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from measurements with the Kalman filter (KF) algorithm and its 
extensions (1). For instance, one of the most commonly used traffic 
models for traffic state estimation is the cell transmission model 
(CTM) (2, 3), the first-order traffic model that can be used for esti-
mation of traffic density (4) or traffic speed (5). Since traffic mod-
els are typically highly nonlinear, the basic KF, designed for linear 
problems, cannot be used. This problem prompted development of 
methods for nonlinear state estimation that are extensions of the 
basic Kalman filtering idea. For instance, the extended KF (6) was 
successfully implemented in RENAISSANCE, a real-time freeway 
traffic network surveillance tool (7 ), as well as in the second-order 
traffic flow model METANET (8). When the traffic model is highly 
nonlinear, alternative approaches such as unscented KFs (9), mix-
ture KFs (4), particle filters (10), and ensemble KFs (5) have been 
shown to perform quite well.

All KF-based approaches for traffic state estimation consist of 
prediction and correction steps. In the prediction step, starting from 
the current state estimate, the traffic state in the next time step is 
predicted by the traffic model. In the correction step, if new mea-
surements are available, the predicted traffic state is corrected 
according to the measurements. However, the problem is that the 
traffic measurements provided by many types of sensors, includ-
ing the ubiquitous loop detectors, are most often aggregated across 
multiple time steps, making it difficult to know how to use them for 
state estimation. A standard way to address this issue is to use the 
aggregated measurements for correction only at the time steps when 
they become available and to not correct the predicted states in the 
remaining time steps. However, this approach is suboptimal since it 
could lead to large uncertainty and low accuracy of state estimation.

To solve this problem, Schreiter et al. recently proposed using 
the aggregate measurements for correction at all time steps dur-
ing the aggregation period by postulating that measurements at all 
time steps are equal to the corresponding aggregated measurements 
(11). Although this approach can be very successful when traffic 
is in the free-flow regime, it is not the best choice during the con-
gested regime or during transitions between the regimes. The use of 
signal reconstruction techniques is explored to re-create the mea-
surement at every time step from the available aggregated measure-
ments. In this light, the approach proposed by Schreiter et al. can 
be interpreted as stepwise reconstruction of original measurements 
with the aggregated measurements (11). In addition to the stepwise 
reconstruction, a few more signal reconstruction algorithms with 
increased complexity, ranging from linear interpolation to spline 
approximation to treating signal reconstruction as a convex opti-
mization problem, are explored. Finally, all these approaches are 
evaluated on the high-quality NGSIM traffic data.
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The estimation of the state of traffic provides a detailed picture of the 
conditions of a traffic network based on limited traffic measurements 
and, as such, plays a key role in intelligent transportation systems. Most 
of the existing state estimation algorithms are based on Kalman filtering 
and its variants, which, starting from the current estimate, predict the 
future state and then correct it on the basis of new measurements. Most 
often, traffic measurements are aggregated over multiple time steps, 
and this procedure raises the question of how to best use this informa-
tion for state estimation. A standard approach that performs the correc-
tion only at the time step when the aggregated measurement is received 
is suboptimal. Reconstructing the high-resolution measurements from 
the aggregated ones and using them to correct the state estimates at 
every time step are proposed. Several reconstruction techniques from 
signal processing, including kernel regression and a reconstruction 
approach based on convex optimization, were considered. The proposed 
approach was evaluated on real-world NGSIM data collected at Inter-
state 101, located in Los Angeles, California. Experimental results show 
that signal reconstruction leads to more accurate traffic state estimation 
as compared with the standard approach for dealing with aggregated 
measurements.

It has been estimated that traffic congestion costs the world econ-
omy hundreds of billions of dollars each year, increases pollution, 
and has a negative impact on the overall quality of life in metro-
politan areas. In order to solve this emerging problem, transporta-
tion departments increasingly rely on systems for real-time traffic 
control and management known as intelligent transportation sys-
tems (ITS). In addition to real-time operations management, ITS are 
valuable as a source of data for transportation planning and traveler 
information systems. The success of the ITS greatly depends on the 
ability to measure traffic conditions and estimate traffic states at a 
fine spatial and temporal scale.

