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Abstract
Aerosol Optical Depth (AOD), recognized as one
of the most important quantities in understanding
and predicting the Earth’s climate, is estimated
daily on a global scale by several Earth-observing
satellite instruments. Each instrument has different
coverage and sensitivity to atmospheric and surface
conditions, and, as a result, the quality of AOD es-
timated by different instruments varies across the
globe. We present a method for learning how to
aggregate AOD estimations from multiple satellite
instruments into a more accurate estimation. The
proposed method is semi-supervised, as it is able to
learn from a small number of labeled data, where
labels come from a few accurate and expensive
ground-based instruments, and a large number of
unlabeled data. The method uses a latent variable to
partition the data, so that in each partition the expert
AOD estimations are aggregated in a different, op-
timal way. We applied the method to combine AOD
estimations from 5 instruments aboard 4 satellites,
and the results indicate that it can successfully ex-
ploit labeled and unlabeled data to produce accurate
aggregated AOD estimations.

1 Introduction
Aerosols are small airborne particles produced by natural and
man-made sources that both reflect and absorb incoming So-
lar radiation. Depending on their distribution and composi-
tion, aerosols can result either in cooling or warming of the
atmosphere, thus having a major role in regulating the climate
system. Distribution of aerosols is measured by Aerosol Op-
tical Depth (AOD or τ ), a quantitative measure of the extinc-
tion of Solar radiation by scattering and absorption between
the top of the atmosphere and the surface. AOD is an impor-
tant input to climate models, and it can significantly impact
predictions of future climate changes [Randall et al., 2007].
Considering that climate predictions influence decisions of
policy makers, accurate AOD estimation is a task of global
significance. In addition to its impact on climate studies,
AOD is an important quantity in estimation of air pollution.
For example, it was shown in [Liu et al., 2009] that AOD is an
accurate predictor of PM2.5, the concentration of particulate

matter with aerodynamic diameters ≤ 2.5μm, which poses a
serious health hazard to the population [Hu and Rao, 2009].

Currently, a number of instruments aboard several Earth-
observing satellites report their AOD estimates, such as
MODIS instrument aboard Terra and Aqua satellites [King
et al., 2003], MISR aboard Terra [Diner et al., 1998], OMI
aboard Aura [Torres et al., 2002], SeaWiFS aboard SeaStar
[Wang et al., 2000], and others. All these instruments have a
capability of providing global estimates of AOD distribution
with a fine spatial (few kilometers) and temporal (few days)
resolution. Each instrument has different properties and esti-
mates AOD using a different algorithm developed by domain
scientists. Coverage and quality of satellite measurements
can differ from instrument to instrument for a number of rea-
sons. As illustrated in Figure 1, width of the field of view
of MODIS instrument is 2,330km, allowing MODIS to ob-
serve the entire Earth every day, as opposed to 360km width
of MISR instrument, which requires 9 days for global cover-
age. The quality of AOD estimates from different instruments
varies with atmospheric and surface conditions [Mishchenko
et al., 2010]. For example, 9 cameras observing Earth at 9 dif-
ferent angles used by MISR allow it to be more accurate than
MODIS when clouds are present, over bright surfaces, or for
some types of aerosol compositions. In addition to satellite-
borne sensors, AOD is also measured by a network of ground-
based sensors from AERONET [Holben et al., 1998], placed
at several hundred unevenly distributed locations across the
globe, see Figure 2. AERONET AOD measurements are con-
sidered a ground-truth, as they are several times more accu-
rate than the best available satellite AOD estimations. The
drawback of AERONET is that it has a very limited spatial
coverage, and that it cannot be used to provide global estima-
tion of AOD distribution required for climate models.

