
  

   

Abstract— Traffic speed is one of the most important 

quantities for travel information systems. Accurate speed 

forecasting can help in trip planning by allowing travelers to 

avoid the congested routes, either by choosing the alternative 

routes or by changing the departure time. It is also helpful for 

traffic monitoring, control, and planning. An important feature 

of traffic is that it consists of free flow and congested regimes, 

which have significantly different properties. Training a single 

traffic speed predictor for both regimes typically results in 

suboptimal accuracy. To address this problem, a mixture of 

experts algorithm which consists of two regime-specific linear 

predictors and a decision tree gating function was developed. A 

generalized expectation maximization algorithm was used to 

train the linear predictors and the decision tree. The proposed 

algorithm was evaluated on a 5-mile stretch of I35 highway in 

Minneapolis containing 10 single loop detector stations, with 

prediction horizons ranging from 5 minutes to one hour ahead. 

Experimental results showed that mixture of experts approach 

outperforms several popular benchmark approaches. 

 

I. INTRODUCTION 

ESPITE the significant investments over the last few 

decades to enhance and improve road infrastructure 

worldwide, the capacity of road networks has not kept pace 

with the ever increasing growth in demand. As a result, 

congestion has become endemic to many highways and city 

streets. As an alternative to costly and sometimes infeasible 

construction of new roads, transportation departments are 

increasingly looking at ways to improve traffic flow over the 

existing infrastructure. The biggest challenge in 

accomplishing this goal is the ability to monitor traffic, 

estimate its current state, and forecast its future behavior. 

Having this ability, more efficient strategies for real-time 

traffic control and management could be developed. 

Moreover, informing travelers about the current and future 

traffic can motivate them to modify travel plans during 

congested periods and, in doing so, relieve the congestion.  

Due to importance of traffic forecasting, transportation 

research community developed and evaluated numerous 

statistical and machine learning methods for predicting 

traffic quantities such as traffic volume (number of cars per 

hour), speed, and travel time. In this paper, we focus on 
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short-term traffic forecasting [10], which refers to prediction 

horizons ranging from few minutes to an hour ahead. The 

baseline approaches for short-term traffic forecasting are 

random walk and historical predictions. The random walk 

method predicts the future traffic to be equal to the current 

traffic and is quite accurate for prediction horizons of up to 

few minutes ahead. The historical prediction uses the 

average historical traffic under the same conditions, such as 

location, day of the week, and time of the day, and is quite 

competitive for time horizons of over one hour ahead.  

As a generalization of historical prediction, k-nearest 

neighbor method has been used [12] to search for the most 

similar traffic patterns in historical data to the current traffic 

state. Parametric models that include linear regression 

[5,7,16] and autoregressive integrating moving average 

(ARIMA) [8,9] have also been popular thanks to their 

simplicity and reasonable accuracy. Machine learning 

models such as neural networks [13] and support vector 

machines [15] have also been used with success, indicating 

that the nonlinearities in traffic behavior could be exploited.  

Traffic flow can often be characterized as being in one of 

the several regimes. Typical two regimes are free flow, in 

which density of cars is low enough to allow uninterrupted 

flow of traffic near the speed limit, and congestion, in which 

high density of cars causes a significant drop in traffic speed. 

Learning a single predictor on data with regimes could 

require powerful nonlinear methods and result in an overly 

complicated model prone to overfitting [11]. As an 

alternative, it might be more reasonable to train simpler 

predictors on each regime separately. This idea can be 

implemented through the mixture of experts framework [6] 

which is illustrated in Figure 1. The figure depicts two 

experts that produce predictions y1 and y2 for the given input 

x and a gating function that decides how much to trust each 

expert at any given time. The objective of this paper is to 

propose a new mixture of experts architecture that is 

appropriate for traffic forecasting.  

There are two major classes of mixture of experts models 

for time series forecasting, depending on the functional form 

of gating function. In first, inputs to the gating function are 

the same as inputs to the experts. If, in addition, both the 

experts and the gating function are feedforward neural 

networks, the whole mixture of experts model can be 

represented as a feedforward neural network [14]. In second, 

the gating function is a Markov chain that models transitions 

between regimes probabilistically, and is leads to the regime 

switching model that has been popular in time series analysis 

[3]. The problem with the first approach is that it can still 

Traffic Speed Forecasting by Mixture of Experts 

Vladimir Coric, Zhuang Wang, Slobodan Vucetic 

D

2011 14th International IEEE Conference on
Intelligent Transportation Systems
Washington, DC, USA. October 5-7, 2011