Because of the importance of traffic state estimation, the transpor-
tation research community has developed and evaluated many algo-
rithms for estimation of traffic variables such as traffic flow, speed, 
and density. The spatiotemporal evolution of these traffic quantities 
is described by using deterministic traffic models and is estimated 
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Problem Description

The following nonlinear dynamical system is considered:
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where

	 xt	=	vector of state variables,
	 zt	=	� vector of measurements at time step t,
	mapping M	=	state transition model,
	 H	=	measurement model,
	 ηt	=	� state process Gaussian noise with zero mean and 

covariance Qt, and
	 ξt	=	� observation Gaussian noise with zero mean and 

covariance Rt.

In the traffic domain, the vector x represents a vector of traffic vari-
ables such as speed, density, or flow, and vector z represents sensor 
readings, in most cases of speed or flow. According to the CTM 
approach (2, 3, 5), which is used here, roads in the traffic network are 
divided into spatial cells of arbitrary but preferably equal or similar 
lengths. In the case of Eulerian traffic sensors, such as fixed loop 
detectors, cells are typically positioned in such a way that the sen-
sors are located at their downstream end and only a small subset of 
cells contains a sensor. The time is discrete, divided into steps whose 
length is constrained by the Courant–Friedrichs–Lewy conditions, 
stating that a moving vehicle cannot traverse more than one spatial 
cell during one time step (12). For example, if the free-flow speed 
equals 60 km/h and a stretch of freeway is discretized into spatial 
cells each 100 m long, the time step must not be longer than 6 s.

The traffic state estimation problem is to estimate a sequence of 
true states x, which are not directly observable, given a sequence of 
measurements z. If we choose functions M(i) and H(i) to be linear, the 
well-known KF closed-form solution can be used for this problem 
(1); otherwise, there are many approaches that have been proposed 
to deal with the nonlinearity of transition or observation functions, or 
both (5, 6, 9). All KF methods work in a similar way, by iteratively 
performing prediction and correction steps. In the prediction step, the 

next state xt is predicted given knowledge about the current state xt−1, 
and in the correction step, measurements zt of the current system state 
are used to reestimate (i.e., correct) the prediction. For various reasons, 
observations might not be available at every time step, in which case 
only the current state can be predicted without the correction step.

The dynamical system (Equation 1) implies that the measure-
ments zt are obtained during time step t. However, traffic measure-
ments are usually aggregated over a period of time to account for the 
inherent signal noise or to allow easier transmission and storage of 
large amounts of measured data. The aggregated measurements are 
reported every Δ time steps, where Δ is referred to as the aggregation 
period. As a result, instead of the observations zt, only the aggregated 
measurements yT at time steps that are multiples of Δ, T ∈ {Δ, 2Δ, . . .} 
are available. Vector yT available at time T is an aggregation of 
zt-values during the previous Δ time steps, T − Δ < t ≤ T. For instance, 
in case of the volume measurement, the aggregated volume is the sum 
of all volume measurements during the aggregation period, and in the 
case of the speed measurement, the aggregated speed can be the aver-
age speed during the aggregation period. To consider the second case 
in more detail, the aggregated speed can be calculated as follows:
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where, by assuming that the observation noise ξt is sampled inde-
pendent and identically distributed, it follows that the noise variance 
drops by a factor of 1/Δ as compared with the original measurements. 
During free flow, this result has a positive effect since H(xt) is stable 
and measurement noise is reduced. However, during the transition 
or congestion periods, the gain in measurement noise is offset by a 
loss of information about the fine-scale changes in the traffic state.

Figure 1 illustrates the measurement aggregation. Instead of the 
true measurement signal during period Δ, only its mean value yT at 
the end of that period is given.

FIGURE 1    Problem description.
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The main question when one is dealing with the aggregated mea-
surements is how to use them for state estimation. The problem with 
missing and aggregated measurements has also been recognized in 
other fields, such as hydrology and meteorology (13), where KF equa-
tions are modified to incorporate aggregated measurements. In eco-
nomics, the same problem occurs when aggregated univariate (14) and 
multivariate (15) economic time series are analyzed, and it is addressed 
by augmenting the state space. However, state space augmentation 
would be too cumbersome and too computationally costly for traffic 
state estimation, considering the fact that spatiotemporal traffic models 
are nonlinear and highly dimensional. Therefore, in this work a much 
simpler, but still effective, signal reconstruction approach for dealing 
with aggregated traffic measurements is examined.

