
Classification as a Regression Problem

• Target variable ; { }KCCCCy ,,,, 321 L∈
• To treat classification as a regression problem we should transform the target y into numerical

values;
• The choice of numerical class representation is quite arbitrary;
• Careful numerical class representation is a critical step.

Binary Classification

Let us represent the classes C0 and C1 with numerical values 0 and 1, i.e., if 0Cy ∈ then y
= 0, and if then y = 1 1Cy∈

Since we have assigned numeric values to classes, binary classification can be considered
to be a regression problem. The optimal predictor for regression is

[])|()|(1)|(0|)(110
* xxxxx CyPCyPCyPyEf ∈=∈⋅+∈⋅==

 Therefore, the optimal predictor outputs the posterior probability of class C1.

By applying the Bayes classification rule we can obtain the Bayes classifier!!

Important Conclusion:
With appropriate class representation, the optimal classification is equivalent to optimal
regression.

Multi-class Classification (K classes)

Could the previous result be generalized to multi-class classification?

Example.
3 classes: “white”, “black”, and “blue”.
Let us examine the representation: y = -1 (class is “white”), y = 0 (class is “black”), and y
= 1 (class is”blue”)
Discussion: The representation is inappropriate since it enforces order; implies that “white”
and “blue” are further away then let’s say “black” and “blue.” What if it is evident that an
example could be either “white” or “blue,” but definitely not “black”? The proposed
representation would probably lead to a completely misleading answer “black”!!

Solution:

 Decompose the multi-class problem to K binary classification problems:
Problem i :)1(Ki ≤≤

if then y = 0 iCy∈
if then y = 1 iCy∉

The regression function []x|yE on Problem i will equal the posterior)|(xiCyP ∈ . By
repeating for all K classes, all posteriors will be available, which is sufficient to construct
the Bayes classifier!!

Approaches to Minimizing MSE from a Finite Dataset

Goal: Given a dataset D find a mapping f that minimizes MSE.

Two extreme approaches:

1. Nearest neighbor algorithm (non-parametric approach)
2. Linear regression (parametric approach)

Non-parametric approach assumes that data points close in the attribute space are similar to each other.
It does not assume any functional form.
Parametric approach assumes a functional form: e.g., the output is a linear function of the inputs.

Nearest Neighbor Algorithms

N6(x)

k-nearest neighbor (k-NN): ∑
∈

=
)(

1)(
xx

x
kNi

iy
k

f , where are the k nearest neighbors of x)(xkN

Regression: The prediction is the average y among the k nearest neighbors
Classification: The prediction is the majority class among the k nearest neighbors

k-NN is also known as a “lazy learning algorithm” because it does not perform any calculations prior to
seeing a data point; it has to analyze the whole dataset for the nearest neighbors every time a new data
point appears.
Note: Parametric learning algorithms learn a function from the dataset; they are much faster in giving
predictions but need to spend some time beforehand.

Theorem: If 0,, →∞→∞→
N
kkN (large number of neighbors in a very tight neighborhood)

k-NN is an optimal predictor.

Practically, if we have 2 dimensions (2 attributes), k-NN is a good try; if we have more attributes, we may
run out of data points (in practice, data size is always limited).

Example: Generate an M-dimensional dataset such that all attributes Xi, i = 1, 2, …M, are uniformly

distributed in interval [0,1]. What is the length r of the size of a hypercube that contains
10% of all data points (i.e. 10% of the hypercube volume)? Answer: r = 0.11/M.

M r=0.1 r=0.01 r=0.001
1 0.1 0.01 0.001
2 0.31 0.10 0.03
5 0.63 0.40 0.25
10 0.80 0.63 0.50
100 0.98 0.95 0.93
1000 0.998 0.995 0.993

 In high dimensions, all neighboring points are far away, and could not be used to

accurately estimate values with k-NN!!

Linear Regression
Assumes a functional form

MM xxxf ⋅++⋅+⋅+= θθθθ K22110),(θx (Eq.2)
where x = (x0, x1, …xM) are the attributes and θ = (θ0, θ1, …θM) are the function parameters.

More generally,

)()()(),(22110 xxxf MM φθφθφθθ ⋅++⋅+⋅+= Kθx
where φ’s are the so called basis functions

Example:

4
13

2
22110),(xxxf ⋅+⋅+⋅+= θθθθθx , where x = (x1, x2) are the attributes and θ = (θ0, θ1, θ2, θ3) are the

function parameters. Note that function f(x,θ) from the example is linear in the parameters. We can easily
transform it into a function from (Eq.2) by introducing new attributes x0’=1, x1’=x1 and x2’=x2

2, and
x3’=x1

4.
Linear regression is suitable for problems where functional form f(x,θ) is known with sufficient certainty.

Learning goal: Find θ that minimizes MSE

MSE is a function of parameters θ, so the problem of minimizing MSE can be solved by standard
methods of the unconstrained optimization.