Different spatial and temporal coverage, design, and spe-
cific mission objectives of the satellite-borne instruments
mean that they observe and measure different, possibly com-
plementary aspects of the same phenomenon. Instead of con-
sidering AOD estimates of individual instruments in isola-
tion, combining measurements from different sources into an
aggregated estimate may prove to be the best path towards
obtaining a higher-quality global AOD estimation. A recent
study by [Mishchenko et al., 2010] confirmed this hypothesis
by illustrating that simple average of collocated Terra MODIS
and MISR AOD estimations resulted in improved accuracy.
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Figure 1: Coverage of instruments over the USA
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Figure 2: Global coverage of AERONET

The combination of experts that ultimately yields an esti-
mate that is more accurate than any of the individual fore-
casts is a well-researched topic. Assuming the Gaussian dis-
tribution of prediction errors of AOD and no missing experts,
[Bates and Granger, 1969; Granger and Ramanathan, 1984]

proposed how to learn the optimal combination of experts
from labeled data. If data set is unlabeled, [Ristovski et al.,
2010] proposed how to learn a combination of experts by ex-
tending the classification-based method from [Raykar et al.,
2009]. However, the approach assumed that experts are inde-
pendent, and that all experts are available for aggregation.

We propose a novel method suitable for finding a linear
combination of AOD estimations from multiple instruments.
There are several interesting challenges specific to the aerosol
domain that had to be addressed. (1) As quality of differ-
ent instruments varies with atmospheric and surface condi-
tions, it is not likely that the same linear combination would
work equally well at different locations, for example, in North
America and Africa [Levy et al., 2007]. Therefore, it might
be needed to develop specialized combinations for different
regions around the globe. (2) Number of labeled data points
is relatively small. For example, in North America, thanks
to a relative abundance of AERONET sites, the number of
labeled data points can exceed a thousand every year, while
in Africa and parts of Asia there are very few AERONET
sites, and the number of labeled data points could be mea-
sured in tens every year. In addition to their small number,
labeled data points might cover only a limited set of condi-
tions observable at AERONET locations. On the other hand,
the number of unlabeled data points is orders of magnitudes
larger. An open question in AOD estimation is how to exploit
labeled and unlabeled data. (3) As shown in Figure 1, which
illustrates daily coverage of different sensors over the USA,
for most of the labeled (e.g., points A and B) and unlabeled
(e.g., points C and D) data points, AOD estimations from
some of the instruments are missing. For example, points
A and C have AOD estimate from all 3 satellite instruments,
while points B and D are just outside of MISR’s field of view
and do not have its AOD estimate. This opens a question of
learning from data with significant amount of missing AOD
estimations.

In this paper, we assume that estimation errors of individ-
ual satellite instruments have multivariate Gaussian distribu-
tion, and propose a semi-supervised method that can han-
dle missing data while being able to partition the data into

homogeneous subsets on which specialized aggregators are
learned. We note that our method can be seen as a sig-
nificant generalization of the traditional supervised method
for combination of experts by [Bates and Granger, 1969;
Granger and Ramanathan, 1984], as well as of recently pro-
posed unsupervised method for averaging of experts in re-
gression by [Ristovski et al., 2010].

2 Methodology
2.1 Problem setup and assumptions
Let us assume that we have a training data set D =
{{ŷik}k=1,...,K , yi}i=1,...,N , where target value yi for the ith

data point is predicted by K experts, with the kth expert pro-
viding an opinion in a form of prediction ŷik. For example,
in the aerosol domain that we study, the experts are satellite
instruments and the predictions are their individual AOD esti-
mates. We assume that data points are independent and iden-
tically distributed (IID), and that ground truth yi is normally
distributed with mean μy and variance σ2

y ,

yi ∼ N (μy, σ
2
y). (1)

We also assume that the first Nu data points are unlabeled,
while the last Nl data points are labeled, i.e., we have a
ground truth only for data points indexed by i = (Nu +
1), . . . , N , with N = (Nu + Nl). We use 1 to denote a
column-vector of all ones, 0 to denote a matrix of all zeros,
and ŷi = [ŷi1, . . . , ŷiK ]T to denote a column-vector of expert
predictions for the ith data point. We assume expert predic-
tions for the ith data point are sampled from a multivariate
normal distribution as

ŷi|yi ∼ N (yi1,Σ). (2)