978-1-4577-2197-7/11/$26.00 ©2011 IEEE 283



  

result in an overly complex model that is prone to overfitting 

and difficult to interpret. The problem with the second 

approach is that Markov chain can be too slow to adapt to 

changing traffic conditions. In our proposed design experts 

are linear regression models and gating function is a decision 

tree. Such design alleviates the overfitting problem, retains 

modeling flexibility, and allows easy interpretation of the 

resulting model.  
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Figure 1. Mixture of experts architecture 

 

It is worth mentioning that two related approaches were 

studied in the traffic forecasting literature. One accounts for 

regime change by detecting shifts in the process mean and 

updating the intercept term of an ARIMA model [1]. This 

approach can be treated as a simplified heuristic version of 

the mixture of experts approach. An approach that has been 

popular in traffic forecasting consists of fitting a separate 

linear predictor at different times of a day and ensuring the 

smooth transition of predictor weights during the day [16]. 

This approach can be treated as an extreme version of 

mixture of experts model where there are many experts and 

gating function is a deterministic function of the time of day.  

In this paper, we consider traffic speed forecasting and we 

evaluate the proposed and benchmark predictors on real-life 

traffic data from a highway segment in Minneapolis, MN. It 

should be noted that our approach can also be applied to 

other traffic forecasting problems such as prediction of 

traffic volume and travel time and also to similar time series 

forecasting problems in other domains. 

II. METHODOLOGY 

In this section we describe the proposed mixture of experts 

approach for speed forecasting. Let us denote with xi a set of 

attributes at time ti and with yi the target variable 

representing traffic speed at time ti+δ, where δ is the 

forecasting horizon. We assume that target variable is 

generated as, 

    iiki εxhy += )( , (1) 

where hk is the unknown regression function for k-th regime 

and εi is the target noise. If the noise is Gaussian, 
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where )|(π ikik xregimep=  is the prior probability that 

i-th example is generated by the k-th regime and )|( iik xyp  

is the target probability when the i-th example is generated 

by the k-th regime. The target of i-th example can be 

calculated as the expected value of the mixture model,  
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The learning problem is to determine ikπ  and )|( iik xyp . 

We assume that they are parametric functions expressed as 

)(π gik θ and ),|( piik xyp θ . The mixture model from (3) 

can now be rewritten as 
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where ),( pg θθθ =  are the model parameters. 

To facilitate model optimization, we consider the regime 

assignment as the unobserved data and introduce a latent 

binary indicator variable zik, where 
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By denoting }...1,{ NixX i == , }...1,{ NiyY i ==  and 

}...1,{ NiZ i == z , the log-likelihood of the complete data 

Dcomplete = {(xi, yi, zi), i = 1...N} is given by 
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To find θ that increases the complete log-likelihood (8), the 

expectation-maximization (EM) algorithm is used. EM starts 

with an initial guess of θ and updates it by alternating 

between expectation (E) and maximization (M) steps until 

convergence.  

In the E-step, the algorithm evaluates the expected value 

of the log-likelihood, with respect to the current estimate of 

the posterior probability of Z given X and Y. By denoting the 

current parameter estimate as θ
c
, the expectation can be 

expressed as   
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is the posterior that i-th example is from k-th regime. 

In the M-step, the algorithm updates the model 

parameters θ to maximize Q,  
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θ
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To optimize (11) we have to define the parametric functions 

)(π gik θ  and ),|( piik yp θx . This will be discussed in the 

following section.   

A.  Model optimization 

Let us discuss how to solve the optimization problem (11) 

depending on how )(π gik θ  and ),|( piik xyp θ  are defined.  

Starting from the assumption (2), we can define  
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where ),( kik xf w  is a predictor for k-th regime and  the 

parameter set is }...1),δ,{( Kkkkp == wθ . In this work, we 

will use linear regression functions k
T

ikk xxf ww =),( .  

Instead of using a parametric gating function )(π gij θ  we 

will use decision tree. Since decision tree is nonparametric, 

we will use notation ijπ  instead of )(π gij θ . As a result, 

direct maximization (11) of Q from (9) by gradient descent 

approaches is not possible. Instead, we will use a generalized 

expectation maximization procedure that is guaranteed to 

increase value of Q at each M step, instead of maximizing it. 

We accomplish the M step in two stages.  

In the first stage, for a fixed decision tree from the 

previous M step, we find θθθθp that maximizes Q from (9). 

