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ABSTRACT
Clinical notes contain detailed information about health status of
patients for each of their encounters with a health system. Devel-
oping effective models to automatically assign medical codes to
clinical notes has been a long-standing active research area. De-
spite a great recent progress in medical informatics fueled by deep
learning, it is still a challenge to find the specific piece of evidence
in a clinical note which justifies a particular medical code out of
all possible codes. Considering the large amount of online disease
knowledge sources, which contain detailed information about signs
and symptoms of different diseases, their risk factors, and epidemi-
ology, there is an opportunity to exploit such sources. In this paper
we consider Wikipedia as an external knowledge source and pro-
pose Knowledge Source Integration (KSI), a novel end-to-end code
assignment framework, which can integrate external knowledge
during training of any baseline deep learning model. The main idea
of KSI is to calculate matching scores between a clinical note and
disease related Wikipedia documents, and combine the scores with
output of the baseline model. To evaluate KSI, we experimented
with automatic assignment of ICD-9 diagnosis codes to the emer-
gency department clinical notes from MIMIC-III data set, aided
by Wikipedia documents corresponding to the ICD-9 codes. We
evaluated several baseline models, ranging from logistic regression
to recently proposed deep learning models known to achieve the
state-of-the-art accuracy on clinical notes. The results show that
KSI consistently improves the baseline models and that it is par-
ticularly successful in assignment of rare codes. In addition, by
analyzing weights of KSI models, we can gain understanding about
which words in Wikipedia documents provide useful information
for predictions.
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1 INTRODUCTION
Clinical notes are free-text documents generated by healthcare pro-
fessionals documenting clinical status of patients during hospital
stay or outpatient care. Clinical notes contain various nuanced infor-
mation such as a history of illness, lifestyle, symptoms, treatment,
and medications. Clinical notes are used to facilitate communica-
tion between medical professionals treating the same patient over
time, to provide a basis for billing, and to create a record trail in
case of legal issues. Medical coding, which refers to translating a
clinical note into a set of medical codes from a medical ontology,
is necessary to obtain reimbursement for the provided healthcare
services. The most popular medical coding ontology is the Interna-
tional Classification of Diseases (ICD, with the most recent versions
ICD-9 and ICD-10), whose codes provide alphanumeric encoding of
diagnoses and treatments as shown in Table 1. Interestingly, beyond
their primary billing purpose, medical codes have been widely used
in healthcare research such as predictive modeling [1, 3, 4, 8, 33, 34]
and retrospective epidemiologic studies [24, 36, 40]. The reason for
popularity of medical codes in research is that it abstracts away
fine details of care from the free-text clinical notes and normalizes
a patient encounter to a standardized computer-readable format.

Medical coding is typically performed by professional staff trained
to understand clinical notes containing complex medical terminol-
ogy with frequent misspellings and abbreviations and transcribe
the notes into a limited set of appropriate medical codes from a
large menu of options (e.g., ICD-10 contains more than 100,000
codes). Thus, medical coding is an expensive, time consuming, and
inexact process. Due to these issues, there has been a significant
interest in developing automatic code assignment models and it has
been a long-standing research challenge [6, 10, 11, 13, 22, 25, 29–
31, 35, 37, 39].

Recently, deep neural networks with attention mechanism have
been shown to achieve the state-of-the-art performance on auto-
matic code assignment task [6, 29, 35, 39]. The attention mechanism
[2, 26] uses one or more layers of neurons to identify words indica-
tive of a specific disease and assigns them large weights. The success
of the attention mechanism could be attributed to the property of
medical code assignment: the relevant information for a specific
medical code is often located in a small portion of a clinical note.

Despite the success of deep neural networks with the attention
mechanism, there are still outstanding challenges that remain to be
addressed. In this paper we address an issue related to recognition
of rare codes. To illustrate the issue, let us consider MIMIC-III [18],
the largest publicly-available database containing 59,652 discharge
notes from the Beth Israel Deaconess Medical Center’s Intensive
Units. There are 942 unique 3-digit ICD-9 codes occurring in the
dataset in a highly unbalanced way, where the most common 10
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Figure 1: Our main goal is to predict medical codes from clinical notes by taking advantage of online knowledge sources. We
decompose the task into two parallel subtasks: the first subtask is traditional multi-label classification and the second subtask
is document similarity learning.

Table 1: Examples of 3-digit ICD-9 codes and their descrip-
tions (249-259).

ICD-9 code Description
249 Secondary diabetes mellitus
250 Diabetes mellitus
251 Other disorders of pancreatic internal secretion
252 Disorders of parathyroid gland
253 Disorders of the pituitary gland

and its hypothalamic control
254 Diseases of thymus gland
255 Disorders of adrenal glands
256 Ovarian dysfunction
257 Testicular dysfunction
258 Polyglandular dysfunction and related disorders
259 Other endocrine disorders

codes account for 26% of all code occurrences and the least common
437 codes account for only 1% of the occurrences. Thus, there is
highly limited information available for training a neural network
to recognize such rare codes. The rare codes problem is particularly
severe considering the length of clinical notes: each MIMIC-III
discharge note contains an average of 1,596 words. Even with the
attention mechanisms, it would be very difficult to learn to identify
relevant portions of text from only a few examples.

In this paper we consider exploiting online knowledge sources
to improve accuracy of medical code prediction from clinical notes.
There are rich disease-related online knowledge sources such as
Mayo Clinic, Wikipedia, and Medscape, which contain detailed
information such as signs, symptoms, and epidemiology useful for
differentiating different diseases in the clinical notes. For example,
as shown in Table 2, from a Wikipedia article introducing diabetes,
we learn that the typical signs of diabetes include frequent urina-
tion, increased thirst, and increased hunger. If a clinical note also
mentions in a passage that a patient is having these symptoms,
then the passage could be used as an evidence for diabetes. In this
paper we use Wikipedia, because it is an easily accessible online
resource with loose license constraints that has already been widely

Table 2: Wikipedia webpage for ICD-9 code “250" (partially
shown).