This assumption allows the experts to be correlated (i.e., Σ is
non-diagonal), as is the case in aerosol domain. We first con-
sider a case where all experts are available, and then extend
the methodology to account for missing experts. Given D,
the objective is to learn Σ, μy , and σ2

y . By Θ = {Σ, μy, σ
2
y}

we denote a set of parameters to be learned.
Once Θ is learned, and given expert predictions ŷi,

aggregated prediction yi for the ith data point can be
found as a mean of the posterior distribution yi|ŷi ∼
N (yi, (1

TΣ′−11)−1), where mean yi is computed as

yi =
ŷ′Ti Σ′−1

1

1TΣ′−1
1
, (3)

2798



ŷ′i = [ŷT
i , μy]

T, and Σ′ is a (K +1)× (K +1) block matrix

Σ′ =
[

Σ 0
0 σ2

y

]
. (4)

2.2 Semi-supervised combination of experts
Given the parameters Θ of the model, the probability of ob-
serving the data set D can be written as

P(D|Θ) = P(Du|Θ) · P(Dl|Θ), (5)

where subscripts u and l denote unlabeled and labeled parts
of the data set, respectively. Let us first consider P(Du|Θ).
As the data points are sampled IID, the probability factorizes
over individual data points, and we can write

P(Du|Θ) =

Nu∏
i=1

P(ŷi|Θ) =

Nu∏
i=1

∫
y

P(ŷi|y,Θ) P(y|Θ) dy.

(6)
As both probabilities under the integral are assumed Gaus-
sian, by solving the integral we obtain

P(Du|Θ) =

Nu∏
i=1

(√ |Σ′|−1

(2π)K−11TΣ′−11

exp
(− 1

2
(ŷ′i − yi1)

TΣ′−1(ŷ′i − yi1)
))

.

(7)

Prior parameters μy and σ2
y , appearing in ŷ′i and Σ′, respec-

tively, can be fixed to some values, such as mean and variance
of the available target values, or could be learned. In order to
keep the notation simple, in the remainder of the section we
assume σ2

y → ∞, which amounts to an uninformative prior

P(y|Θ). We note that it is straightforward to modify the fol-
lowing expressions for finite σ2

y , or to derive a learning rule.
Likelihood of the labeled part can be written as

P(Dl|Θ) =

N∏
i=Nu+1

P(ŷi|yi,Θ), (8)

which, due to (2), is a product of Nl multivariate Gaussians.
Then, combining equations (5), (7), and (8), we can compute
the likelihood of the data set D. After finding the derivative

of the log-likelihood with respect to Σ−1 and equating the
resulting expression with zero, we obtain the following ex-
pression for computing Σ matrix,

Σ =
1

N

(
(Ŷl − yl 1

T)T(Ŷl − yl 1
T) + ŶT

u Ŷu+

Nu11
T

1TΣ−11
+

Nu∑
i=1

(
y2i11

T − yi(1ŷ
T
i + ŷi1

T)
))

,
(9)

where Ŷu and Ŷl are Nu×K and Nl×K matrices of expert
predictions for unlabeled and labeled data, respectively, with
each row corresponding to a single data point, and yl is an
Nl × 1 column-vector of ground-truth values. Equation (9)
yields an iterative procedure for learning Σ, where Σ on the
l.h.s. is a new value, and Σ on the r.h.s. is an old value.

2.3 Missing experts
Let us now consider the case where some experts are miss-
ing. For example, let us assume that the ith data point has q
missing predictions. Then, we reorganize vector ŷi in such
a way so that the first a = (K − q) elements are available
predictions, while the last q elements are missing predictions,

i.e., ŷi = [ŷT
ai, ŷ

T
qi]

T. Similarly, we reorganize Σ−1 matrix
so that the first a rows/columns correspond to available pre-
dictions, while the remaining q rows/columns correspond to
missing predictions, or