Illustration of the regression:

xxf ⋅= θθ),(

Linear Regression

Linear regression can be represented by a functional form:

 f(x; θ) = θ0x0 +θ1x1 + … + θMxM = ∑
=
θ

M

j
jj x

0

Note: x0 is a dummy attribute and its value is a constant equal to 1.

Linear regression can also be represented in a graphic form:

 x0

 θ0

 x1 θ1
 . output
 .
 .
 .
 . θM

+

 xM

Goal: Minimize Mean Square Error (MSE):

MSE = ∑
=

θ−
N

i
ii fy

N 1

2));((1 x

⇒ MSE is a quadratic function in parameters θ
⇒ It is a convex function
⇒ There is only one minimum, it is the global minimum

Solution: Sufficient condition is ,0=
θ∂

∂

j

MSE ∀θj, j = 0, 1, …, M.

Therefore, find θj such that

,02
=⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
θ−−=

θ∂
∂ ∑ ∑

i
ij

k
ikki

j
xxy

N
MSE ∀j

There are M+1 linear equations with M+1 unknown variables ⇒ we can get a closed-form
solution.

Special Case: If some attribute is a linear combination of others, there is no unique solution.

0=
θ∂

∂
j

MSE ⇒ ⇒ (in matrix form) X∑∑∑
= ==

θ=
N

i

M

k
ijikk

N

i
iji xxxy

1 01

TY = XTXθ,

where:
X[N×(M+1)] = {xij} i=1:N, j=1:(M+1), (xij is jth attribute of ith data point)
Y[N×1] = {yi} i=1:N,

θ[(M+1) ×1] = {θj} j=1:(M+1)
Note: D = [X Y], i.e., [X Y] is what we defined previously as the data set.

The optimal parameter choice is then:

θ = (XTX)-1XTY, which is a closed form solution.

Note: the above solution exists if XTX is invertible, i.e. if its rank equals M+1, i.e. no attribute is a
linear combination of others (in Matlab, use function rank).
Note: using matrix derivations we can do the optimization in a more elegant way by defining

MSE =
N
1 (Y − Xθ)T(Y − Xθ) ⇒ ∇θMSE = −2XT(Y−Xθ) = 0[(M+1)×1]

⇒ θ = (XTX)-1XTY

Statistical results:

Assumption: the true data generating process (DGP) is

exy
M

j
jj +β= ∑

=0
, e is noise with E(e) = 0, Var(e)= σ2

Note: This is a big assumption!

Questions: How close is the estimate θ to the true value β?
Answer 1:

E[θ] = E[(XTX)-1 XTY] = (XTX)-1 XTE[Y] (remember, Y=Xβ+e[Nx1])
⇒ E[θ] = (XTX)-1 XTXβ + (XTX)-1 XTE[e]
⇒ E[θ] = β + 0 = β

Conclusion: if we repeat linear regression on different data sets sampled according to the true
DGP, the average θ will equal β (i.e., E[θ] = β), which are the true parameters. Therefore, the
linear regression is an unbiased predictor.

Answer 2: The variance of parameter estimate θ is
 Var[θ] = …(after some calculation)… = (XTX)-1σ 2

Conclusion: Var[θ] is a measure of how different estimation θ is from the true parameters β, i.e.
how successful is the linear regression. Therefore, quality of linear regression depends on the
noise level (i.e. σ 2) and on the data size. The variance increases linearly with σ 2 and decreases
as 1/N2 with the size of the dataset N.

More stringent assumption: the true DGP is

exy
M

j
jj +β= ∑

=0
, and e ~ N(0, σ 2) (i.e., e is Gaussian additive noise)

If the assumption is valid we could: Estimate θ can be considered as a multi-dimensional
Gaussian variable with θ = N(β, (XT X)-1σ 2). Therefore, we could do some nice thing such as test
the hypothesis that β j=0 (i.e. that attribute j is not influencing the target y).

Nonlinear Regression

Question: What if we know that f(x;θ) is a non-linear parametric function?
For example: f(x;θ) = θ0 + θ1x1x2

θ2, this is a function nonlinear in parameters.