ICD-9 code: 250 (Diabetes mellitus)
Diabetes mellitus
Diabetes mellitus (DM), commonly referred to as diabetes, is a
group of metabolic disorders in which there are high blood sugar
levels over a prolonged period. Symptoms of high blood sugar
include frequent urination, increased thirst, and increased hunger.
If left untreated, diabetes can cause many complications. Acute
complications can include diabetic ketoacidosis, hyperosmolar
hyperglycemic state, or death. Serious long-term complications
include cardiovascular disease, stroke, chronic kidney disease,
foot ulcers, and damage to the eyes.

studied in the research community. In order to take advantage of
the existing state of the art neural networks for medical code pre-
diction, instead of building a completely new model, we develop
a framework called Knowledge Source Integration (KSI), which is
able to enhance the state of the art neural networks with informa-
tion from the external knowledge sources. As illustrated in Figure 1,
the proposed architecture consists of two components. The first
component is directly predicting codes from a note, and it could be
any of the state of the art neural networks. Our main contribution is
the second component, which is a neural network whose objective
is to learn similarity scores between a note and Wikipedia articles
about various diseases. Each similarity score measures how closely
a clinical note is associated with a corresponding medical code.
Finally, the proposed architecture combines the similarity scores
with the output of the first subtask and learns to optimize both
components to minimize the loss between the predictions and the
true labels.

Using Wikipedia as an external knowledge source for analyzing
clinical notes poses a couple of challenges. First, there are significant
differences between content of Wikipedia articles and clinical notes.
Wikipedia articles are mostly carefully edited and the terminology
used is optimized toward the general audience. Since Wikipedia
can be edited by anyone with Internet access, there is a certain risk
that the provided information is incorrect. On the contrary, clinical
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notes are written by medical professionals in a hurry and contain a
lot of non-standard abbreviations, misspellings and specialized med-
ical terminology. Second, the coverage of Wikipedia and clinical
notes are very different. As a knowledge base, Wikipedia elaborates
different aspects of diseases including pathophysiology, prevention,
history, and social impact, which are unlikely to appear in clinical
notes. On the other hand, clinical notes contain patient conditions,
including medications on admission and allergies, which are un-
likely to occur in Wikipedia articles. In summary, these two types
of documents have very different data distributions, which makes
unsupervised document similarity measures such as Word Mover’s
Distance [21] unsuitable, as we need to carefully deal with noise
and misleading information in the documents and focus on aspects
important for medical code prediction.

In order to properly handle the above challenges, in this paper we
develop a supervised document similarity learning model, which is
designed to measure the similarity of two types of documents with
very different data distributions. To accomplish this, we first take
intersection of a clinical note and a Wikipedia document. The inter-
section operation discards disparate parts of the text and focuses
on the common aspects of the two documents. Then, we project
the intersection into a low dimensional vector space to reduce di-
mensionality. Since terms remaining in the intersection might have
different importance for medical code prediction, next we apply
an attention mechanism to weight the terms. Finally, the weighted
intersection vector is transformed into a matching score, which
measures the similarity between the two documents. All matching
scores are combined with the output of the baseline neural network
model and trained to predict medical codes.

In our experiments we selected a variety of baseline models,
from simple logistic regression to a recently proposed attention
based deep neural network, which achieves the state-of-the-art
performance. We show that our KSI framework of incorporating
external knowledge sources consistently improves the baseline
models. Moreover, thorough analysis shows that KSI significantly
improves accuracy of rare code prediction. Finally, by analyzing
attention values and weights of the model, our framework reveals
which words in Wikipedia documents are the most influential to
the prediction, which is important for understanding the reasoning
behind the prediction.

Our work makes the following contributions:

• We propose a novel end-to-end framework to integrate exter-
nal knowledge sources with any end-to-end baseline neural
network model for the task of medical code prediction from
clinical notes.
• We empirically show that our framework improves a variety
of baseline models, including the state of the art attention
based neural networks, and that the improvement is particu-
larly large on rare codes.
• We demonstrate that our framework allows interpretability
via analyzing attention values and weights of the model,
which sheds light on the connection between the external
knowledge source and clinical text.

We organize the rest of the paper as follows: in Section 2 we
discuss the related previous work. Section 3 presents our KSI frame-
work. In Section 4 we explain the experiment design. The results
are shown and discussed in Section 5.

2 RELATEDWORK
2.1 Prediction of Medical Codes from Clinical

Notes
Automatic assignment of medical codes is a long-standing research
area dating back to 1990s [11]. [11] represents clinical notes and
ICD-9 codes as two TF-IDF vectors and calculates cosine similarity
in the joint vector space. Later, a variety of methods were applied
to this area, ranging from rule-based methods [10, 13] to machine
learning methods such as K-nearest-neighbor, relevance feedback,
Bayesian independence classifiers [22] and support vector machines
[25]. In [30, 31] the authors develop methods which exploit the hier-
archical tree structure of ICD-9 ontology. More recent models com-
bine neural networks with attention mechanism. In [6], the authors
apply hierarchical attention networks [41], which calculate both
word-level attention and sentence-level attention while predicting
medical codes. In [35], the authors apply character-aware neural
network to generate hidden representations of ICD-9 codes and
diagnosis section in clinical notes and use the attention mechanism
to match these two hidden representations. Their ICD-9 descrip-
tions are quite short (typically, less than 10 words), while in our
case a Wikipedia document contains thousands of words providing
multiple views of a disease. In [37] the authors propose a modified
GRU, where each dimension in the hidden vector corresponds to a
specific label, and use their model on medical code prediction. In
[29], the authors combine the attention mechanism with a convolu-
tional neural network [19] and report state-of-the-art accuracy on a
medical prediction task. In [39], the authors project both words and
labels into the same low-dimensional vector space and calculate
the compatibility/attention between them. Then, they combine the
attention values with word embeddings to get the final document
representation. None of the above approaches incorporate external
knowledge sources on the task of medical code prediction.

