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Abstract 

 
 

One of the biggest challenges of current climate research is 
to characterize and quantify the effect of aerosols on the 
global and local weather. This requires an accurate 
prediction of Aerosol Optical Density (AOD) which is 
defined as the amount of loss a beam of light incurs when it 
passes through the atmosphere. In this paper a neural 
network-based data-driven prediction model is considered 
which uses collocated satellite (MODIS) observation and 
ground-based (AERONET) AOD retrievals as predictors 
and target respectively. This paper studies an active 
learning-based data collection method which will facilitate 
the learning of a sufficiently accurate AOD prediction 
model using a minimal set of labeled training data by 
querying the labels of only the most informative data points. 
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1. INTRODUCTION 
 
 Aerosols are small solid or liquid particles 
suspended in air, emanating from natural or man-made 
sources. They proved to be very influential in shaping the 
short-term and long-term weather of the earth both globally 
and locally. They have both warming and cooling effects on 
earth’s surface and atmosphere due to their absorption and 
reflection of solar radiation. An important metric of 
aerosol’s concentration in the atmosphere is Aerosol Optical 
Density (AOD), which is a dimensionless quantity and is 
defined as the amount of depletion a beam of sunlight incurs 
due to absorption and scattering by aerosols when it travels 
through the atmosphere. Along with the atmospheric model, 
AOD can provide useful estimates of atmospheric effects on 
the transmission and reflection of solar radiation and 
therefore helps in building climate models.  
 There are two sources of observations which aid 
retrieval of AOD. AEROsol robotic NETwork (AERONET) 
is a global remote sensing network of about 540 ground-
based radiometers which retrieves AOD several times an 
hour under clear-sky conditions. The AERONET retrievals 

are very accurate and therefore are considered as ground-
truth value when satellite-based retrievals are validated. On 
the other hand The MODerate resolution Imaging 
Spectrometer (MODIS), aboard NASA’s Terra and Aqua 
satellites, is one of the major instruments for satellite-based 
AOD retrieval. MODIS [1] observes reflected solar 
radiation over a large spectral range with a high spatial 
resolution and almost daily coverage of the entire Earth. 
MODIS has higher spatial coverage but moderate retrieval 
accuracy, whereas AERONET has very limited spatial 
coverage but provides highly accurate retrieval.  

Most operational deterministic algorithms that retrieve 
AOD from satellite observation are constructed as inverse 
operators of high-dimensional non-linear functions derived 
from forward-simulation models according to the domain-
knowledge of the aerosol physical properties. AOD is 
retrieved by matching observed reflectance with the 
simulated values stored in the Look-Up Tables (LUT). 
These algorithms are manually tuned by domain scientists 
periodically after validating the AOD values thus obtained 
against the AERONET retrievals. This makes these 
algorithm time consuming and at the same time fails to 
guarantee the most efficient use of highly accurate 
AERONET retrievals.  

An efficient alternative is statistical or data-driven 
approach where a regression model is trained from the 
collocated satellite and ground-based observations using 
satellite-based observations as the predictors and ground-
based observations as labels. This regression model can 
therefore be used to predict AOD from satellite observations 
where no ground-based retrievals are available. This method 
is computationally less expensive, flexible to different 
retrieval scenarios and more accurate than the deterministic 
algorithms if sufficient amount of training data is available. 
One problem with the data-driven approach is that it uses 
the ground-based data to build the prediction model which 
are very costly. One solution to this problem is to minimize 
the amount of training points needed to build an accurate 
model by selectively choosing training-data points having 
maximum information.  
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2. NEURAL NETWORK MODEL 
 
 Neural networks are suitable for data-driven 
retrieval of atmospheric parameters because of their 
capability to approximate complex regression models. In a 
previous work [2] a neural network was trained to predict 
AOD over continental US was shown to significantly 
improve the accuracy of prediction over then operational 
C004 deterministic algorithm [3]. Because a universal 
predictor could not completely explain the complex spatial-
temporal variation of aerosol density, a second algorithm [4] 
was proposed as an integration of global and local data-
driven aerosol predictors. There, a global neural network 
was trained to predict AERONET AOD over U.S. in 
combination with region specific neural networks. The final 
AOD prediction was obtained as weighted average of global 
and local AOD predictors. The results showed that data-
driven approach could be used as a complement to the 
traditional domain-based retrieval algorithms. However, in 
this paper, we have trained only a global neural network in 
order to prove the usefulness of active learning in reducing 
the need for collocated training data with an assumption that 
it will be equally applicable to a fusion model.  
 