The reconstructed signal at time step t is denoted ẑt, and the 
reconstruction function A(i), such that

ˆ , ( )z yt A t≡ ( ) 4

where y is the set of aggregated measurements until time T, y = 
{y1, . . . , yT}, such that t ≤ T. The reconstructed measurements ẑ t are 
used in the KF correction step instead of the unknown true measure-
ments zt defined in Equation 1. Depending on the form of the func-
tion A(i), different reconstructions of the aggregated measurement 
can be obtained, and in the following two sections several different 
choices for the reconstruction function are described.

Existing Methods

A typical way of dealing with the aggregated measurements is to 
apply the correction step only at the time steps in which the aggre-
gate measurements become available and to use them directly as 
measurements, ẑ t = yT, t = T. Consequently, the aggregated measure-
ment is used to correct the system state at the end of the correspond-
ing aggregation period, whereas during the remaining Δ − 1 time 
steps only the prediction steps are used. This method is referred to as 
the classic approach, since it is the most commonly used approach 
in existing traffic state estimation algorithms. For this approach, the 
reconstruction function is defined as follows:
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There are several issues with this method. First, zt at time steps 
t = Δ, 2Δ, . . . , KΔ does not necessarily equal yT. Second, informa-
tion about yT is used at only one of the Δ steps, although yT contains 
information about the aggregated values at all Δ steps. As a result, 
the state estimation will be suboptimal, characterized by sudden 
jumps in the estimates and by increasing uncertainty at time steps 
between the correction steps.

To address this problem, Schreiter et al. (11) recently proposed a 
method to reconstruct all zt vectors during the aggregation period. 
Specifically, instead of using the aggregated measurements yT to 
correct only the predicted state at time step T, as in the classic 
approach, the method corrects all previously predicted states. The 
reconstruction function by Schreiter et al. (11) is defined as follows:

A t T t TTy y, ( )( ) = − ∆ < ≤ 6

and represents a stepwise reconstruction of the aggregated sig-
nal (see Figure 1). The authors showed experimentally that this 

approach outperforms the classic approach from Equation 5. The 
stepwise reconstruction from Equation 6 is characterized by poten-
tially large discontinuities after every aggregation period. This 
feature could lead to suboptimal traffic state estimation, especially 
during the transition periods when the traffic undergoes regime 
changes or within congested periods. This method, unlike the clas-
sic approach, exhibits estimation delay of one aggregation period, 
since it waits until the new aggregated measurement yT is acquired 
at time step T to reconstruct the measurements zt and estimate the 
traffic states xt at time steps T − Δ < t ≤ T. This method is referred to 
as the stepwise approach.

The idea to reconstruct the original measurements and use them 
in the correction step of a KF can be further improved by employ-
ing more sophisticated signal reconstruction techniques. Several 
approaches for signal reconstruction and how they affect the accu-
racy of traffic state estimation from aggregated measurements are 
studied here.

Signal Reconstruction from 
Aggregated Measurements

The stepwise approach from Equation 6 is the simplest measurement 
reconstruction scheme from the aggregated data. Now several more 
sophisticated signal reconstruction approaches will be considered, 
including three standard piecewise interpolation techniques (linear, 
cubic spline, and cubic Hermite spline interpolation), as well as 
kernel regression and a convex optimization approach. During the 
interpolation process for all approaches other than the convex opti-
mization, the aggregated measurement yT will be assumed to be in the 
middle of the aggregation period (Figure 2a). More formally, when 
at time step T, it is assumed that yT was obtained at time step T − Δ/2. 
With this assumption, yT can be treated like a sample from the mea-
surement time series {zt} filtered with a centered window of length Δ. 
The following signal reconstruction techniques were studied.

Piecewise Linear Interpolation

Linear approximation by a straight line between the aggregated 
measurements (Figure 2) is
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It should be observed that when yT+Δ becomes available, the signal 
is reconstructed within the interval t ∈ (T − Δ/2, T + Δ]. As a result, 
the old signal reconstruction in the interval t ∈ (T − Δ/2, T] will be 
modified (compare this interval in Figure 2, a and b), which typically 
results in a more accurate reconstruction. This observation will be 
important when the delay allowed in the traffic state estimation is 
discussed in the following section.