In [32], the authors use memory network to infer clinical diagno-
sis from clinical notes. While they also use Wikipedia as knowledge
source, their work is different from ours in several ways: first, their
focus is on a different task, which uses a much smaller diagnosis
label set directly derived from clinical notes, while we use accurate
medical codes as labels. Second, their memory network is highly
specialized and hard to generalize, while our framework can in-
corporate knowledge into any end-to-end neural network model
developed in this field. Lastly, their model is hard to interpret, while
our attention based model sheds light on how knowledge source
and notes are connected.

2.2 Attention Mechanism
The attention mechanism was first proposed in machine translation
[2, 26] to select the most relevant words in a source sentence while
predicting the next word in the target sentence. Typically, a neural
network is applied to the context vector, generated by either Re-
current Neural Network (RNN) or Convolutional Neural Network
(CNN), and attention values are expected to capture the importance
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of the context vectors. Final sentence or document representations
are simply the sum of context vectors weighted by the attention
values. The attention mechanism is widely used in natural language
processing [2, 6, 29, 35, 38, 39, 41] and sequence modeling in health-
care domain [5, 9, 27, 33]. Our variable-level attention mechanism
is the most similar to [9] because we compute attention on different
vector elements. Our work is different in a way that we focus on
learning attention of clinical words, instead of medical codes.

2.3 Document Similarity Learning
Document similarity computation transforms two documents into
a score depicting how similar the two documents are. Documents
are typically transformed into vectors, with each dimension corre-
sponding to the statistic of a word (count, occurrence or TF-IDF
[16]) in the vocabulary. Then, similarity between two documents is
calculated as the cosine similarity between the two vectors. Other
methods transform documents into low-dimensional vectors which
capture semantics of documents, such as singular vector decompo-
sition [12] or latent dirichlet allocation [7]. More recently, doc2vec
[23] uses architecture similar to word2vec [28] in order to learn
document emebddings. Word Mover’s Distance [21] exploits high
quality word embeddings and treats the document distance as an
instance of Earth Mover’s Distance. The above approaches are unsu-
pervised. Supervised approaches such as supervised Word Mover’s
Distance [17] and neighborhood components analysis [14] consider
label information while learning similarity between two vectors.
However, there is no explicit way to handle the situation where
each instance has multiple labels. Moreover, as mentioned before,
Wikipedia and clinical notes have very different distributions, thus
making direct measurement of the similarity unsuitable. On the
contrary, our approach first calculates the overlap between two
documents and then uses the attention mechanism to select the
most informative parts for medical code prediction.

3 METHODOLOGY
In this section we describe the proposed KSI framework. We first
introduce the problem setup and our goal. Then, we describe the
details of the proposed approach. Finally, we show how to interpret
the learnedmodel via analyzing attention values andweights of neu-
ral network associated with words in clinical notes and Wikipedia
documents.

3.1 Basic Problem Setup
Assume our dataset is a collection of clinical notes. Each note N
consists of a sequence of words. N is accompanied with a set of
medical codes M corresponding to the note. We denote the size
of word vocabularyW =

{
w1,w2, ...,w |W |

}
as |W | and the size of

medical code vocabulary C =
{
c1, c2, ..., c |C |

}
as |C |. In addition,

we have an external knowledge source K which contains a set of
documents K =

{
k1,k2, ...,k |C |

}
in which each document ki is a

sequence of words. Each unique medical code ci in the medical
code vocabulary C has a corresponding document ki in K . Given a
clinical note N , our goal is to predict associated medical codesM
when knowledge source K is available. This is naturally a multi-
label text classification problem.

3.2 KSI Framework
As shown in Figure 1, when each label (i.e., medical code) ci has
a document ki in knowledge source K , we can calculate the like-
lihood of label ci as the similarity between document ki and note
N . Therefore, we decompose the prediction task into two parallel
subtasks. As shown in Figure 2, the first subtask is to directly pre-
dict codes from notes, which can be achieved by any end-to-end
multi-label classification model in this field. We denote the baseline
model as f , which is a mapping from notes N to the label space.
The last layer of f is a vector o1 ∈ R |C |

o1 = f (N ). (1)

Since the task is multi-label classification, a sigmoid activation
function is applied to o1 and the i-th dimension in the resulting
vector represents the probability that code ci is the true label. Loss
values are calculated between the output and the true labels. In KSI
framework o1 is combined with the output of subtask 2 to get the
final output. We select a variety of baseline models and describe the
details in the next section. Our main focus is the second subtask,
i.e., to learn similarity scores between Wikipedia documents and a
note.

First, we represent note N as binary vector q ∈ {0, 1} |W | and
Wikipedia document ki as binary vector xi ∈ {0, 1} |W | . Binary
vectors encode the presence of words. If word occurs in the docu-
ment, then the corresponding element has value 1, otherwise it is
0. By encoding documents as binary vectors we lose the frequency
information. However, as mentioned before, the frequency does
not necessarily reflect the importance of words for code predic-
tion since these two types of documents have very different data
distributions, e.g., in the Wikipedia document about “influenza",
word “birds" has high frequency because there is one section in the
document talking about “bird flu". As we formulate the similarity
learning in a supervised framework, we expect the network to be
able to assign large weights to important words for the task.