Since optimization of wk does not depend on δk, we first 

optimize wk while treating δk as constant. For regime-specific 

function fk, the resulting problem is equivalent to minimizing 

the weighted squared error, 
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To minimize Ek, by remembering that fk is a linear regression 

function, we can obtain wk in a closed-form by solving the 

weighted regression problem, 
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where Γk is a diagonal matrix with entries { )(γ c
ik θ

, i = 

1…N}. Given wk, the remaining step is to optimize δk. By 

setting the derivative of Q with respect to δk to zero, the 

optimal δk is obtained in the closed-form as 
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In the second stage, we train a decision tree with 

probabilistic outputs to predict 
ik
γ  defined as 
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where 
c

ikπ is the decision tree from the previous M step, and 
c

pθ  are newly learned parameters from (14) and (15). The 

justification for the second stage comes from the first term 

on the right hand side of (9), which is maximized by 

approximating the posterior 
ik
γ . Both stages guarantee 

decrease in the objective function Q and, thus, the 

convergence of the generalized EM procedure to a local 

maximum.   

Table 1. Outline of the proposed mixture of experts algorithm 

1. Partition the data set D into K candidate regimes  

2. Train one predictor fk on each regime 

3. Assign all prior values πik to be a constant 

4. repeat 

a. Estimate noise variance δk from (15) 

b. Calculate posteriors γik (from (10), where pk 

is defined in (2)) 

c. Train a decision tree to learn the prior πik  

d. Train regime predictors fk (using (14)) 

5. until convergence 

6. Predict using (17) 

 

Let us briefly discuss technical details of training the 

decision tree with probabilistic outputs. The idea is to treat 

all examples assigned to k-th regime as class k. Since the 

assignment of examples to regimes in the EM approach is 

probabilistic (depending on γik values), we sample with 

replacement training set of size N from the original training 

set based on the probabilities γik. Probabilistic outputs 

ikπ are obtained simply as a fraction of all examples from 

class k in the leaf node. To improve robustness, we use the 

Laplace correction in estimation of ikπ . 

Following (4) and given the trained linear experts fk and 

decision tree that provides ikπ  values, label of i-th example 

is predicted as  
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Outline of the proposed mixture of experts algorithm is 

summarized in Table 1. 

III. EXPERIMENTAL SETUP 

A.  Data description 

To evaluate the proposed mixture of experts algorithm and 

compare it with alternatives, we used traffic data collected 

over a 5 mile stretch of I-35W highway in Minneapolis, MN 

as shown in Figure 2.  This part of Minneapolis highway 

network is located near the city center on which congestion 

periods are regularly occurring during both morning and 

afternoon rush hours (see Figure 3). This very congested 

segment contains 10 traffic measurement stations in each 

direction, with spacing of about half a mile. Each station 

measures traffic at every lane by the single loop detectors 

that are installed right beneath the pavement. Every single 

loop detector reports volume (how many cars pass over the 

sensor) and occupancy (how long the sensor was occupied) 

during each 30-second interval. The data covered 3 months, 

from March 1 to Jun 1 of 2003, during periods between 7am 

and 7pm. In this study we considered only traffic 

measurements at the second lane from left because it is a 
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Figure 2. Highway segment in Minneapolis covered by our study 

 

representative of typical traffic conditions. 

B. Data preprocessing 

For our experiments, we removed holidays and weekends 

because their traffic behavior is significantly different from 

weekdays (as seen in Fig. 3). In addition, we also removed 

several days with a large number of missing or corrupted 

measurements. For example, all measurements during 

Tuesday, March 18, are missing, while on Monday, March 3, 

estimated speed is unusually low during early morning hours. 

Both days were treated as outliers and were removed from 

data set. After removal, a total of 58 days remained in our 

data set.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

Figure 3. Traffic speed on sensor 8 during March 2003 
 

Starting from the raw 30-second volume and occupancy 

data, an important step is to estimate traffic speed. This is a 

nontrivial problem because relationship between speed and 

occupancy depends on lengths of vehicles passing over the 

sensor. We used the following standard approach [2] to 

estimate speed as  
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where length is the average vehicle length estimated as 
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where median is calculated over all 58 days in our data only 

during the non-congested time intervals and assuming that 

(1) free flow speed is 60 miles/hour (equal to the speed limit 

on this part of highway) and (2) average vehicle length does 

not change significantly during the day. Because speed 

estimation using this approach can be quite unreliable, we 

aggregated speed to 5-minute increments. 

