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Abstract

There has been an increasing interest in learning low-dimensional vector representations of 

medical concepts from electronic health records (EHRs). While EHRs contain structured data such 

as diagnostic codes and laboratory tests, they also contain unstructured clinical notes, which 

provide more nuanced details on a patient’s health status. In this work, we propose a method that 

jointly learns medical concept and word representations. In particular, we focus on capturing the 

relationship between medical codes and words by using a novel learning scheme for word2vec 

model. Our method exploits relationships between different parts of EHRs in the same visit and 

embeds both codes and words in the same continuous vector space. In the end, we are able to 

derive clusters which reflect distinct disease and treatment patterns. In our experiments, we 

qualitatively show how our methods of grouping words for given diagnostic codes compares with 

a topic modeling approach. We also test how well our representations can be used to predict 

disease patterns of the next visit. The results show that our approach outperforms several common 

methods.

I. Introduction

Electronic health record (EHR) data are widely used in healthcare research for exploratory 

and predictive analytics [1]–[3]. While EHR data contain structured information such as 

medical codes (e.g., ICD-9, ICD-10), they also contain unstructured information such as 

clinical notes which create challenges for designing effective algorithms to transform data 

into meaningful representations that can be efficiently interpreted and used in health care 

applications [4].

The success of extracting knowledge from clinical notes often requires the application of 

natural language processing (NLP) techniques. Learning distributed representations of words 

using neural network based models has been shown to be very useful in many NLP tasks. 

These models represent words as vectors and place vectors of words that occur in similar 

contexts in a neighborhood of each other. Among the existing models, Mikolov’s word2vec 

model [5] is among the most popular due to its simplicity and effectiveness in learning word 

representations from a large amount of data. Several studies applied word2vec on clinical 

notes data to produce effective clinical word representations for various applications [6]–

[10].
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While word2vec was initially designed for handling text, recent studies demonstrate that 

word2vec could learn representations of other types of data, including medical codes from 

EHR data [11]–[14]. Choi et al. used word2vec to learn the vector representations of medical 

codes using longitudinal medical records and show that the related codes indeed have similar 

vector representations [11]. Choi et al. designed a multi-layer perceptron to learn 

representations of medical codes for predicting future clinical events and clinical risk groups 

[12]. Gligorijevic et al. used code representation learned by word2vec to predict indicators 

of healthcare quality [14]. Choi et al. fed code representation learned by word2vec into a 

recurrent neural network to predict heart failure [13]. The limitation of those studies is that 

they focused only on representation of medical codes and did not utilize other sources of 

information from EHR data.

In this paper, we propose JointSkip-gram model: a novel joint learning scheme for 

word2vec model which embeds both diagnosis medical codes and words from clinical notes 

in the same continuous vector space. The resulting representations capture not only 

similarity between codes or words themselves, but also similarity between codes and words. 

Applications such as phenotyping [15], [16] and predictive modeling [12], [13] could benefit 

from these representations. As a clinical example, phenotypes for given disease concepts 

could be derived by retrieving their related words. To achieve this, directly applying 

word2vec and related algorithms may not be appropriate since codes and words are located 

in different parts of EHR and have different forms and properties. Our model is designed to 

tackle the heterogeneous nature of EHR data and builds a connection between medical codes 

and words in clinical notes.

In our experiments, we first qualitatively test if our representations are able to capture words 

related to given medical concepts. We compare our proposed model with Labeled LDA [17], 

a supervised counterpart of Latent Dirichlet Allocation (LDA) [18], which has been applied 

previously to clinical data analysis [19]–[21]. The results show that our representations 

indeed capture the relationship between words and codes. We also test the predictive power 

of our representations on the task of predicting patient diagnosis of the next visit given 

information from the current visit. The results show that representations learned by our 

approach outperform several common methods.

In the next section, we describe our method JointSkip-gram. In section 3 we explain 

experiment design and show results of our model and baselines. Finally in section 4 we 

make conclusion and discuss future research directions.