Πi(Σ
−1) =

[
U V
VT Q

]
, (10)

where Πi is a permutation function used to reorder both rows

and columns of Σ−1 according to the ith data point, and U is
an a× a matrix. Given the covariance matrix Σ and a vector
of expert predictions ŷai for the ith data point, the aggregated
prediction yi can be found as a mean of the posterior distri-
bution yi|ŷai ∼ N (yi, (1

TU′i1)
−1), where we introduced

U′ = U−VQ−1VT to simplify the notation, and

yi =
ŷT
aiU

′
i1

1TU′i1
. (11)

Note that we appended subscript i to indicate that the size of
a matrix U′i depends on the number of available experts for

the ith data point.
In the following, we derive the update equation for Σ. The

probability of observing the ith unlabeled point is equal to

P(ŷai|Θ) =

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|Θ) dŷqi

=

∫
y

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|y,Θ) P(y|Θ) dŷqi dy.

(12)
Solving the equation (12) we obtain

P(ŷai|Θ) =

√
|Σ|−1|Qi|−1

(2π)K+q−11TU′i1

exp
(− 1

2
(ŷai − yi1)

TU′i(ŷai − yi1)
)
.

(13)

In a very similar manner we can find the probability of ob-
serving the ith labeled data point. It follows

P(ŷai|yi,Θ) =

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|yi,Θ) dŷqi, (14)

which, after solving the integral, results in

ŷai|yi ∼ N (yi 1,U
′−1
i ). (15)

By combining equations (5), (13), and (15), we can find the
likelihood of the data set D. After finding derivative of the

log-likelihood with respect to Σ−1 [Brewer, 1978] and equat-
ing the resulting expression with zero, we obtain the follow-
ing expression for computing Σ matrix

Σ = 1
N

(∑N
i=1 Π

−1
i (Ψi) +

∑N
i=Nu+1�(ŷai − yi 1) (ŷai − yi 1)

T�+

∑Nu

i=1

(
�ŷaiŷ

T
ai� +

�11T�
1TU′

i1
+ y2i �11

T� − yi�1ŷ
T
ai + ŷai1

T�

))
,

(16)
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where Π−1
i is an inverse permutation function that reorders

rows and columns of the matrix back to the original order of
experts, symmetric K ×K matrix Ψi is equal to

Ψi =

[
0 0
0 Q−1

i

]
, (17)

and �Ai� for some symmetric a × a matrix Ai denotes the
following symmetric K ×K matrix

�Ai� = Π−1
i

([
Ai −Ai Vi Q

−1
i

−Q−1
i VT

i Ai Q−1
i VT

i Ai ViQ
−1
i

])
.

(18)

2.4 Incorporating prior probability P(Θ)

Let us consider the case where we have some prior knowledge
about Σ, and would like to include this knowledge into the
model. As we assumed σ2

y → ∞, it follows Θ = {Σ}, and
we can write

P(D,Θ) = P(D|Σ−1) P(Σ−1). (19)

Note that we defined prior P(Σ−1) in terms of an inverse
of the covariance matrix (i.e., in terms of a precision matrix).

For the precision matrix Σ−1 we choose the prior as a Wishart
distribution W(S, n) with given K × K scale matrix S and
n > (K − 1) degrees of freedom, resulting in

P(Σ−1) =
|Σ−1|0.5(n−K−1) exp

(−0.5Tr(S−1Σ−1)
)

20.5nK |S|0.5nΓK(0.5n)
,

(20)
which is a conjugate prior for multivariate Gaussian distri-
bution, and where ΓK is the multivariate gamma function.
After choosing n = (K +2) and finding the derivative of the

log-likelihood with respect to Σ−1, we obtain the following
update equation for the covariance matrix Σ

Σ =
S−1+

∑N
i=1 Π−1

i (Ψi)+
∑N

i=Nu+1�(ŷai−yi 1) (ŷai−yi 1)T�

1+N +

∑Nu
i=1(�ŷaiŷ

T
ai�+

�11T�

1TU′
i
1
+y2

i �11T�−yi�1ŷ
T
ai+ŷai1

T�)

1+N .