After we represent both N and ki as binary vectors, we calculate
their element-wise multiplication as

zi = xi ⊙ q, (2)

where zi ∈ {0, 1} |W | represents the intersection of two documents.
Value of words that appear in both documents equals 1, otherwise
it is 0. By taking the intersection operation, we discard irrelevant
parts in two documents and focus on the common content between
them.

Then, we use an embedding matrixWe ∈ R
m×|W | to transform

the high-dimensional sparse vector zi into a low-dimensional vector
space

ei =Wezi , (3)
where ei ∈ Rm denotes the embedding of zi andm is the dimension-
ality of the embedding space. ei is expected to capture the semantic
information about the intersection set. In ei , each element has its
own latent meaning and represents a hidden topic. Since not all
topics are relevant to the prediction task, we use a variable-level at-
tention mechanism to weight variables in the vector. We use weight
matrixWa ∈ R

m×m to calculate the attention values as

αi = siдmoid (Waei ) (4)

vi = αi ⊙ ei , (5)
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Figure 2: The illustration of our KSI framework. First, it represents document ki and clinical note N as binary vectors xi and
q. Then, it performs element-wise multiplication of xi and q to obtain the intersection vector zi . Next, it projects zi into a
low-dimensional vector ei . Next, the attention mechanism is used to transform ei into a weighted vector vi . Finally, it projects
vi into a similarity score and the concatenation of all scores is combined with the output of baseline model to get the final
output.

where αi ∈ Rm is the attention weight vector and siдmoid () is the
sigmoid activation function. vi ∈ Rm is the weighted embedding
which is the element-wise multiplication of αi and ei .

Next, we use a vector vo ∈ Rm to transform vi into a similarity
score si as

si = v
T
o vi + bo , (6)

where si depicts how similar Wikipedia document ki and note N
are and bo is a scalar bias term.We concatenate the similarity scores
for all ki ∈ K to get the similarity vector o2 ∈ R |C | ,

o2 = [s1, s2, ..., s |C |]. (7)

Finally, the similarity vector o2 is combined with the output of
the baseline model o1 to get the final output vector o ∈ R |C | as

o = o1 + o2 (8)

ŷ = siдmoid (o), (9)
where ŷ ∈ R |C | is the predicted label vector. True labels are also
represented as a binary vector y ∈ {0, 1} |C | and the training proce-
dure minimizes the binary cross-entropy loss between the predicted
values and the true values,

LBCE (N ,y) = −(

|C |∑
i=1

yi log(ŷi ) + (1 − yi ) log(1 − ŷi )), (10)

where we sum the binary cross entropy errors over all dimensions
of ŷ. Note that equation (10) is the loss for one note. In our imple-
mentation, we calculate the average loss for multiple notes. We use
Adam optimizer [20] to minimize the above loss values. For deep

learning based models (CNN and RNN based models), it typically
takes a long time to converge. Therefore, in our training, we first
deactivate the document similarity learning part of the model to let
the baseline model converge. We activate the document similarity
learning part and disable parameters updating in the baseline model
when the performance of baseline model stops increasing on the
validation set as the early stopping criteria.

3.3 Interpreting KSI framework
Interpretability is a model’s ability to provide rationale behind its
behavior. In KSI framework, the larger the si is, the more evidence
Wikidedia knowledge source provides for predicting code ci . To
understand what evidence Wikipedia knowledge source provides,
we need to calculate the contribution of each variable in xi to the
final similarity score. By combining equations (6) and (5), we get

si = v
T
o vi + bo = v

T
o (αi ⊙ ei ) + bo . (11)

Since αi are weights of ei , we keep them fixed and decompose ei .
As in equation (3), ei is the sum of the columns ofWe weighted by
each variable in zi , and we can rewrite equation (11) as

si =v
T
o (αi ⊙ (

|W |∑
j=1

zi, jWe [:, j])) + bo

=

|W |∑
j=1

vTo (αi ⊙We [:, j])zi, j + bo .

(12)
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Using equation (2), we can further decompose zi, j as the product
of xi, j and qj ,

si =

|W |∑
j=1

vTo (αi ⊙We [:, j]qj )xi, j + bo . (13)

Since xi, j is a binary value indicating the presence of wordw j in
document ki , λ(xi, j ) = vTo (αi ⊙We [:, j]qj ) is the coefficient for
xi, j and measures how much word w j in ki contributes to final
similarity si .

4 EXPERIMENTAL SETUP
4.1 DataSets
In our experiments we use clinical notes in MIMIC-III dataset
and Wikipedia pages of ICD-9 diagnosis codes. Both datasets are
publicly available. The source code of KSI is available at https:
//github.com/tiantiantu/KSI.

Clinical notes dataset: MIMIC-III Critical Care Database [18]
is the largest publicly available electronic health records dataset
which contains de-identified health records of 46,518 patients who
stayed in the Beth Israel Deaconess Medical Center’s Intensive
Units from 2001 to 2012. We use all discharge summary notes and
the accompanying ICD-9 diagnosis codes. The total number of
discharge summary notes is 59,652. For each patient visit, we ag-
gregated all discharge summary notes. The number of aggregated
discharge summary notes is 52,722. On average, in each aggregated
note there are 1,596 words. During preprocessing we lowercased all
tokens and removed punctuations, stop words, words containing
only digits, and words whose frequency is less than 10. The final
word vocabulary contains 47,965 unique words. We extracted all
listed ICD-9 diagnosis codes for each visit and grouped them by
their first three digits. On average, each visit has 11 medical codes.
The code vocabulary contains 942 codes. Of those codes, we se-
lected a subset of 344 codes for which we found the corresponding
Wikipedia document and used those codes in our experiments.