Piecewise Cubic Spline Interpolation

As an alternative to interpolation by a straight line, cubic spline inter-
polation reconstructs the signal as piecewise cubic splines. Spline 
interpolation uses low-degree polynomials (of degree 3 in these 
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FIGURE 2    Piecewise linear interpolation approach: (a) after receiving measurement at time T and 
(b) after receiving measurement at time T 1 D.
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experiments) in each of the aggregation intervals and chooses them 
such that they fit smoothly together. Given T aggregated measure-
ments, the spline function fits these points with the spline curve such 
that it is made out of T − 1 cubic polynomials of the following form:

f t a b t c t d t i Ti i i i i( ) = + + + = −2 3 1 2 1 8, , . . . , ( )

where ai, bi, ci, and di are coefficients of the ith polynomial found 
during training. The reconstruction function is given by
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where i is defined as in Equation 8. The stepwise method is a special 
case of this approach, obtained by piecewise 0-degree polynomials. 
Also, upon receiving new aggregated measurement yT+Δ, the whole 
signal from time t = 1 until time t = T + Δ needs to be reconstructed.

Cubic Hermite Spline Interpolation

Cubic Hermite spline interpolation is similar to the previously 
introduced cubic spline interpolation, the difference being that the 
polynomials (Equation 8) are in the Hermite form (16).

Kernel Regression Approach

Kernel regression is a common smoothing technique (17 ) that recon-
structs a signal as a weighted average of the neighboring aggregated 
measurements:
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where k(i,i) is a kernel function. The common choice for the kernel 
function is the Gaussian kernel (used here), defined as follows:
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where σ is a kernel width parameter. For smaller values of σ only the 
closest neighbors are considered, whereas for larger σ the reconstructed 
signal becomes very smooth.

Convex Optimization Approach

Finally, the interpolation problem is defined as a convex optimization 
problem. Convex optimization relates to a class of nonlinear optimi-
zation problems in which both the objective to be minimized and the 
constraints are convex. Convex optimization problems are attractive 
because a large class of these problems can now be efficiently solved 
(18). Given the set of aggregated measurements y, it is proposed to 
find smooth estimates ẑ by solving the following convex problem:
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The objective function ensures that the approximation is as 
smooth as possible, and the constraint ensures that the mean value of 
estimated measurements within every aggregation interval is equal 
to the corresponding aggregated measurement. In this case, there is 
no analytical form for the reconstruction function A(i); rather, the 
solution of the optimization problem is used instead:

A t ty z, ˆ ( )( ) = 13

where, with a slight abuse of notation, ẑ t is the tth element of the 
solution of the convex problem (Equation 12).

Algorithm

To discuss the technical details of the traffic state estimation algo-
rithm based on Kalman filtering, which employs the proposed signal 
reconstruction techniques, it will be assumed that the newest aggre-
gated measurement was received at time T and that the measurement 
vectors zt have been reconstructed up to time point T. It will also be 
assumed that all the estimated states xt up to time point T are saved. 
Once the aggregate at time T + Δ becomes available, the reconstruction 
of the entire measurement sequence is repeated up to time point T + Δ. 
In the case of the stepwise reconstruction, the reconstructed ẑ t at time 
steps t < T will remain unchanged. Therefore, Kalman filtering is per-
formed from time step T to T + Δ by using the reconstructed signal ẑ t. 
With all other reconstruction techniques proposed in the previous 
section, the reconstructed ẑ t at time steps t < T will be modified.

Since the states xt during time period [T − Δ, T] were estimated 
by using the old reconstructed signal, one can back up in time and 
reestimate the states for period [T − Δ, T] by using the new recon-
structed measurement. This reestimation of the states is done to bet-
ter prepare the KF for the current estimation period [T, T + Δ]. Once 
the state reestimation for period [T − Δ, T] is completed, the state 
estimation proceeds by using the reconstructed measurements for 
period [T, T + Δ].

The algorithm for the KF with the proposed signal reconstruction 
techniques is summarized in the following (this algorithm requires 
an estimation delay of one aggregation interval, Δ). Time step T is 
assumed and further that the state of the KF at time step T − Δ is 
stored in memory.
Repeat:

1.	 Wait until aggregated measurement yT+Δ becomes available.
2.	 Reconstruct the measurement up to time step T + Δ using all 

available aggregated measurements.
3.	 Load from memory the KF state at time step T − Δ.
4.	 Reestimate the states by using the KF from time step T − Δ + 

1 to T.
5.	 Store to memory the KF state at time step T.
6.	 Estimate system states from time steps T + 1 to T + Δ by using 

the KF (and report this to the user).
7.	 Set T ← T + Δ.