II. Method

In this section, we first formulate our problem setup. Then we overview Skip-gram [5], the 

architecture contained in word2vec toolkit designed for learning representations of natural 

language words which is also the basis of our method. Finally, we explain the proposed 

JointSkip-gram model.
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A. Basic Problem Setup

Assume our dataset is a collection of patient visits. Each visit S is a pair (D, N) where D 
consists of an unordered set of medical codes {c1, c2, c3…, cn} summarizing patient’s health 

conditions during the visit, and N consists of an ordered sequence of words from clinical 

notes recorded during the visit (w1, w2, w3…, wm). We denote the size of the code 

vocabulary C as ∣C∣ and the size of the word vocabulary W as |W|.

B. Preliminary: Skip-gram

Fig. 1 illustrates the framework of Skip-gram. Given a word sequence (w1, w2, w3…, wm), 

Skip-gram relies on scanning it sequentially. For every scanned word wi, the log-likelihood 

of the words within its context window of a predefined size q is calculated as

(1)

where p(wj∣wi) is the conditional probability of seeing word wj within the context of word 

wi. It is defined as a softmax function

(2)

where  is a T-dimensional vector providing the input representation of word wi and  is 

a T-dimensional vector providing the context representation of word wj. After training, skip-

gram provides two matrices: the input word matrix V ∈ ℝ|W|×T and the context word matrix 

V ∈ ℝ|W|×T word representation  is typically assumed to be a desired representation of 

word wi to be used in subsequent predictive or descriptive tasks.

To find the input and context vector representations of the words from the vocabulary, a 

stochastic gradient algorithm could be used to maximize the objective function (1).

Maximizing (1) is computationally expensive since the denominator  in (2) 

sums over all words wk ∈ W. Instead of maximizing (1), Mikolov et al. proposed the skip-

gram with negative sampling (SGNS) [5], which replaces log p(wj∣wi) in (1) with the sum of 

two logarithmic probabilities as follows. For each scanned word wi, the objective function is 

rewritten as

(3)

where probability p(wi, wj) is defined as sigmoid function :
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(4)

and  is the set of “negative words” that are sampled from a 

frequency distribution Pw over the word vocabulary W, where K is the number of randomly 

generated words for each context word. By maximizing (3), the dot product between 

frequently co-occurring words will become large and the dot product between rarely co-

occurring words will become small.

The objective of Skip-gram is to find vector representations of words. In the resulting T-

dimensional vector space, related words will be placed in the vicinity of each other, so their 

cosine similarity will be high.

C. Proposed model: JointSkip-gram

In the Skip-gram model, each scanned word is used to predict its neighbor words in the 

sequence. However, unlike the sequence of words in clinical notes N = (w1, w2, w3…, wm), 

medical diagnoses D = {c1, c2, c3…, cn} are an unordered set of medical codes. Therefore, 

context of code ci should include all other codes in the same visit: {cj|1 ≤ j ≤ n, j ≠ i}. 

Medical diagnosis can be viewed as a “bag” of patient’s health conditions during a visit. The 

semantics of a medical code can be inferred from other codes in the same bag. Furthermore, 

since both medical codes and clinical notes reflect a patient’s condition, there is also a 

relationship between them. For example, if a patient is assigned ICD-9 code “174” (female 

breast neoplasm), the clinical notes are likely to mention the patient’s surgery (e.g., 

mastectomy or lumpectomy) and the shape and size of a tumor.

To learn a relationship between medical codes and words in clinical notes, as shown in Fig. 

2a, in JointSkip-gram, every code in D is scanned and each scanned code ci is used to 

predict not only other codes in D, but also all words in N. The log-likelihood of code ci can 

be expressed as

(5)

Similarly to Skip-gram, the probabilities p(cj|ci) and p(wj|ci) are defined as softmax 

functions

(6)

Since we jointly learn vector representations of codes and words, matrices V ∈ ℝ(|W|+|C|)×T 

and U ∈ ℝ(|W|+|C|)×T include representations of both words and codes.
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After scanning every code in D, JointSkip-gram proceeds by scanning the word sequence N. 