C. Experimental setup 

The objective of our evaluation was to predict traffic 

speed in a range from 5 minutes to one hour ahead. The 

evaluated mixture of experts predictor consisted of two 

linear regression experts and a decision tree gating function, 

as described in Section 2. While our approach allows using a 

larger number of experts, we decided to experiment with two 

to allow testing a hypothesis that the EM algorithm will be 

able to discover free flow and congested regimes. Both 

experts and decision tree shared the same input attributes, 

although our approach is general enough and allows using a 

customized set of attributes for each component.  

Out of the 58 days in our data set, we used the first 40 as 

training set and the last 18 as test set. We trained a separate 

mixture of experts model for each of the 10 sensors and each 

of the time horizons ranging from 5 minutes to one hour 

ahead in increments of 5 minutes. Results are reported as 

Mean Absolute Errors (MAE). For all experiments we used 

the following 21 attributes: (1) Current speed (at time t) from 

all 10 sensors along the stretch; (2) Average historical speed 

at time t+δ from all 10 detectors on the stretch, where δ is 

the prediction horizon; (3) Current volume at sensor on 

which speed is predicted. For linear regression models, we 

also added the intercept term as the first attribute.  

We compared our approach with random walk, historical 

average, linear regression, regression tree, time varying 

coefficient regression (TVC), and Markov switching model.  

1. (RW) Random walk method predicts traffic speed by 

using current speed as prediction. 

2. (HIS) Historical average method calculates average 

historical speed at given time of the day and uses it for 

prediction.  

3. (LR) Standard linear regression predictor is the special 

case of the mixture of experts approach with a single 

regime. 

4. (RT) Regression tree is a standard data mining 

algorithm. To train the right sized tree, we used a subset 

of the training data for pruning. 

5. (TVC) Linear regression with time varying coefficients 

[4] has been popular in traffic forecasting [16]. The 

main idea is that regression coefficients w can vary 

gradually with time (t) and prediction horizon (δ). For 

given t and δ, TVC is trained by minimizing 
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where D are days in training data, T is length of a 

window centered around (t+δ), K is the kernel function 

that imposes smoothness. For our experiments, 

following [7], K(s) had values 0.3, 0.6, 1, 0.6, 0.3 at s = 

−2, −1, 0, 1, 2, respectively. 

6. (MS) Markov switching model [3] is similar to the 

proposed approach, the only difference being that the 

gating function is modeled as the Markov chain. 

IV. RESULTS 

Table 2 summarizes accuracies of various predictors for 

different time horizons. The abbreviation ME is used for the 

proposed mixture of experts model. The MAE results shown 

are average MAE over the 10 I-35W sensors. We can see 

that random walk predictor works better than historical 

predictor for horizons of up to 30 minutes ahead. 

Interestingly, although the two predictors behave very 

differently, their overall performance is similar. Both 

baseline predictors are inferior to the remaining approaches 

that use current speed and historical speed as attributes. 

Accuracy of TVC and linear regression method is similar, 

with TVC being slightly less accurate for short horizons and 

slightly more accurate for longer horizons.  Markov 

switching model is competitive for shorter horizons, but 

deteriorates for longer ones because its transition matrix 

cannot accurately capture regime changes over longer time 

periods. The proposed mixture of experts approach that uses 

regression tree as gating function achieves the best overall 

results. As compared to the Markov switching model, it is 

evident that regression tree is more appropriate than the 

Markov chain and that it is better capable of predicting the 

traffic regimes. It also produces more accurate results than 

the regression tree, which indicates that using linear experts 

is more beneficial than using constants at the leafs of a tree. 

Table 2. Reported MAE for 12 prediction horizons 

Hor. HIS RW TVC LR MS RT ME 

5 7.67 4.43 4.24 4.02 4.04 3.95 3.76 

10 7.67 5.38 5.03 4.89 4.89 4.93 4.69 

15 7.67 6.12 5.58 5.50 5.63 5.56 5.33 

20 7.67 6.72 6.00 5.93 6.08 5.92 5.70 

25 7.67 7.23 6.31 6.27 6.29 6.32 6.09 

30 7.67 7.74 6.59 6.59 7.07 6.51 6.30 

35 7.67 8.18 6.78 6.83 7.17 6.72 6.59 

40 7.67 8.63 6.97 7.04 7.63 6.84 6.76 

45 7.67 8.98 7.12 7.21 7.87 7.05 6.91 

50 7.67 9.33 7.25 7.35 7.97 7.13 7.07 

55 7.67 9.63 7.35 7.45 8.16 7.21 7.15 

60 7.67 9.94 7.41 7.54 8.58 7.31 7.24 

Total 7.67 7.69 6.39 6.39 6.78 6.29 6.13 

 

In Table 3 we report overall (over all forecasting 

horizons) MAE for each of the 10 sensors used in our study. 