Depending on the allowed delay in making the traffic state estima-
tion, several versions of the algorithm can be obtained. In addition 
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to the foregoing one-interval delay algorithm, it is interesting to con-
sider the offline version of the algorithm, which allows an arbitrary 
delay in the state estimation. This mode of operation is called the 
analysis mode. In this mode, it is assumed that a sequence of historical 
aggregated measurements is given and that the goal is to estimate the 
sequence of historical traffic states. This mode is useful when the his-
torical data are analyzed and is also used as a benchmark for the one-
interval delay mode, since better results with the use of the analysis 
mode are expected. Algorithmically, the difference between this mode 
and the foregoing algorithm is that only Steps 2, 6, and 7 are iterated.

Velocity Cell Transmission Model

In order to test the proposed signal reconstruction approaches for 
dealing with aggregated measurements, the velocity cell transmis-
sion (CTM-v) model (5) was employed because of its simplicity. It 
is based on the Lighthill–Whitham–Richards model (19, 20) and is 
defined as follows:
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where

	xt
i	=	speed at ith cell at time step t,

	L	=	 total number of cells, and
	g	=	numerical flow function defined as follows:
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where xc = xmax/2, R(x) = x2 − xmaxx, and xmax is the maximal speed 
allowed by the CTM-v model. Boundary conditions before the first 
cell and after the last cell modeled by Equation 14 are modeled as 
random walk (7 ), such that two ghost cells are added at the beginning 
and at the end of the road segment:
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The CVM-v model represents the model transition function M(i) 
from Equation 1 by combining Equations 15 and 16.

In the CTM-v model, it is assumed that sensors are measuring 
speed (e.g., they are double loop detectors) at a subset of cells. As a 
result, the observation matrix H from Equation 1 is a linear function 
of system variables, since the state of the system is directly mea-
sured. The measurement noise variance Rt is assumed to be constant 
in time and is denoted simply R.

Ensemble Kalman Filter

The ensemble KF (EnKF) was first introduced by Evensen as an 
alternative to the extended KF, which performs poorly when the 
state transition function is highly nonlinear (21). The EnKF belongs 

to a group of suboptimal estimators that use Monte Carlo or ensem-
ble integration. The EnKF uses a collection of state vectors (called 
the ensemble members of system states) to propagate the state for-
ward in time and to compute the mean and covariance needed for 
the correction step. The covariance estimated in this way is used to 
compute the Kalman gain, and the correction step equation stays 
the same as in the traditional KF. The EnKF algorithm employing 
the CTM-v model is summarized in the following steps. In Step 1, 
samples that are generated represent the prior knowledge about 
the initial state and this step represents initialization of the system. 
Steps 2 through 4 represent the prediction phase, whereas Steps 5 
and 6 represent the correction phase.

1.	 Generate N ensemble members of system states s n0, by drawing 
N samples from a Gaussian distribution, where n = 1, 2, . . . , N, and 
index 0 denotes the initial time step.

2.	 Make a prediction using the CTM-v model:

ŝ M st
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n
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3.	 Compute the mean of the ensemble:

x
N

st t
n

n

N

=
=

∑1

1

ˆ

4.	 Use the mean of the ensemble to compute the covariance of 
the predicted state:

P
N

E Et t t

T=
−

( )1

1

where matrix Et is defined as Et = [ŝ 1t − xt, . . . , ŝ Nt  − xt].
5.	 Calculate the Kalman gain as follows:
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6.	 Use the measurement to obtain a new ensemble:
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7.	 Go to Step 2.

Data Set

The EnKF with the described signal reconstruction approaches 
was tested on the NGSIM data set (22) collected at Interstate 101 
(Hollywood Freeway), located in Los Angeles, California. This 
stretch of highway is 640 m long and consists of five lanes and one 
on- and one off-ramp. Trajectories of all vehicles were collected 
on June 15, 2005, between 7:50 a.m. and 8:05 a.m. To collect such 
high-quality data, eight video cameras were used to monitor this 
section of highway, and from the recorded video data, coordinates 
for each vehicle were extracted every 0.1 s.