Wikipedia knowledge dataset: Wikipedia maintains a web
page including all ICD-9 diagnosis codes and links to their web
pages if available1. Out of the 389 Wikipedia pages available for
the first three digits ICD-9 diagnosis codes, we found 344 of them
in MIMIC-III medical code vocabulary. We extracted Wikipedia
documents for these 344 medical codes and transformed them into
pure text. Thenwe removed punctuations and lowercased all tokens.
On average each processed document has 1,058 words. The size
of the word vocabulary of Wikipedia documents is 60,968, out of
which only 12,173 are also in the word vocabulary of MIMIC-III
clinical notes, showing that the two types of documents have very
different word distributions.

4.2 Baseline model selection
We selected 5 baseline models f for this study. In our experiments,
we use them stand-alone and as a component of the KSI framework
that incorporates Wikipedia knowledge in order to evaluate the
improvement the KSI framework brings. We briefly introduce the
selected baseline models below.

1https://en.wikipedia.org/wiki/List_of_ICD-9_codes

Logistic regression (LR). First, we represent note N as binary
bag-of-words vector n ∈ {0, 1} |W | . Then, we use a weight matrix
WLR ∈ R

|C |× |W | to map feature space to label space as

o1 =WLRn. (14)

For all baseline models, when combined with the KSI framework
we use equations (8) and (9) to get the predicted values. When used
as a stand-alone model, we apply sigmoid function to its output,

ŷ = siдmoid (o1). (15)

Recurrent neural network (RNN). We first project each word
in note N to a low-dimensional vector emb ∈ Rm . Then we trans-
form the sequence of words into a sequence of word embeddings
and feed it to a recurrent neural network,

h1,h2, ...,h |N | = RNN (emb1, emb2, ..., emb |N | ), (16)

in which hidden vector hi ∈ Rdo captures the context information
of embi . Then, max-pooling is used to compute the sequence vector
д ∈ Rdo and transform it into output o1 as

д(i ) = max
k

hk,i (17)

o1 =WRNN · д + bRNN , (18)
whereWRNN ∈ R

|C |×do ∈ and bRNN ∈ R
|C | . In our experiments

we use the long short-term memory network [15] as the specific
RNN selection.

RNN with attention (RNNatt). Instead of using max-pooling
of hidden vectors as the sequence vector, we can apply label-specific
attentions to them. Let H = [h1,h2, ...,h |N |]. For each label c j ∈ C
we use uj ∈ Rdo to calculate the attention as

α j = so f tmax (HTuj ), (19)

where so f tmax =
exp(x )∑
i exp(xi )

and exp(x ) is the element-wise expo-
nentiation of x . Then we calculate vector representation for label
c j as

pj =

|N |∑
k=1

α j,khk , (20)

and the final likelihood for label c j in o1 is

o1 (j ) = βTj pj + bj , (21)

in which βj ∈ R
do and bj is a scalar bias.

Convolutional neural network (CNN) [19]. As in the RNN
case, we first project each word in note N to a low-dimensional
vector emb ∈ Rm and transform the sequence of words into a
sequence of word embeddings. Next, we use a convolutional filter
WCNN 1 ∈ R

k×m×do to aggregate context information, where k is
the filter width and do is the size of filter output. Then for each
word embedding embn , we useWCNN 1 to capture its context as

hn = ReLU (WCNN 1 ∗ embn:n+k−1 + bCNN 1), (22)

where ∗ is the convolution operator, ReLU is the rectified linear
unit and bCNN 1 ∈ R

do is the bias. We pad both sides of the input
to make H = [h1,h2, ...,h |N |] ∈ Rdo×|N | . Here, as in the RNN case,
H is the matrix capturing context information of each word. In [19],
max-pooling is used to compute the sequence vector as

д(i ) = max
k

hk,i . (23)
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Table 3: Label frequency distribution

Number of Percentage of
Frequency range unique codes code occurrences
1-10 80 0.1%
11-50 73 0.6%
51-100 25 0.6%
101-500 82 6.7%
>500 84 92.0%

Finally, д ∈ Rdo is mapped to the label space:

o1 =WCNN 2 · д + bCNN 2, (24)

whereWCNN 2 ∈ R
|C |×do and bCNN 2 ∈ R

|C | .
Convolutional Attention (CAML) [29]: CAML combines the

attention mechanism with CNN and achieves the state-of-the-art
performance on medical code prediction. After calculating con-
text matrix H in equation (22), instead of applying max-pooling
in equation (23), CAML applies label-specific attentions following
equations (19) (20) (21). For each label c j ∈ C , we use uj ∈ Rdo to
calculate the attention as

α j = so f tmax (HTuj ). (25)

Then we can calculate vector representation for label c j as

pj =

|N |∑
k=1

α j,khk , (26)

and the final likelihood for label c j in o1 as

o1 (j ) = βTj pj + bj , (27)

where βj ∈ Rdo and bj is a scalar bias.

4.3 Evaluation metric
In order to properly evaluate different models, we report six differ-
ent metrics: average loss value, top-10 recall, macro-averaged AUC,
micro-averaged AUC, macro-averaged F1 and micro-averaged F1.
The average loss value is the average of binary cross-entropy de-
fined in equation (10) over all test notes. Top-10 recall is defined as
the number of correct medical codes ranked in the topmax(10, |M |)
in ŷ divided by |M |, where |M | is the number of medical codes for
the note, and averaged over all test notes. This metric is motivated
by the potential use case in computer-aided coding where the sys-
tem recommends several codes for human experts to review. AUC
(area under ROC curve) measures the probability that a classifier
ranks a randomly chosen positive instance higher than a randomly
chosen negative instance. F1 score is defined as the harmonic mean
between the precision and the recall. Micro-averaged values are
calculated by aggregating instances of all classes and calculating
the average metric over all instances. Therefore, this metric will be
dominated by the most frequent medical codes. Medical codes in
our dataset (3-digit ICD-9 codes which have Wikipedia webpage)
are highly imbalanced. As shown in Table 3, the most common
84 codes account for 92% of all code occurrences. On the other
hand, the macro-averaged metric first calculates the value for each
medical code separately and then takes the average over all the
codes. Since a frequent class is weighted the same as a rare class,

the macro-averaged metrics puts a higher emphasis on rare medical
code prediction.