Solution: Minimize MSE = 2));((1 θxii fy
N

−∑

 Start from the necessary condition for minimum:

⇒ ∑ =
θ∂

∂
−−=

θ∂
∂ 0);());((2

j

i
ii

j

ffy
N

MSE θxθx

⇒ Again, we have to solve M nonlinear equations with M unknowns.
⇒ But, this time closed-form solution is not easy to derive.

Math Background: Unconstrained Optimization:

Problem: Given f(x), find its minimum.
Popular Solution: Use the gradient descent algorithm.
Idea: The gradient of f(x) at the minimum is zero vector. So,

1. start from an initial guess x0;
2. calculate gradient ∇ f(x0);
3. move in the direction opposite of the gradient, i.e., generate new guess x1 as x1 = x0 −α∇f(x0),

where α is a properly selected constant;
4. repeat this process until convergence to the minimum.

Two problems with gradient descent algorithm:
1. It accepts convergence to a local minimum. The simplest solution to avoid the local minimum
is to repeat the procedure starting from multiple initial guesses x0.
2. Possible slow convergence to a minimum. There are a number of algorithms providing faster
convergence (e.g. conjugate gradient; second order methods such as Newton or quazi-Newton;
nonderivative methods)

Back to solving nonlinear regression using gradient descent procedure:
Step 1: Start from an initial guess for parameters θ0.
Step k: Update the parameters as θk+1 = θk −α∇f(θk)

Special Case: For linear prediction the update step would be θk+1 = θk +2αXT(Y−Xθk)

Logistic Regression – Classification by MSE Minimization

Remember: Classification can be solved by MSE minimization methods (E[y|x] can be used to derive
posteriors P(y∈Cj|x)).
Question: What functional form f(x;θ) can be an appropriate choice for representing posterior class
probabilities?

Option 1: What about linear model f(x;θ) = ? The range of the function goes beyond 0-1, so it

is not a good choice.

∑
=
θ

M

j
jj x

0

Option 2: We can use sigmoid function to do squeeze the output of a linear model to the range between 0

and 1: f(x;θ) = g(). If g(z) = e∑
=
θ

M

j
jj x

0

−z/(1+e−z), optimizing f(x;θ) is called logistic regression.

Solution: Logistic regression can be solved by minimizing MSE. Derivative ∂MSE/∂θj is

∑ ∑= = ⎟
⎠
⎞⎜

⎝
⎛ θ−−=

θ∂
∂ N

i
M
k ikkij

j
xgxfy

N
MSE

1 0'));((2 θx

Note: Solving ∇θMSE = 0 results in (M+1) nonlinear equations with (M+1) unknowns ⇒
optimization can be done by using gradient descent algorithm.

Maximum Likelihood (ML) Algorithm

Basic Idea: Given a data set D and a parametric model with parameters θ that describes the data
generating process, the best solution θ* is the one that maximizes P(D|θ), i.e.

θ* = arg maxθ P(D|θ)

P(D|θ) is called the likelihood, so the name of the algorithm that finds the optimal solution θ* is called
the maximum likelihood algorithm. This idea can be applied for both unsupervised and supervised
learning problems.

ML for Unsupervised Learning: Density Estimation

Given D = {xi, i=1, 2, …N}, and assuming the functional form p(x|θ) of the data generating process, the
goal is to estimate the optimal parameters θ that maximize likelihood P(D|θ):

P(D|θ) = P(x1, x2, …, xN|θ)

By assuming that data points xi are independent and identically distributed (iid)

P(D|θ) = (p is the probability density function.))|(
1

θx∏
=

N

i
ip

Since log(x) is monotonically increasing function with x, maximization of P(D|θ) is equivalent to
maximization of l = log(P(D|θ)). l is called the log-likelihood. So,
 ()∑ =

=
N
i ipl 1)|(log θx

Example: Data set D = {xi, i=1, 2, …N} is drawn from a Gaussian distribution with mean μ and standard
deviation σ, i.e., X ~ N(μ,σ2). Therefore,

22

2)(
2

2
1),|(σ

μ−
−

σπ
=σμ

x

i exp ⇒ ∑ = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

μ−
−

σπ
=

N
i

xl 1 2

2

2
)(

2
1log

Values μ and σ that maximize the log-likelihood satisfy the necessary condition for local
optimum:

∑ =
=μ⇒=

μ∂
∂ N

i ixN
l

1
1ˆ0 , ()∑ =

μ−=σ⇒=
σ∂
∂ N

i ixN
l

1
2ˆ1ˆ0

ML for Supervised Learning

Given D = {(xi,yi), i=1, 2, …N}, and assuming the functional form p(y|x,θ) of the data generating process,
the goal is to estimate the optimal parameters θ that maximize likelihood P(D|θ):

P(D|θ) = P(y1, y2, …, yN|x1, x2, …, xN,θ) = /if data is iid
 = ()∏ =

N
i iiyp

1
,| θx

ML for Regression

Assume the data generating process corresponds to:

efy +=),(θx , where e ~ N(μ,σ2)
Note: this is a relatively strong assumption!
⇒)),,((~ 2σθxfNy

⇒ 22

2)),((

2
1),|(σ

−
−

σπ
=

θx

θx

fx

eyp

⇒ ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

−
−

σπ
==

N

i

ii fy
DPl

1
2

2

2

)),((
2
1log)|(log

θx
θ

Since σ is a constant, maximization of l is equivalent to minimization of ()∑ =
−

N
i ii xfyN 1

2),(1 θ
Important conclusion: Regression using ML under the assumption of DGP with additive Gaussian
noise is equivalent to regression using MSE minimization!!

ML for Classification

There are two main approaches to classification involving ML: the Bayesian Estimation approach, and
logistic regression.

Bayesian Estimation

Idea: given a dataset D, decompose D into datasets { }, 1,...,jD j k= = # of classes, where jD D=U and

 for all i, j. For each i jD D∩ =∅ jD , we can estimate the pdf (|)jp y C∈x (the class-conditional
density). These densities can be estimated using the ML methods described in Lecture 3, provided we
make a (strong) assumption about the functional form of the density (e.g., Gaussian). We also note that
this approach is useful theoretically and when the input dimension is low, but density estimation is
generally not practical in high dimensions.

In order to obtain a classifier, we want to be able to estimate the probabilities (the posterior
class probabilities). A new input will be assigned to the class with the highest estimated posterior class
probability. We can estimate these probabilities by applying Bayes’ Theorem:

(|jp y C∈ x)

Bayes Theorem: if A & B are events, then

(|) ()(|)
()

P B A P AP A B
P B

=

So we see that

(|) ()

(|)
()
j j

j

p y C p y C
p y C

p
∈ ∈

∈ =
x

x
x

where ()jp y C∈ (the prior class probability) may be estimated without reference to the inputs as the
relative frequency of jC in the dataset D. For the purpose of classification, it is not necessary to compute

()p x , since we are interested only in the relative sizes of the posterior probabilities. Finally, we may
define the Bayesian classifier by

ˆ arg max (|) arg max (|) ()

k kC j C jy p y C p y C p y C= ∈ = ∈x x j∈

We reiterate that this method is only practically applicable in low dimensions, and requires strong
assumptions about the functional form of the class distributions.

Logistic Regression

The assumptions involved in logistic regression are similar to those involved with linear regression,
namely the existence of a linear relationship between the inputs and the output. In the case of logistic
regression, this assumption takes a somewhat different form: we assume that the posterior class
probabilities can be estimated as a linear function of the inputs, passed through a sigmoidal function.
Parameter estimates (coefficients of the inputs) are then calculated to minimize MSE. For simplicity,
assume we are doing binary classification and that {0,1}y∈ . Then the logistic regression model is

1(|) where
1 j j

j

ep y C x
e

η

ημ η θ= ∈ = =
+ ∑x

The likelihood function of the data D is given by

1

1 1

(|) (| ,) (1)i i

N N
y y

i i i i
i i

p D p y μ μ −

= =

= = −∏ ∏Θ x Θ

Note that the term reduces to the posterior class probability of class 0 when 1(1)i iy y

i iμ μ −− 0iy = , and the
posterior class probability of class 1 otherwise, so this expression makes sense. In order to find the ML
estimators of the parameters, we form the log-likelihood

1

log (|) [log (1) log(1)]
N

i i i i
i

p D y yμ μ
=

= = + −∑Θl −

The ML estimators require us to solve , which is a non-linear system of (M+1) equations in
(M+1) unknowns, so we don’t expect a closed form solution. Hence we would, for instance, apply the
gradient descent algorithm to get the parameter estimates for the classifier.

0∇ =Θl

	Binary Classification
	Linear Regression
	 Logistic Regression – Classification by MSE Minimization
	ML for Unsupervised Learning: Density Estimation
	ML for Supervised Learning
	 ML for Regression

	ML for Classification
	Bayesian Estimation
	Logistic Regression