As shown in Fig. 2b, each scanned word wi in N is used to predict words within its context 

window of a predefined size q. Each scanned word wi is also used to predict all codes in D. 

The resulting log-likelihood of word wi can be expressed as

(7)

in which

(8)

Maximizing the sum of objective functions (5) and (7) over the whole set of visits in the 

dataset is computationally expensive since in (6) and (8), the denominators sum over all 

words in W and all codes in C. Like SGSN [5], we propose negative sampling version of 

JointSkip-gram. Instead of calculating softmax function, negative sampling method use 

computationally inexpensive sigmoid function to represent the probability that two words or 

codes are observed co-occurring in the dataset. For each scanned code ci, the negative 

sampling objective function becomes

(9)

where

(10)

Cneg = {ck ~ Pc|k=1, …, K} is the set of “negative codes” that are sampled from a frequency 

distribution Pc over the code vocabulary C and Wneg = {wk ~ Pw|k=1, …, K} is the set of 

“negative words” that are sampled from a frequency distribution Pw over the word 

vocabulary W, where K is the number of randomly generated negative samples. By 

maximizing (9), the objective is to increase the probabilities of co-occurring pairs p(ci, cj) 

and p(ci, wj) while decreasing the probabilities of random pairs p(ci, cN) and p(ci, wN).

Similarly, for each scanned word wi, the negative sampling objective criterion becomes:
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(11)

where

(12)

Cneg and Wneg are the same as in (9). By maximizing (11), the probabilities of co-occurring 

pairs p(wi, wj) and p(wi, cj) will be large and the probabilities of random pairs p(wi, wN) and 

p(wi, cN) will be small.

Similarly to Skip-gram, stochastic gradient descent algorithm is applied to find vector 

representations of codes and words which maximize (9) and (11). Since JointSkip-gram 

represents codes and words in the same vector space, the words related to a given diagnostic 

code should be placed in its vicinity in the resulting vector space.

III. Experiments

A. Dataset description

MIMIC-III Dataset—The MIMIC-III Critical Care Database [22] is a publicly-available 

database which contains de-identified health records of 46, 518 patients who stayed in the 

Beth Israel Deaconess Medical Center’s Intensive Units from 2001 to 2012. The dataset 

contains both structured health records data and unstructured clinical notes data.

We used EHR data from all patients in the dataset. On average, each patient has 1.26 visits. 

For each visit, the average number of the recorded ICD-9 diagnosis codes is 11 and the 

average number of words in clinical notes is 7, 898. For each patient visit, we aggregated all 

diagnosis codes and clinical notes.

Preprocessing—For clinical notes, all digits and stop words are removed. The typos are 

filtered using PyEnchant, a Python library for spell checking. All words whose frequency is 

less than 50 are removed. The resulting number of unique words is 14, 302. Furthermore, the 

total number of unique ICD-9 diagnosis codes in the dataset is 6, 984. Codes whose 

frequency is less than 5 are removed. Since some codes are still relatively rare, we exploited 

the hierarchical tree structure of ICD-9 codes and grouped them by their first three digits. 

The size of final codes vocabulary is 752.

Training and Test Patients—We split the patients into training and test sets. All 38, 991 

patients with a single visit are placed in the training set. Of the 7, 527 patients with 2 or 
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more visits, we randomly assign 80% of them (6, 015 patients) to the training set and 20% of 

them (1, 512 patients) to the test set. Whole training set is used for learning representations.

JointSkip-gram training details—For each visit we created a (D, N) pair, as explained 

in II-A. The size T of vectors representing codes and words is set to 200. Stochastic gradient 

algorithm with negative sampling maximizing (9) and (11) is set to loop through all the 

training data 40 times. The number of negative samples is set to 5 and the size of the 

window for word context in the clinical notes is set to 5. Before applying JointSkip-gram 

model, we used a small portion (~10%) of clinical notes to pretrain word representations as 

we observed this improves our final representations.