3. ACTIVE LEARNING 
 

The problem of learning a regression model can be 
defined as follows. Given a set of N training examples (xi,yi, 
i=1,2…N) where xi = {xi1,xi2,…xiM} is a vector of M 
attributes and yi is the corresponding target value, the task is 
to construct a function F(xi) so that it can predict the true 
target yi as accurately as possible. A standard measure of 
accuracy in regression is Mean Squared Error (MSE) 
defined as mean((y – F(x))2). For passive learning, N 
training examples are sampled from an unknown joint 
distribution P(x,y) whereas in active learning, learner selects 
the input examples xi and observes the corresponding targets 
yi which are sampled from an unknown conditional 
distribution P(y|x).  
 The method of pool-based active learning [5] is 
defined as a set of operators {C, Q, S, L, U}, where C is a 
learner which is trained on a set of labeled examples L, Q is 
query function which queries each example from the pool of 
unlabeled examples U to select the most informative 
sample(s), S is an oracle or supervisor which will provides 
the true label of the selected unlabeled examples before 
adding them to the pool of labeled examples. Initially L will 
be created taking random samples from U and labeling them 
using S. A good active learner should be able learn quickly 
even from a small set of examples. 
 The query function is central to any active learning 
algorithm and different algorithms mainly differ in defining 
this query function. In existing literature, two broad 
categories of designing the query function can be 
encountered. One of them is the statistical approach where 

the query function is designed to minimize the future error 
of the learner. But the these algorithms assume specific 
statistical model for the conditional probability distribution 
P(x|y) to calculate the future error of the learner. But in most 
practical cases this distribution model is unknown. The 
alternative approach for query design is based on some 
pragmatic methods where an indirectly calculated 
uncertainty score is attributed to each of the unlabeled 
examples and the example with maximum uncertainty is 
selected. One such approach is Query by Committee (QBC) 
proposed by Seung et al [6], where a committee of learners 
is trained and each prospective unlabeled example is 
assigned an uncertainty score based on the disagreement in 
the predicted label between the committee of learners. This 
approach is very popular due to its ease of implementation 
for a variety of learning problems. In this paper, we have 
adopted the QBC algorithm of active learning to reduce the 
need of collocated training points. But before further details 
of QBC algorithm implementation can be given, a brief 
description of the data set being used is given.  
 

4. DATA-SET 
 
 A total of 5,074 collocated [7] data-points have 
been collected by fusing high-quality AERONET level 2.0 
observations with observations from MODIS Terra and 
Aqua instruments. The collocated points were fused over 
125 AERONET sites across the entire earth during the first 
eight months of 2005. Continental U.S. and Europe are most 
densely covered with AERONET sites whereas South 
America, Africa and continental Asia are covered sparsely. 
So, the global applicability of the learning algorithm will be 
somehow limited to only those regions where there is 
enough coverage.  

Attributes extracted from the MODIS data are 
listed in table 1. Only these attributes are used as the inputs 
to the learning algorithm. The seven wavelengths taken 
from MODIS observations were between 440 nm-2100 nm, 
as these are sufficient for predicting AOD [3]. First three 
weeks of data from each month are kept as training data and 
the remaining one week of data are used for testing. 

 
Attribute 

Index 
Description 

1-5 Solar Zenith, Solar Azimuth, Sensor Zenith, 
Sensor Azimuth and Scattering angles 

6-19 Mean and Standard Deviations of reflectances in 
50X50 blocks in 7 wavelengths respectively. 

20 AERONET site elevation 
Table 1: Attributes collected from MODIS observations 

 
5. EXPERIMENTAL RESULTS 

 
 The committee of learners was created with ten 
neural networks, each having ten hidden nodes but different 
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learning rates. Apart from these, two identical neural 
networks having 10 hidden nodes each were created to 
simulate passive and active learning. All of them were 
trained initially with 200 randomly chosen training points so 
that the initial accuracies of the networks were dependable 
enough to initialize the active learning.  

The variance of the ten NNs at 200 randomly 
chosen unlabeled data-points was measured to compare the 
level of prediction disagreement. The points with relatively 
high variance are those at which more information is needed 
for correct modeling. It follows therefore that resampling of 
a labeled point corresponding to maximum variance is 
required. In each iteration, 20 such points were added to the 
pool of labeled points and the active learner was trained on 
them. On the other hand, for passive learner, data points are 
chosen purely at random. This process is repeated until a 
pre-defined number (1000 in this case) of labeled points are 
added to the pool or a pre-defined level of R2-accuracy (0.85 
in this case) is attained by any of the learners. Table 2 gives 
the pseudo-code for QBC algorithm implemented in this 
study. The reason for applying the selective sampling only 
on 200 randomly selected unlabeled data is to remove any 
possible correlation that might exist between the unlabeled 
points if all of them are considered. Correlated points do not 
add new information to the learner.  