(21)

2.5 Data partitioning using a latent variable
It is an inherent property of the experts in the aerosol do-
main that they do not maintain the same quality of predic-
tions across all observed conditions. To address this charac-
teristic of the aggregation problem, we consider partitioning
the data points into several groups, called the regimes, where
each regime is governed by a different multivariate Gaussian
from (2) [Weigend et al., 1995]. In the following we assume
there are R regimes, and that we have available a feature vec-
tor xi for the ith data point that could be used to assign it to
an appropriate regime.

Assuming a mixture of R regimes, probability of observing
expert predictions ŷai for the ith labeled data point can be
written as

P(ŷai|xi, yi,Θ) =

R∑
r=1

Pr(ŷai|yi) πir(xi), (22)

where Pr(ŷai|yi) = P(ŷai|regimer,xi, yi,Θ), πir(xi) =
P(regimer|xi,Θ), and where appended subscript r denotes

the rth regime. Similarly, we can write probability of observ-
ing expert predictions ŷai for the ith unlabeled data point as

P(ŷai|xi,Θ) =

R∑
r=1

Pr(ŷai) πir(xi). (23)

Probability of observing the ith unlabeled or labeled data
point given that it was generated by the rth regime, Pr(ŷai)
or Pr(ŷai|yi), respectively, can be computed by considering
equations (13) and (15), respectively. The aggregated predic-
tion yi can be found as

yi = E[yi|ŷai,xi,Θ] =

R∑
r=1

πir(xi)
ŷT
aiU

′
ir1

1TU′ir1
. (24)

To facilitate model optimization, we consider regime as-
signments as unobserved data, and introduce a latent indica-
tor variable zir such that

zir =

{
1 if ŷai was generated by the rth regime,
0 otherwise.

(25)

Further, by introducing zi = [zi1, . . . , ziR]
T, we can write

the complete-data likelihood for the ith labeled data point as

P(ŷai, zi|xi, yi,Θ) =

R∏
r=1

(
πir(xi) Pr(ŷai|yi)

)zir
. (26)

Note that, due to the lack of space, in equations (26), (27),
and (29), we only give expressions for labeled data. However,
when dealing with the ith unlabeled data point we simply need
to replace Pr(ŷai|yi) by Pr(ŷai). Then, the complete-data
log-likelihood L is equal to

L =
N∑
i=1

R∑
r=1

zir
(
log πir(xi) + logPr(ŷai|yi)

)
. (27)

Expectation-Maximization (EM) algorithm [Dempster et al.,
1977] can be used to find the parameters Θ that maximize L
from (27).

EM algorithm for semi-supervised aggregation
Before moving on, we need to decide on the parameterization
of the prior probability πir. We define this probability using
a softmax function,

πir =
exp

(−(xi − qr)
TΛr(xi − qr)

)
∑R

m=1 exp (−(xi − qm)TΛm(xi − qm))
, (28)

where we defined a prototype vector qr and feature scaling
matrix Λr for each regime, to be found during optimization,
resulting in Θ = {Σr,qr,Λr}r=1,...,R.

In the E-step, we compute the current expectation of pos-
terior probability hir that the rth regime is ”responsible” for
generating expert predictions for the ith labeled data point as

hir = E[zir|ŷai, yi,xi,Θ] = πir(xi) Pr(ŷai|yi)∑R
m=1 πim(xi) Pm(ŷai|yi)

.

(29)
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(a) Data generated by R = 1 regime
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(b) Data generated by R = 2 regimes

Figure 3: Results on the synthetic data set

Then, in the M-step, we fix values of hir for all data
points and regimes, and optimize L with respect to covari-
ance matrices Σr and prototype vectors and scaling matrices
qr,Λr, r = 1, . . . , R. Note that the derivatives of L with re-
spect to these two sets of variables are independent from each
other, and the optimization of Σr on one side, and qr and Λr

on the other, can be easily parallelized. After derivation, the
update equation for Σr can be written as