To evaluate the quality of vector representations, we performed two types of experiments: 

(1) a qualitative evaluation of associations between codes and words in the vector space, (2) 

testing the predictive power of the vector representations on the task of predicting medical 

codes of the next visit. The following two subsections explain these experiments in detail.

B. Qualitative Evaluation

To evaluate how well JointSkip-gram represents words and medical codes in the joint vector 

space, we designed the following experiment. For a given ICD-9 diagnosis code, we retrieve 

15 words which are its nearest neighbors in the vector space. The retrieved words are 

expected to be related to the ICD-9 code.

As an alternative to JointSkip-gram, we use labeled latent Dirichlet allocation (LLDA) 

[17], a supervised version of LDA [18]. In LLDA, there is a one-to-one correspondence 

between topics and labels. LLDA assumes there are multiple labels associated with each 

document and assigns each word a probability that it corresponds to each label. LLDA can 

be naturally adapted to our case by treating medical codes as labels and clinical notes as 

documents. For a given ICD-9 diagnosis code we retrieve 15 words with the highest 

probabilities and compare those words with the 15 words obtained by JointSkip-gram.

First, we selected 6 diverse ICD-9 codes in the EHR data that cover both acute and chronic 

diseases as well as common and less common diseases. Then, for each of the 6 ICD-9 codes, 

we found the most similar 15 words using JointSkip-gram and LLDA approaches. Table I 

shows the list of 15 selected words by both methods for the 6 ICD-9 codes. For each ICD-9 

diagnosis code, we presented the two lists in a random order to a medical expert and asked 

two questions: (1) which list is a better representative of the diagnosis code, and (2) which 

words in each list are not highly related to the given diagnosis code. We recruited four 

physicians from the Fox Chase Cancer Center as medical experts for the evaluation.

The evaluation results are summarized in Table II. As could be seen, all 4 experts agreed that 

JointSkip-gram words are a better representative for ICD-9 codes 570, 348, and 311. For the 

remaining 3 codes (174, 295, 042), the experts were split, but on none of them the majority 

went with the LLDA words. Looking at the average number of unrelated words identified by 

the experts, we can observe that the experts found much less unrelated words in the 

JointSkip-gram groups than in the LLDA groups for all 6 ICD-9 diagnosis codes. For ICD-9 

code “570” (acute liver failure), JointSkip-gram finds “liver”, “hepatic”, “cirrhosis”, which 
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are directly related to acute liver failure. Most other words in the JointSkip-gram list are 

indirectly related to liver failure, such as “alcoholic”, which explains one of the primary 

reasons for liver damage. On the other hand, LLDA can hardly capture related words, as 

evidenced by an average of 9.25 words that experts found unrelated. For ICD-9 code “174” 

(female breast cancer), “295” (Schizopherenic disorders) and “042” (HIV), both Joint-

Skipgram and LLDA find highly representative words, although LLDA captures more 

unrelated words.

For code “311” (depressive disorder), both JointSkip-gram and LLDA have difficulties in 

finding related words. According to the feedback from one of our experts, only “abuse”, 

“hallucinations”, “alcohol”, “overdose”, “depression” and “thiamine” found by JointSkip-

gram are related to the disease while only “depression”, “tablet”, “capsule” found by LLDA 

are recognizably related to depression. We hypothesize that for common diseases (e.g., 

“depression” and “hypertension”), which are not the primary diagnosis or relevant to treating 

the main reason for the ER visit, physicians are not likely to discuss them in clinical notes. 

Thus, it is difficult for any algorithm to discover words from clinical notes related to such 

diagnoses.

C. Predictive Evaluation

Another way to evaluate the quality of the vector representations of words and medical 

codes is through predictive modeling. We adopt the evaluation approach used in [23], which 

predicts medical codes of the next visit given the information from the current visit. In the 

previous work on this topic, the authors of [12], [23] used medical codes as features for 

prediction. In our evaluation, we use both medical codes and clinical notes to create 

predictive features. To generate a feature vector for the current visit, we find the average 

JointSkip-gram vector representation of the diagnosis codes in the current visit and the 

average JointSkip-gram vector representation of the words used in clinical notes. Then, we 

concatenate those two averaged vectors. We call this method Concatenation-JointSG, we 

compare it with the following five baselines:

Concatenation-One—We concatenate the one-hot vector of medical codes and the one-

hot vector of clinical notes for each visit.