 
1. 
 
2. 
 
 
3. 
4. 
5. 
 
 
6. 
 

Create 1 NN to work as actual learner and 10 NN to serve 
as a committee. 
Select 200 points randomly from U and add them to L after 
labeling them.(see section 3 for definitions of U and L) 
  While |L|<1000 
      Train the committee and actual learner on L. 
      Select 200 points randomly from U. 
      Apply the committee of NN to predict the labels of  
      selected points and measure the variance of predictions  
      of 10 NN for each of those. 
     Get the labels of 20 points with maximum variance in  
      predictions and add them to L.        
   end      

Table 2: Implementation of QBC algorithm for active learning 
 
R2-accuracy of both learners is measured in each 

iteration on the test data and reported along with the number 
of labeled training points used in that iteration. The entire 
experiment was run 60 times and the average accuracies in 
each iteration were recorded. The plots of accuracy in 
different iterations against the number of training points for 
both passive and active learning are shown in Figure 1. 
These curves are called learning curves. It can be seen from 
the Figure 1 that active learning performs consistently better 
than passive learning in terms of learning rate. For an 
example, with active learning, around 480 labeled data 
points are required to attain an accuracy of 0.75 whereas 
passive learning needs almost 600 data points to reach this 
level, i.e. active learner can save almost 20% of supervision 
cost required by its passive counterpart.  

 A second experiment was designed to study the 
performance of active learning under an initially biased set 
of training data. Passive learner was initially trained with 
200 randomly chosen data points as before. But for active 
learning, all 200 initial data-points were intentionally chosen 
from winter in order to enforce a poor initial performance. A 
learner which is trained only on data from winter is expected 
to predict poorly on a random test data where other seasons 
are dominant. This is due to large distributional difference 
of AOD vs. observed radiances in presence of white 
background in winter vs. darker background situations of 
other seasons. With this initial set-up active learner was 
allowed to select data-points from the entire pool of 
unlabeled data using QBC algorithm described earlier and 
passive learner selected data randomly. Apart from 
recording the accuracies in each iteration for both learners, 
the seasonal distribution of actively selected data-points was 
also recorded. Figure 2 shows the comparison of learning 
curves of two types of learning and Figure 3 shows the 
seasonal distribution of actively selected data-points for first 
10 iterations. 
  

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9
Comparison between Passive and Active Learning

Number of Training Samples

A
cc

ur
ac

y

 

 

Passive Learning

Active Learning

 
Fig 1:  Comparison of learning curves for passive and active 

learner of AOD predictors 
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Fig 2:  Comparison of learning curves for passive learner with 

random initial dataset and active learner with a biased initial data 
set 
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Fig 3: Distribution of actively chosen data in different seasons with 
all initial training data from winter. 

 
 The results show that even if a poor performance is 
enforced for an active learner by an initially biased training 
set, it manages to recover and even supersede the 
performance of a passive learner by picking up highly 
informative data-points. For example, in the previous 
experiment, all initial data points were chosen from winter. 
Therefore in subsequent iterations, active learner has chosen 
most of the points from summer and spring and a few points 
from winter because data points from summer and spring 
adds more variation and thereby more information to the 
training set. 
 

6. CONCLUSION AND FUTURE WORKS:  
 
 In this paper, a simple QBC-based active learning 
scheme is proposed to reduce the need of costly collocated 
training data required to train a neural network-based AOD 
prediction model. Experimental evidence shows that the 
above scheme can significantly reduce the supervision cost 
and improve the accuracy of the model at a faster rate than 
random sampling. It also shows that this scheme can be used 
to identify potentially informative data points in cases where 
initial training set is biased and full of data points which are 
under-represented in the entire unlabeled pool of potential 
training points.  

As an extension of this work we are currently using 
active learning in order to predict the location of next 
AERONET site that can exploit maximum usable 
information for the AOD predictors. This is an important 

decision to the Earth-scientists as these instruments are 
costly and have limited spatial coverage. 

One problem with the QBC algorithm is that it 
requires iterative retraining of several neural networks 
which is a computationally costly process. Efforts are being 
made to reduce this computational cost by forming the 
committee with learners such as kernel regressor which have 
a shorter training time. Another alternative method under 
consideration is to use single-learner query functions where 
uncertainty of prospective training samples can be 
calculated directly from the current parameters of the neural 
network in each iteration. One such method is proposed by 
Aires et al [8] that calculates the Bayesian estimate of 
uncertainty of neural network outputs and which can be 
used as the informativeness score of each prospective 
unlabeled example.  
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