Compared with the typical double loop detector data, where length 
of highway is usually several kilometers and distance between detec-
tors is hundreds of meters, the portion of the highway in the NGSIM 
data set is very short in both time and space. To make this data set 
more suitable for traffic state estimation, the leftmost lane was divided 
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into 32 cells 20 m long with virtual detectors placed every 100 m. As 
a result, starting with the Cell Number 2, every fifth cell contains a 
virtual sensor that provides speed measurements. The whole 15-min 
time interval was divided into time steps of 0.6 s, which is consistent 
with the Courant–Friedrichs–Lewy conditions (12). The first 100 time 
steps were discarded because of missing data. As a result, the final dis-
cretization of time and space amounts to 32 spatial cells and 1,400 time 
steps. To simulate the aggregation, it was assumed that sensors report 
aggregated speed every Δ time steps. The reported yT aggregated val-
ues were obtained as the average speed during the Δ time steps plus a 
random Gaussian noise with mean zero and variance 1.

Experimental Setup

The study objective was to estimate the true traffic state available in 
the original NGSIM data given the aggregated measurements and to 
preprocess them by using various signal reconstruction approaches 
detailed earlier. The reported performance measure is mean absolute 
error (MAE), defined as follows:

MAE estim true= −∑1
17

L K
x xi t i t

i ti , ,
,

( )

where xi,t
estim and xi,t

true are estimated and true speed, respectively, for the 
ith spatial cell at time step t, where t = 1, 2, . . . , K, and i = 1, 2, . . . , L. 
Variables K and L represent the total number of time steps and spatial 
cells, respectively. The embedded MATLAB implementations were 
used for linear, cubic spline, and cubic Hermite spline interpolations 
(interp1 function), kernel regression was implemented in MATLAB, 
and the convex optimization approach was solved by using CVX, the 
MATLAB toolbox for disciplined convex programming (23). The 
experiments were repeated five times, and the average MAE and 
the standard deviation were reported.

The initialization of EnKF was done such that the ensemble 
members are sampled from a Gaussian distribution with mean 
60 km/h and variance 10 km/h. The mean and the variance were 
chosen on the basis of the documentation provided with the data set. 
The maximum speed on this stretch of highway was determined to 
be 105 km/h and the ensemble size was set to 200. The remaining 
parameters of the EnKF model were set to the following values: 
measurement noise variance, 1 km/h; state noise variance, 100 km/h 
for ghost and 5 km/h for all other cells. These parameter values were 
obtained by model calibration.

Results

First, the performance of two existing signal reconstruction meth-
ods (classic and stepwise) was compared with the performance of 
the five proposed reconstruction techniques. Separate experiments 
were run for different lengths of the aggregation interval Δ, where Δ 
∈ {1, 2, 4, 10, 20, 40}. When Δ = 1, the aggregation is not performed 
and the original, virtual loop detector measurements are used in 
the correction step. Although this is not a realistic setting, it is very 
useful as a benchmark. Results for the one-interval delay and the 
analysis mode are presented in Table 1.

Confirming the results from Schreiter et al. (11), the stepwise 
approach consistently achieves better performance than the classic 
approach, demonstrating the benefits of the measurement recon-
struction. However, although the stepwise and classic approaches 
achieve reasonable results for shorter aggregation intervals in both 
modes of operation, for longer intervals the proposed signal recon-
struction methods work better. For example, when the aggregation 
interval Δ is set to 40, the reconstruction approach based on convex 
optimization achieves 10% improvement over the stepwise recon-
struction. When the analysis and the one-interval modes are com-
pared, the reported MAE is nearly the same for all interpolation 
methods, except for cubic spline interpolation. The reason is poor 
interpolation of the cubic spline method for interval t ∈ (T − Δ/2, T], 
stemming from the use of higher-degree polynomials. However, in 
the analysis mode only interpolation is performed, which leads to 
improved performance. The performance of the convex optimiza-
tion approach and the linear interpolation approach is very similar 
in all settings.

For the remaining experiments, the aggregation interval was 
fixed to Δ = 20. To get better insight into the state estimation per-
formance, Figure 3 shows the reconstructed measurement signal 
for the cell with a sensor obtained with different reconstruction 
methods. The difference between the proposed approaches and 
the stepwise approach is clearly visible; proposed approaches fol-
low the true (unobserved) measurement much closer and without 
sudden jumps.