SVD—We apply singular vector decomposition (SVD) to Concatenation-One 

representations to generate dense representations of visits.

LDA—Using latent Dirichlet allocation (LDA) [18], each document is represented as a topic 

probability vector. This vector is used as the visit representation. To apply LDA, for each 

visit we create a document that consists of concatenation of a list of medical diagnosis codes 

and clinical notes. We note that LLDA is not suitable for this task since its topic only 

contains words.

Codes-JointSG—To evaluate the predictive power of medical codes, we create the 

features of the current visit as the average JointSkip-gram vector representation of the 

diagnosis codes.
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Words-JoinSG—To evaluate the predictive power of clinical notes, we create the features 

of the current visit as the average JointSkip-gram vector representation of the words in 

clinical notes.

To test if JointSkip-gram vector representation have advantage over those of Skip-gram, in 

addition to the above five baselines, we trained Skip-gram on clinical notes and on medical 

codes separately. The resulting vector representations are not in the same vector space. We 

use Skip-gram representations to construct 3 more groups of features:

Codes-SG—The features of the current visit are the average Skip-gram vector 

representation of the diagnosis codes.

Words-SG—The features of the current visit are the average Skip-gram vector 

representation of the words in clinical notes.

Concatenation-SG—We concatenate the features from Codes-SG and Words-SG.

Given a set of features describing the current visit, we use softmax to predict medical codes 

of the next visit. We use Top-k recall [23] to measure the predictive performance. In the 

experiment, we test Top-k recall when k = 20, k = 30, and k = 40.

Training details—To create features for all proposed models (Skip-gram, JointSkip-gram, 

LDA, SVD), we use the training set. To train the Skip-gram model, we use 40 iterations, use 

5 negative samples and the window size 5, the same as for JointSkip-gram. For SVD and 

LDA, we set the maximum number of iterations to 1000 to guarantee convergence. For 

JointSkip-gram, Skip-gram, SVD and LDA, we set the dimensionality of feature vectors to 

200. To train the softmax model for next visit prediction, we use only patients with 2 or 

more visits in our training set. The softmax model are trained for 100 epochs using a 

stochastic gradient algorithm to minimize the categorical cross entropy loss function.

Table III shows the performance of softmax models that use different sets of features. A 

model using Concatenation-JointSG features outperforms other baselines in all three Top-k 

measures. The results also demonstrate that both medical codes and clinical notes in 

Concatenation-JointSG contribute to the prediction of future visit, since using the 

concatenation of word representations and code representations outperforms both Codes-

JointSG and Words-JointSG.

Table IV shows a comparison between JointSkip-gram and Skip-gram features. In the table, 

features generated by JointSkip-gram outperforms their counterparts generated by Skip-

gram. While the differences between Words-JointSG and Words-SG are not very large, 

Codes-JointSG and Concatenation-JointSG significantly outperform Codes-SG and 

Concatenation-SG, respectively. This indicates that JointSkip-gram not only captures the 

relationship between medical codes and words, but also learns improved word and code 

representations.
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IV. Conclusion

In this paper, we proposed JointSkip-gram algorithm to jointly learn representation of words 

from clinical notes and diagnosis codes in EHR. JointSkip-gram exploits the relationship 

between diagnosis codes and clinical notes in the same visit and represents them in the same 

vector space. The experimental results demonstrate that the resulting code and word 

representation places medical codes and words related to those codes in the vicinity of each 

other. They also show that the representations learned by the joint model are useful for 

construction of visit features. The future work should consider applying joint representations 

to a broader range of tasks, such as cohort identification. It will be worthwhile to explore 

more advanced prediction models such as deep neural networks.
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Fig. 1. 
The framework of Skip-gram. Each word is used to predict its neighbours in a small context 

window. In this example the size of context window is 2.
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Fig. 2. 
The framework of JointSkip-gram.