Σr =
1

1 +
∑N

i=1 hir

(
σ2
0rI+

N∑
i=1

hir Π
−1
i (Ψir) +

N∑
i=Nu+1

hir�(ŷai − yi 1) (ŷai − yi 1)
T�r +

Nu∑
i=1

hir

(
�ŷaiŷ

T
ai�r +

�11T�r
1TU′ir1

+

y2ir�11
T�r − yir�1ŷ

T
ai + ŷai1

T�r

))
,

(30)
while prototype vector qr and scaling matrix Λr are found
through the gradient ascent optimization as

qnew
r = qold

r + η Λold
r

N∑
i=1

(hir − πold
ir )(xi − qold

r ),

Λnew
r = Λold

r + η

N∑
i=1

(hir − πold
ir )(xi − qold

r )(xi − qold
r )T,

(31)
where η is an appropriately set learning rate.

3 Experiments
In this section, we first experimentally validate the semi-
supervised aggregation on synthetic data, and then apply the
method to AOD estimation using real-world aerosol data set.

3.1 Validation on synthetic data
We started by evaluating our method on synthetic data gener-
ated as follows: for a given number of regimes R and ex-
perts K, we selected a prototype and a covariance matrix
for each regime. Then, we assigned the ith data point uni-
formly at random with probability 1/R to a regime, say the
lth regime, and obtained features xi by sampling from multi-
variate Gaussian with mean ql and diagonal covariance ma-
trix 0.5I. We sampled ground-truth value yi from zero-mean
Gaussian with unit-variance, then sampled K expert predic-
tions from a Gaussian N (yi1,Σl). Finally, we removed each
expert’s prediction with probability 0.5 to simulate missing
experts. In all experiments we set S = I, and used 15 EM
iterations. Learning rate η was set through cross-validation.

First, in order to evaluate the semi-supervised method
without clustering, we set K = 5, R = 1, and Σ1 =
diag([0.1, 0.2, 0.3, 0.4, 0.5]). We compared our learning
method to a baseline method that averages all available ex-
perts, as well as to the optimal predictor that computes the
prediction (24) using the true Σ1. We increased the num-
ber of training points N from 10 to 100 in increments of 10,
and for each N we experimented with percentage of labeled
data points equal to 0%, 20%, 40%, and 100% (shown as
four solid lines in Figure 3). The results in terms of Root
Mean Squared Error (RMSE), evaluated on 1,000 testing
points generated in the same way as the training set and aver-
aged over 100 experiments, are shown in Figure 3a. We can
see that the performance of the fully unsupervised approach,
given by the top-most full line, is already better than simple
averaging, which further improves as the number of unlabeled
data grows. Moreover, as we increase the number of labeled
points, the semi-supervised method further improves the ac-
curacy, approaching the lower bound on RMSE achieved by
the optimal combination of experts.

Next, we generated the data using two regimes by set-
ting q1 = [1, 1], q2 = [−1,−1], Σ1 = diag([0.1, 0.2, 0.3,
0.4, 0.5]), Σ2 = diag([0.5, 0.4, 0.3, 0.2, 0.1]), and we set
R = 2. The results in terms of RMSE are given in Figure
3b, where we also show accuracy of the proposed method
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Figure 4: Found clustering of AERONET sites in the USA

which used only labeled data, but assumed only one cluster.
The RMSE of supervised method that assumed only a sin-
gle cluster is worse than simple averaging, and approached it
as the data size increased. Unsupervised method using two
clusters achieved better accuracy than simple averaging, and
RMSE further decreased with larger data sizes. Introduction
of labeled data points further decreased the RMSE.

3.2 Validation on aerosol data
To construct an aerosol data set we considered ground-based
AERONET data1 from the United States and collocated data
from 5 satellite instruments2 spanning years 2006 to 2010.
We considered AERONET measurements at 10:30am local
time as the ground truth. Among the K = 5 instruments,
two measured AOD at around 10:30am local time (Terra
MODIS, MISR), and three at around 1:30pm local time
(Aqua MODIS, OMI, SeaWiFS). After removing AERONET
sites with too few observations, there remained 33 sites in the
data set, with locations shown in Figure 4. This resulted in a
labeled data set with N = 6,913 data points, where 58% of
expert predictions were missing. We used this data set for two
sets of experiments: (1) evaluating usefulness of partitioning;
and (2) evaluating usefulness of unlabeled data.