For further insight, Figure 4 demonstrates the difference in speed 
estimation between the stepwise and cubic Hermite interpolation 
approaches on two representative types of cells, one with and one 
without a virtual sensor. When the approaches are applied to the cell 
with a sensor, the step function in the stepwise approach does not 
model traffic speed well during the transition periods, whereas the 
cubic approach handles these situations well. Both approaches fail 

TABLE 1    MAEs for Different Aggregation Intervals

Mode Δ Classic Stepwise
Linear  
Interpolation

Spline  
Interpolation

Hermite 
Interpolation Optimization

Kernel 
Regression

One-interval 1 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07
    delay 2 4.90 ± 0.05 4.74 ± 0.01 4.74 ± 0.06 5.02 ± 0.08 4.82 ± 0.05 4.75 ± 0.07 4.92 ± 0.03

4 5.30 ± 0.07 4.79 ± 0.06 4.80 ± 0.05 5.05 ± 0.04 4.83 ± 0.07 4.79 ± 0.06 4.93 ± 0.02
10 6.10 ± 0.05 4.96 ± 0.04 4.87 ± 0.03 5.12 ± 0.02 4.88 ± 0.02 4.86 ± 0.06 4.85 ± 0.03
20 7.12 ± 0.03 5.11 ± 0.06 4.89 ± 0.02 5.29 ± 0.02 4.97 ± 0.02 4.95 ± 0.04 4.95 ± 0.03
40 9.06 ± 0.06 5.73 ± 0.06 5.26 ± 0.04 5.84 ± 0.03 5.31 ± 0.01 5.24 ± 0.03 5.49 ± 0.02

Analysis 1 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07 4.73 ± 0.07
2 4.90 ± 0.05 4.74 ± 0.01 4.74 ± 0.04 4.72 ± 0.04 4.79 ± 0.04 4.68 ± 0.05 4.85 ± 0.04
4 5.30 ± 0.07 4.79 ± 0.06 4.73 ± 0.04 4.69 ± 0.06 4.69 ± 0.04 4.72 ± 0.03 4.81 ± 0.04

10 6.10 ± 0.05 4.96 ± 0.04 4.80 ± 0.03 4.82 ± 0.05 4.83 ± 0.03 4.80 ± 0.05 4.83 ± 0.03
20 7.12 ± 0.03 5.11 ± 0.06 4.91 ± 0.05 4.90 ± 0.02 4.90 ± 0.05 4.96 ± 0.02 4.96 ± 0.06
40 9.06 ± 0.06 5.73 ± 0.06 5.27 ± 0.03 5.26 ± 0.02 5.34 ± 0.03 5.26 ± 0.04 5.57 ± 0.02
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FIGURE 3    True state and reconstructed measurements for different interpolation approaches for cell with sensor: (a) stepwise 
approach, (b) linear interpolation approach, (c) cubic Hermite interpolation approach, and (d) optimization approach.
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FIGURE 4    True and estimated speed for stepwise and cubic interpolation approaches for (a, b) cells with sensor. 
� (continued)
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to model short, sudden jumps in speed at time step 1.100 because of 
the aggregation of measurements. However, when the approaches 
are applied to the cell without a sensor, they are both less accurate 
since measurements are not available for this cell, and the correction 
step is never performed.

Table 2 reports the MAEs for different types of spatial cells. More 
specifically, Cell 1 represents the error for all cells that have virtual 
detectors, Cell 2 for all cells that are located immediately down-
stream of the cells with detectors, and Cell 5 is for cells located 
immediately upstream of the cells with sensors. From Table 2, it can 
be concluded that most approaches achieve the lowest error for cells 
with detectors and the highest error for the cells located the furthest 
from the detectors. Cells that are located downstream of sensors 
have lower error than cells located upstream of sensors. This finding 
can be explained by the fact that there are several backward shocks 
in the data set, which the CTM-v model reproduces well. The classic 
approach has a very high error for all cells, even cells in which the 
detectors are located. It is important to mention that the ghost cells 
modeling boundary conditions are not taken into consideration for 
this analysis.

Conclusion

In the traffic domain, measurements at every time step are typically 
not available; instead, only aggregated measurements over predefined 
aggregation intervals are given. This procedure can pose a problem 
when traffic states are estimated, since the popular KF methods 
achieve state-of-the-art performance only when the measurements are 
available without gaps. To solve this issue, it was proposed to recon-
struct the high-resolution measurement by using several approaches. 
It was further demonstrated how the reconstructed signal is used 
with the EnKF employing the CTM-v in two modes of operation: 
online one-interval delay mode and offline analysis mode. The results 
show the benefits of the proposed approach, which outperformed 
the existing methods and improved the accuracy of the underlying 
traffic model.
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