(a) Each code is used to predict all other codes and words in the same visit.

(b) Each word is used to predict all codes in the same visit and its neighbour words in a 

small context window to keep its syntactic properties.
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TABLE I

Most important 15 words (ranked by importance) for ICD-9 codes “570”, “174”, “295”, “348”, “311”, “042”. 

Disease description and frequency are listed in the brackets.

570 (Acute liver failure, 1067) 174 (Female breast cancer, 139)

JointSkip-gram LLDA JointSkip-gram LLDA

liver arrest metastatic breast

hepatic pea mets pres

cirrhosis cooling cancer mastectomy

rising sun breast flap

markedly arctic metastases mets

shock rewarmed malignant ca

lactate cooled metastasis cancer

encephalopathy atrophine oncologist metastatic

amps dopamine oncology chemotherapy

picture rewarming chemotherapy malignant

rise cardiac infiltrating oncologist

elevated coded palliative polumoprhic

cirrhotic continue tumor reversible

bicarb prognosis melanoma mastectomies

alcoholic ems mastectomy crisis

295 (Schizophrenic disorders, 691) 348 (conditons of brain, 3781)

JointSkip-gram LLDA JointSkip-gram LLDA

schizophrenia schizophrenia hemorrhagic arrest

psych paranoid herniation herniation

bipolar psych temporal unresponsive

suicide psychiatric cerebral corneal

psychiatry disorders brain pupils

kill personality hemorrhage brain

paranoid hiss parietal cooling

ideation guardian ganglia posturing

psychiatrist psychiatry occipital head

hallucinations hypothyroidism extension hemorrhage

psychosis home surrounding noxious

personality aloe head family

sitter arrest effacement prognosis

disorder pt ataxia pea

abuse unresponsive burr gag
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311 (Depressive disorder, 3431) 042 (HIV, 538)

JointSkip-gram LLDA JointSkip-gram LLDA

patient depression aids aids

abuse tablet viral immunodeficiency

hallucinations blood fungal virus

withdrawal daily opportunistic human

ingestion campus bacterial viral

questionable mg disseminated load

thiamine garage immunodeficiency cooling

remote capsule tuberculosis partner

alcohol building organisms acyclovir

significant parking herpes thrush

overdose one undetectable fevers

prior discharge acyclovir induced

apparent normal detectable antigen

depression east chlamydia pneumonia

although coherent syphilis blanket
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TABLE III

Performance of predicting medical codes of the next visit. The average and standard error of Top-k recall 

(k=20, 30, 40) are provided.

Model Top-20 recall Top-30 recall Top-40 recall

Concatenation-One 0.489±0.004 0.590±0.004 0.661±0.004

SVD 0.478±0.004 0.588±0.004 0.652±0.004

LDA 0.431±0.004 0.530±0.004 0.605±0.004

Codes-JointSG 0.499±0.003 0.592±0.003 0.662±0.003

Words-JointSG 0.437±0.004 0.536±0.004 0.609±0.004

Concatenation-JointSG 0.506±0.003 0.599±0.003 0.670±0.003

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bai et al. Page 18

TABLE IV

Top-k recall (k=20, 30 and 40) for JointSkip-gram and Skip-gram. The average and standard error are 

provided.

Model Top-20 recall Top-30 recall Top-40 recall

Codes-SG 0.472±0.003 0.565±0.003 0.636±0.003

Codes-JointSG 0.499±0.003 0.592±0.003 0.662±0.003

Words-SG 0.432±0.004 0.532±0.004 0.605 ±0.004

Words-JointSG 0.437±0.004 0.536±0.004 0.609±0.004

Concatenation-SG 0.484±0.003 0.579±0.003 0.649±0.003

Concatenation-JointSG 0.506±0.003 0.599±0.003 0.670±0.003
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