Implementation details. All models are implemented with
Pytorch. We randomly divide the dataset into training, validation
and test sets in a 0.7, 0.1, 0.2 ratio. Early stopping on the validation
set is used to determine when to stop training. Training terminates
if top-10 recall does not improve in the next 5 epochs and the model
with the highest top-10 recall is used on the test set. Each batch
contains 32 notes. We use Adam optimizer with the learning rate
of 0.001 to minimize the loss function. The dimensionality of word
embeddingm and hidden vector of RNN and CNN do are set to 100
and 200, respectively.

5 EXPERIMENTAL RESULTS
5.1 Predictive results
We show the accuracies of the baseline models alone and with the
KSI framework in Table 4. From the table we can see that regardless
of the baseline model, KSI framework consistently improves the
accuracy. Although different metrics measure different aspect of
model performance, the KSI framework improves most of them.
Overall, the micro-averaged score is much higher than the macro-
averaged score, as expected because the macro-averaged score
emphasizes performance on the rare medical codes on which the
number of available training examples is too small for accurate
learning. On the other hand, in the micro-averaged scores medical
codes contribute proportionally to their frequency and the frequent
medical codes such as diabetes and essential hypertension provide
more examples for accurate learning.

Overall, deep learning models outperform the logistic regression
model, and KSI framework improves these complicated models
further, showing the effectiveness of exploiting external online
knowledge sources. The attention mechanism based models (RN-
Natt and CAML) outperform other models while CAML achieves
the best overall performance compared to the other baseline mod-
els. The success of CAML and RNNatt could be attributed to their
multi-label attention mechanism. For each label, both models use
a label-specific weight matrix to generate label specific attentions
over all words in the text. Therefore, they are able to pay atten-
tion to locations of text segments which refer to a specific disease,
which is important for medical notes since evidence about different
diseases can occur in different parts of clinical notes.

It is worth noting that KSI framework improves all macro F1
and macro AUC of all models by a large margin. For macro AUC:
4.8% for LR, 3.1% for RNN, 3.0% for RNNatt, 3.4% for CNN and
3.6% for CAML. As macro AUC is the unweighted average AUC
over all labels we hypothesize that the KSI framework is able to
improve AUC for labels which are not so frequent in the dataset. In
particular, since the frequent medical codes have a larger number
of examples for accurate learning, they stand to benefit less from
the external sources. On the contrary, the rare codes lack examples
and are benefiting greatly from the external sources.

To validate this, we divide medical codes into 5 groups based on
their frequencies in the dataset: [1, 10], [11, 50], [51, 100], [101, 500]
and [500, +∞). Then, we calculate macro-averaged AUC of each
medical code group for RNN, RNNatt, CNN, and CAML baselines
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Table 4: The predictive performance of baseline models alone and with KSI framework.

Method Macro AUC Micro AUC Macro F1 Micro F1 Test loss value Top-10 recall
LR 0.716 0.956 0.167 0.554 0.048 0.724
KSI+LR 0.764 0.961 0.196 0.557 0.055 0.738
RNN 0.854 0.972 0.204 0.653 0.032 0.772
KSI+RNN 0.885 0.978 0.244 0.662 0.030 0.798
RNNatt 0.850 0.973 0.264 0.647 0.035 0.791
KSI+RNNatt 0.880 0.976 0.300 0.659 0.033 0.802
CNN 0.825 0.968 0.214 0.626 0.040 0.753
KSI+CNN 0.859 0.973 0.237 0.637 0.039 0.775
CAML 0.855 0.978 0.257 0.656 0.032 0.806
KSI+CAML 0.891 0.980 0.285 0.659 0.032 0.814

Figure 3: Macro-averaged AUC by label frequency group for RNN, RNNatt, CNN and CAML. x-axis denotes the label frequency
group and y-axis denotes the macro-averaged AUC for each group.

and their counterparts under the KSI framework. The results are
summarized in Figure 3.

As shown in the figure, different methods perform differently
on each medical code group. Overall, the average AUC of medical
code prediction increases with the code frequency. For the least
frequent group (occurring less than 10 times), the average AUC
of medical codes is less than 0.8. For the most common group of
medical codes (occurring more than 500 times), all methods achieve
an averaged AUC of more than 0.9. The figure also shows the trend
in which the KSI improvement decreases with the frequency of
medical codes in the dataset. For example, for CAML model, KSI
framework brings 9.6% improvement of AUC on the least common
[1-10] group. On the [11-50] and [51-100] groups, KSI brings 5.8%
and 6.3% improvement, respectively. On the more common groups
[101-500] and [500,+∞), the KSI framework only increases AUC
by 1.5% and 0.1% respectively. The benefit of the KSI framework
on rare medical codes can intuitively be explained in the following
way. An intersection of a note and a Wikipedia document can be
viewed as a feature selection; it significantly narrows down the
feature space and makes it easier for the attention mechanism to
find the evidence for the rare medical codes. To validate this, in the
following paragraph we take a look at the contribution coefficient
we derived in section 3.3.

