or conditional class probability,  is called prior 
class probability 
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Therefore, given an input x, and by denoting A= , the optimal classification is class A that minimizes 

, i.e.,  
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 (Eq.1) 

 
In a special case with 0-1 loss: 
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Therefore, the optimal decision is the class with the highest posterior!! 
 
Homework question: Prove that Eq. 2 is correct. Please consider a general case with K classes. 
 
Conclusion:  If posteriors KjCyP i ,,3,2,1),|( L=∈ x , are known then the optimal classification is 

easily calculated  
Terminology: The optimal classification function is called the Bayes classifier, and the (Eq.1) is called 

the Bayes classification (decision) rule. 
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