Sensors 4, 5, 6 and 7 have larger MAE than the first and last 

theree sensors. The possible explanation is that there are 3 on 

and 3 off ramps that are located between sensors 4 and 8 and 

that their influence causes larger deviations on traffic speed 

and that they are more difficult to predict.  

To get a better insight into the forecasting performance, 

Figure 4 illustrates true and predicted speed 5 minutes and 1 

hour ahead by the mixture of experts method. As expected, 

5-minute ahead accuracy is much better. In the 1-hour ahead 

prediction, we can observe that accuracy during the 

congested regime is larger than during the free-flow regime. 

We can also observe a slight delay in recognizing the regime 

change. However, the mixture of experts approach is more 

successful in both than the competing predictors. 

Table 3. Reported MAE for all 10 sensors on the highway stretch 

Sens. HIS RW TVC LR MSE RT ME 

1 6.68 5.93 5.18 5.57 5.66 5.33 5.18 

2 6.64 6.25 5.46 5.73 5.61 5.42 5.27 

3 7.38 7.09 6.17 6.11 6.39 5.87 5.77 

4 8.82 7.78 6.87 7.01 7.26 6.98 6.79 

5 9.75 8.31 7.30 7.45 7.92 7.03 6.86 

6 9.00 8.56 7.13 7.08 7.83 6.85 6.79 

7 8.42 9.19 7.34 7.05 7.82 7.14 6.99 

8 6.93 7.88 6.09 5.96 6.59 5.99 5.82 

9 6.04 7.49 5.74 5.55 5.86 5.66 5.47 

10 7.09 8.44 6.58 6.34 6.88 6.63 6.39 

Total 7.67 7.69 6.39 6.39 6.78 6.29 6.13 

 

In Figure 5, we analyze the resulting two speed forecasting 

experts on sensor 1 – one specialized for congested and 

another for free flow regime. Each column in the figure 

shows importance of each of the 22 attributes (the intercept 

term, 10 current speeds, 10 historical speeds, and volume) 

where black dots indicate that the given attribute is 

significant (absolute value of its t-statistics is above 3). We 

can notice that the interception term (the first attribute) was 

important in all experts, other than in the congested expert 

for 5 minute ahead forecasting, which used the current speed. 

Congestion regime expert relies on current and historical 

speed of downstream sensors. The free flow expert found a 

larger range of attributes to be useful. 

Figure 4. Predictions of mixture of experts for 5 minutes and 1 

hour ahead for one of test days 

In Figure 6 we show the top portion of the trained 

regression trees in the mixture of experts model trained for 

speed prediction at sensor 1. The tree for 5 minute ahead 

forecasting gives the highest importance to the current speed 
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at sensor 1 and it also uses current speed at the immediate 

downstream sensors. On the other hand, the tree for 1 hour 

ahead forecasting gives higher importance to historical speed 

(it is the second most important attribute) and to current 

speed at sensors downstream, which give better information 

about upcoming regime changes. 

 

Figure 5. Comparison of t-statistics for different regime predictors 

 

Figure 6. Top of decision trees for sensor 1 for 5 min (left) and 1-

hour (right) ahead predictions 

 

Figure 7 shows comparison between actual traffic speed 

(in miles/hour) at sensor 1 and prior probabilities for expert 

1 given by the regression tree gating function. As can be 

seen, prior probability of expert 1 is tightly related with the 

actual speed, clearly indicating that expert 1 is specialized 

for the free-flow regime. This result confirms that the 

proposed mixture of experts model was successful in 

uncovering the major two traffic regimes. 

Figure 7. Comparison of actual speed and free flow prior for one 

of test days 

V. CONCLUSION 

In this paper we presented a mixture of experts approach that 

uses linear regression predictors as experts and regression 

tree as gating network. This relatively simple and 

computationally efficient approach managed to automatically 

discover free-flow and congested regimes and was more 

accurate than several competing algorithms, including 

regression trees, time varying regression, and Markov 

switching model. The structure of the proposed model, 

where both regression tree rules and linear forecasting 

experts can be easily interpreted by humans, can make it very 

attractive for traffic engineers. The proposed approach 

allows use of more than two experts, which could be useful 

in modeling of other traffic regimes, such as traffic accidents 

or harsh weather conditions. If human interpretation of the 

resulting forecasting model is not a primary objective, the 

proposed approach allows replacing linear predictors with 

more powerful neural networks. 
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