In both sets of experiments we performed leave-one-site-
out cross-validation. In the first set of experiments, from each
training site we randomly sampled 100 data points, and as-
sumed that 50 of them are labeled and 50 unlabeled. From
the left-out site we sampled 100 data points. We used the
geographic location (i.e., longitude and latitude) of the cor-
responding AERONET site as a feature vector xi for the ith

data point. We used our proposed method with R = 1 and
R = 2, repeating the experiments 5 times. We compared the
performance to a baseline method that takes a simple aver-
age of available expert predictions. RMSE is reported at the
top of Table 1. We can see that semi-supervised aggregation
for both R = 1 and R = 2 had significantly lower RMSE
than the baseline. Moreover, by increasing the number of
clusters from 1 (i.e., without clustering) to 2 we observed
a drop in RMSE of nearly 5%. In Figure 4 we color-code
the AERONET sites according to their cluster assignments.
Interestingly, the clustering roughly corresponds to partition-
ing proposed by domain scientists [Levy et al., 2007]. For

1aeronet.gsfc.nasa.gov/cgi-bin/combined data access new
2disc.sci.gsfc.nasa.gov/aerosols/services/mapss/mapssdoc

Table 1: Performance of the aggregation methods

Method # clusters RMSE

Averaging − 0.0818
All sites, semi-super. 1 0.0677
All sites, semi-super. 2 0.0648

2 sites, supervised 2 0.0795
2 sites, semi-super. 2 0.0752
4 sites, supervised 2 0.0728
4 sites, semi-super. 2 0.0704
6 sites, supervised 2 0.0694
6 sites, semi-super. 2 0.0688

the south-western cluster the weights of linear combination
assigned to MISR, Terra MODIS, Aqua MODIS, OMI, and
SeaWiFS instruments, given predictions of all the experts,
were [0.51, 0.31, 0.09, 0.01, 0.08], while for the north-eastern
cluster they were [0.24, 0.27, 0.21, 0.15, 0.12], respectively.
Consistent with the domain knowledge, MISR obtained the
largest weight in the first cluster, while all instruments were
given similar weights in the second cluster.

In the second set of experiments, we simulated conditions
consistent with aerosol data availability in Africa and large
parts of Asia, where very few AERONET sites are available
and labeled data are very scarce. We randomly selected 2,
4, or 6 training AERONET sites and took 100 data points
from each of them as labeled data. Then, we selected 100
data points from the remaining training AERONET sites and
treated them as unlabeled data. We trained one model which
used only labeled data, and one that used both labeled and
unlabeled data. We used R = 2 clusters in both cases. The
results given at the bottom of Table 1 show that the RMSE
of purely supervised approach decreased with the number
of AERONET sites. More importantly, unlabeled data were
helpful and led to significant reductions in RMSE. This ben-
efit of unlabeled data increased with the decrease in the num-
ber of labeled data points. The results in Table 1 confirm the
validity of the proposed semi-supervised method for aggrega-
tion of experts, which is able to account for missing experts,
find a partition of data into clusters, and construct specialized
aggregators on each cluster.

4 Conclusion
We proposed a semi-supervised method for aggregation of
AOD predictions from noisy satellite-borne sensors into a sin-
gle, more accurate estimate. By assuming that expert predic-
tions follow multivariate Gaussian distribution, the method
accounts for both missing experts and unlabeled data in a
principled manner, addressing an issue inherent to the remote
sensing domain. Moreover, we also cluster the data during
training by introducing a latent indicator variable for each
cluster, resulting in a more interpretable model. Results on
synthetic and real-world aerosol data comprising 5 satellite-
borne sensors indicate the benefits of the proposed approach.
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