5.2 Informative evidence extraction
The success of medical code prediction depends on the ability to
extract evidence for inferring the specific codes. In equation (13),
we can calculate coefficient λ(xi, j ) of each wordw j for document
ki . λ(xi, j ) depicts the contribution of each word to predicting code

ci . We calculate the coefficient for each word in the document and
sort the words by their values. We study 10 words with the high-
est coefficients in order to gain insight into the performance of
the KSI framework. In Table 5 we show the top 10 words accord-
ing to the document similarity learning sub-network (subtask 2)
and we also show the top 10 substrings extracted by the baseline
sub-network (subtask 1). For the table, we used CAML as our base-
line sub-network since it outperformed other baseline models. In
equation (25), CAML calculates the attentions α j for all words in a
clinical note. These attentions are specific to medical code c j ∈ C ,
the higher the attentions, the more the underlying words contribute
to predicting c j . Since in equation (22) CAML uses a convolutional
layer to aggregate context information for a given word, the atten-
tions are generated on top of the n-grams, where n equals to the
filter size. Since in our experiments we set the filter size n to 3, the
table is showing the top 10 trigrams with the highest attentions.

In Table 5 we show results for three representative diseases,
both frequent and rare ones in order to better understand how KSI
framework creates its two sub-networks.

As shown in the table, the first medical code is “250" (diabetes
mellitus), which is one of the most frequent codes in our dataset.
Since CAML sub-network alone is able to predict this disease with
AUC as high as 0.97, the similarity sub-network cannot improve
the performance any further. By checking the trigrams with the
highest coefficients, we find that CAML sub-network finds highly
meaningful substrings for inferring diabetes such as “failure dia-
betes mellitus" and “significant diabetes mellitus". By contrast, the
similarity sub-network assigns the largest weight to word “name"
rather than to some words that are more directly related to diabetes.

79



Table 5: Words/trigrams with highest contribution by doc-
ument similarity learning (subtask 2) and baseline model
alone (subtask 1) for medical codes 250, 138 and 501.

Code: 250 (Diabetes mellitus) Count: 13,804
Subtask 2 Subtask 1 (CAML)
Final AUC: 0.97 Final AUC: 0.97
Word Weight Trigram Weight
name 0.69 failure diabetes mellitus 0.29
mellitus 0.44 significant diabetes mellitus 0.19
coronary 0.19 diabetes mellitus treated 0.15
different 0.15 diabetes mellitus chronic 0.11
date 0.14 dictated bylast name 0.05
showed 0.13 hematocrit percent past 0.05
oral 0.08 fraction percent hypokinesis 0.04
number 0.07 md number1 dictated 0.02
diabetes 0.07 heart failure diabetes 0.01
white 0.07 percent hypokinesis right 0.01

Code: 138 (Polio, late effects) Count: 68
Subtask 2 Subtask 1 (CAML)
Final AUC: 0.98 Final AUC: 0.74
Word Weight Trigram Weight
polio 2.48 angioseal device deployed 0.15
puncture 0.33 anxiety per pt 0.10
proximal 0.22 postcath restarted oa 0.06
illness 0.18 qd gi cocktail 0.06
femoral 0.14 hypotension pt remained 0.06
constipation 0.12 hypotension postcath restarted 0.04
hospital 0.08 ptca comments french 0.03
surgery 0.08 stricture web although 0.03
continued 0.08 discharge date service 0.03
condition 0.08 protonix qd gi 0.02

Code: 501 (Asbestosis) Count: 115
Subtask 2 Subtask 1 (CAML)
Final AUC: 0.96 Final AUC: 0.76
Word Weight Trigram Weight
asbestosis 5.21 asbestos exposure hyperlipidemia 0.95
transferred 0.68 medical history cad 0.01
inhalation 0.53 discharge diagnosis cad 0.01
illness 0.45 history cad sp 0.004
condition 0.30 one day five 0.003
two 0.17 cad sp pci 0.002
breath 0.16 cad sp pci 0.002
family 0.10 disp50 tablets refills 0.002
shortness 0.08 date date birth 0.002
current 0.01 homecare discharge diagnosis 0.002

This can be explained as follows: since there are many notes in the
training dataset to allow the CAML sub-network to achieve high
accuracy, errors back-propagated into the similarity sub-network
are small and the impact of code “250" on any of its weights is small.
Next, we take a look at two less common diseases on which CAML
sub-networks achieves smaller accuracy.

The second medical code shown in the table is “138" (polio, late
effects). This code occurs only in 68 notes. AUC of the CAML sub-
network is only 0.74. The similarity sub-network is very helpful
and it results in increasing the AUC to 0.98. Among the top 10 tri-
grams of the CAML sub-network, we see that only “hypotension"

Table 6: Intersection of a clinical note and Wikipedia docu-
ment for medical code “214" (Lipoma; count: 33) and final
coefficient for each word.

After taking intersection (containing only 35 words):
known surgical present cm last first prior one medical family
physical exam soft results blood disease possible identified
multiple greater diagnosis condition internal years size tissue
obese include removed wound common tumors minor lipomas
Final weights for words in intersection set:
obese: 1.42 lipomas: 0.70 tumors: 0.48 minor: 0.30
soft: 0.29 last: 0.24 wound: 0.22 tissue: 0.13 ... ...

is vaguely related to poliomyelitis. On the other hand, the similar-
ity sub-network identifies highly important terms such as “polio",
“puncture" and “constipation", which are all related to poliomyelitis
problems. These words are mentioned both in Wikipedia document
about “poliomyelitis" and in the clinical notes and are assigned
large coefficients.

Finally, we look at another rare code “501" (asbestosis). CAML
sub-network recognizes important word “asbestos". The similar-
ity sub-network identifies related words “asbestosis", “inhalation",
“breath" and “shortness", which are all symptoms of asbestosis. The
similarity sub-network improves the AUC for this disease from 0.76
to 0.96.

The strengths of the KSI framework in finding the important
evidence can be explained by the way it works: the main obstacle to
finding evidence in clinical notes for rare medical codes is that they
do not have enough occurrences for models to select useful features
from a large feature space. For example, an average note contains
1,596 words and CAML calculates an attention value for each word
in the document. Thus, it is difficult for CAML to learn the attention
values among more than a thousand words when medical codes
are rare. On the other hand, external knowledge sources such as
Wikipedia contain important words (signs, symptoms, typical treat-
ments) for each disease, which can be used to narrow down the
feature space. On average, each clinical note contains 407 unique
words and each Wikipedia document contains 517 unique words.
After taking their intersection, the resulting intersection set only
contains an average of 64 words, which is much smaller than the
original feature space. Then, the KSI framework learns weight for
each word in the intersection set, which is much easier compared
to learning weights from the original feature space. An example in-
tersection set and final weights are shown in Table 6. Even for very
rare labels such as “lipoma" the KSI framework is able to learn large
weights for relevant words. We will also show the effectiveness of
the intersection process in the next subsection.

5.3 Ablation study
To study contribution of each component in the KSI framework to
learning the document similarity score, we compare our method
to several variations of the framework. To focus on accuracy of
different variations, in this subsection we fix the baseline model
to be CAML and we study the effect of changing components of
document similarity learning part on accuracy. We consider the
following variations:
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Table 7: The predictive performance of KSI and its variations.

Method Macro AUC Micro AUC Macro F1 Micro F1 Test loss value Top-10 recall
KSI-attention 0.871 0.978 0.255 0.654 0.032 0.807
KSI-intersection 0.864 0.979 0.263 0.662 0.032 0.809
KSI 0.891 0.980 0.285 0.659 0.032 0.814

KSI-attention. In order to study the effect of variable-level at-
tention mechanism, we remove the attention vector in equation (5)
and directly use ei as input to the next layer.

KSI-intersection. In section 5.2 we analyzed the advantage of
taking intersection of clinical note vector q and Wikipedia docu-
ment vector ki . In this variation we swap the order of element-wise
multiplication and embedding. We first embed both q and ki into
low-dimensional vector space as

eq =Weq (28)

exi =Wexi , (29)
where eq ∈ Rm and exi ∈ Rm . Both eq and eki contain information
about all words in the respective documents. Then we calculate
element-wise multiplication of eq and exi as

ei = eq ⊙ exi , (30)

where ei is used as in equations (4) and (5).
The results are shown in Table 7. From the table we can see that

KSI outperforms other variations. Since the baseline model is fixed
to CAML, which performs well on frequent labels, all accuracies are
similar on micro-averaged metric. However, for macro-averaged
metric, we can observe sizable differences. KSI significantly outper-
forms other methods on macro AUC and macro F1. KSI-intersection
performs the worst on macro AUC, showing the importance of the
intersection on inferring rare medical codes. KSI-attention also
underperforms KSI by 2.0% and 3.0% on macro AUC and macro F1,
respectively, showing the effectiveness of attention mechanism on
selecting important features for prediction.

5.4 Qualitative insights from coefficients of KSI
Recent research about medical codes prediction [29, 35] observed
improved performance by incorporating words in ICD-9 code de-
scriptions into prediction model. These ICD-9 code descriptions
are typically very short, with less than 10 words (e.g., “secondary
diabetes mellitus with hyperosmolarity"). Nonetheless, it would be
very promising to design a small knowledge base specialized for
providing evidence for medical code prediction. To design such a
knowledge base, it is important to understand which evidence is
the most helpful for the task.

Besides serving as a framework that incorporates knowledge
into other end-to-end models, the KSI could provide an insight into
how Wikipedia helps clinical code prediction. As we showed by
calculating coefficient λ, we are able to see which words in the
intersection set are influencing the final prediction. We calculated
the average coefficient of each word for a given Wikipedia doc-
ument. Words with high average coefficients are influential and
should be considered for future specialized knowledge base con-
struction. We show words with the highest average coefficients for
four Wikipedia documents in Table 8.

Table 8:Words with highest average coefficients for four dis-
ease Wikipedia documents.

Wiki documents Words with highest coefficients
Episodic mood dis-
orders

lithium bipolar affective dysregulation mdd manic
anxiety psychiatrist hypomanic behavior

Lipoma lipoma lipomatosis lipomas malignant tumor
wound repeat tumors subcutaneous obese

Mild intellectual
disabilities

epilepsy retardation service supervision abuse ben-
zodiazepines psychiatry cerebral threatened

Kaposi’s sarcoma sarcoma aids tumor haart kaposi ks antiretroviral
chemotherapy meical hiv viral

As shown in the table, the influential words include represen-
tative symptoms for a disease such as “dysregulation", “anxiety",
“manic" and “retardation". The full name and abbreviation of dis-
eases are other types of highly informative words such as “lipoma",
“ks" and “mdd". Besides, risk factors such as “hiv" and “obese" are also
important evidence for inferring medical codes. These results shed
light on the connection between the knowledge source and clinical
notes, which provides guideline for future specialized knowledge-
based design.

6 CONCLUSION
Medical code prediction from clinical notes is an active research
area. The success of the task depends on finding evidence to infer
diagnosis. However, it is challenging to learn what is the corre-
sponding evidence in the notes when medical codes are rare. In
this paper we propose a framework called KSI which is able to
incorporate an external online knowledge source into any neural
network multi-label predictive model. The key component of the
KSI framework is to take intersection of a clinical note and external
knowledge document, then use an attention mechanism to select
important features in the intersection set. Finally, it calculates a
matching score between the note and each knowledge document.
KSI framework consistently improves the baseline model, espe-
cially when predicting rare codes. KSI framework also provides an
insight into the evidence from an external source that was useful
for the prediction. While our work uses medical codes which have
Wikipedia web pages as labels, there is still a substantial number
of medical codes without Wikipedia documentation. Our results
suggest that it would be worthwhile for the Wikipedia community
to create pages for all major ICD-9 and ICD-10 codes to not only
enhance the health knowledge of public, but also to bring benefits
to predictive modeling of clinical notes.
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