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Abstract— Learning Vector Quantization (LVQ) is a popular 

class of nearest prototype classifiers for multiclass 

classification. Learning algorithms from this family are widely 

used because of their intuitively clear learning process and ease 

of implementation. In this paper we propose an extension of 

the LVQ algorithm to regression. Just like the LVQ algorithm, 

the proposed modification uses a supervised learning 

procedure to learn the best prototype positions, but unlike 

LVQ algorithm for classification, it also learns the best 

prototype target values. This results in the effective partition of 

the feature space, similar to the one the K-means algorithm 

would make. Experimental results on benchmark datasets 

showed that the proposed Regression LVQ algorithm performs 

better than the nearest prototype competitors that choose 

prototypes randomly or through K-means clustering, 

classification LVQ on quantized target values, and similarly to 

the memory-based Parzen Window and Nearest Neighbor 

algorithms.  

Keywords-regression, learning vector quantization 

I.  INTRODUCTION 

Learning Vector Quantization (LVQ) [8] is a simple, 
universal, and efficient classification algorithm. It belongs to 
a class of prototype-based learning algorithms such as 
nearest neighbor, Parzen window, kernel perceptron, and 
support vector machine algorithms. LVQ is defined by a set 
of P prototypes {(mj, cj), j = 1…P}, where mj is a K-
dimensional vector in the feature space, and cj is its class 
label. Given an unlabeled data point xu, its class label yu is 
determined as the class cq of its nearest prototype mq, 

yu = cq, q = arg minj d(xu, mj),

where d is a distance measure (e.g. Euclidean).  
The training of LVQ starts with placing the prototypes at 

some initial positions in the feature space. LVQ algorithm 
then sequentially scans the training data points and updates 
the prototypes. There are several different LVQ algorithms 
that deal with prototype updates in different ways [1, 8].  

LVQ2 [8] has been shown to achieve consistently good 
accuracy and is commonly used as a representative of the 
LVQ algorithms. Given a training data point (x, y), three 
conditions have to be met for LVQ2 to update its prototypes: 
1) Class of the prototype closest to x has to be different from 
y, 2) Class of the next closest prototype has to be equal to y, 
and 3) x must satisfy the “window rule” by falling near the 
hyperplane at the midpoint between the closest (mj) and the 

second closest prototype (mk). These two prototypes are then 
modified as 

mj(t+1) = mj(t) – α(t) (x – mj(t))

mk(t+1) = mk(t) + α(t) (x – mk(t)),

where t counts how many updates have been made, and α(t) 
is a monotonically decreasing function of time. Let dj and dk 

be the distances between x and mj and mk. Then, the “window 
rule” is satisfied if min (dj / dk, dk / dj) > s, where s is a constant 
commonly chosen between 0.4 and 0.8. 

Equation (1) corresponds to a hard decision based solely 
on the nearest-neighbor prototype, as is done in 1-Nearest 
Neighbor algorithm. While hard decisions are typical of 
LVQ, several soft LVQ versions have been proposed [16], 
that predict based on a weighted vote from the near 
prototypes. Soft versions of LVQ are reminiscent of Parzen 
window and Support Vector Machines algorithms. 

LVQ is traditionally used for classification. In this paper, 
we propose several LVQ algorithms suitable for regression. 
We pose Regression LVQ as an optimization problem with 
two different cost functions. The first cost function leads to 
Regression LVQ with hard predictions and the second to 
LVQ with soft predictions. To design an LVQ learning 
algorithm, we explored two optimization approaches, one 
being gradient-based and another expectation-maximization- 
(EM-) based. The gradient-based approach allows both batch 
and stochastic (online) updates of prototypes, while the EM-
based is naturally suited for the batch mode of operation. 
Finally, we show that a simplification of one of the resulting 
algorithms leads to a regression variant of the popular LVQ2 

There are several main justifications for using LVQ 
algorithms in regression. One is that it allows a clear 
mechanism for designing a prototype-based regressor on a 
fixed prototype budget. Unlike classification, where methods 
such as condensing [5] have been proposed for nearest 
neighbor classifiers, there is no clear alternative for building 
budget-based nearest neighbor and Parzen window 
algorithms for regression. Another justification is that 
regression LVQ has a relatively low training cost with linear 
time and constant memory scaling with training size. This 
makes it very attractive for the online learning applications. 
Finally, some regression problems require prototypes for 
representational purposes.   

We should also discuss the difference between soft and 
hard predictions in prototype-based algorithms. First, hard 
predictions are suboptimal in the sense that they are a special 



case of soft predictions where the whole weight of decision 
is given to the nearest prototype. It has long been known that 
soft predictions have a smoothing effect that is useful for 
approximating regression functions. However, there are 
several situations where hard predictions are necessary. Two 
examples are decentralized estimation [12] and meta-
learning in distributed data mining [10, 11]. In both 
applications, instead of sending raw data or predictions to the 
fusion center, it might be more appropriate to send index of 
the nearest prototype. This can be useful when there are 
communication channel and energy constrains in the fusion 
system, or when there are the data privacy concerns. 

II. METHODOLOGY 

The starting point in the design of Regression LVQ 
(RLVQ) algorithms is to introduce probability p ( j

 
| x ) of 

assigning observation x to prototype j that is dependent on 
their (Euclidean) distance. Let us assume that the probability 
density p (x) of x can be described by a mixture model  
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where P is the number of components, p ( j ) is the prior 
probability that a data point is generated by a particular 
component and p ( x | j ) is the conditional probability that 
component j generates particular data point x. 

Let us represent the conditional density function p ( x | j ) 
with the normalized exponential form 

)),,(exp()()|( jmxfjKjxp

and consider a Gaussian mixture with K ( j ) = (2π σp 
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f (x, mj ) =  (x  mj )
2

 / 2σp
2
. In this case, component j is 

completely represented by its mean mj and standard 
deviation σp. Therefore, we can describe component j as 
prototype j and we will follow this convention through the 
rest of the paper. We should observe that it was assumed that 
all prototypes have the same standard deviation (width) σp. 
Additionally, we will assume that each prototype has the 
same prior, p( j ) = 1/P. Given this, using the Bayes’ rule we 
can write the assignment probability as 

.

)2)(exp(

)2)(exp(
)|(

1

22

22

P

l

pl

pj

mx

mx
xjp

Starting from equation (5), in sections II.A and II.B, we 
are proposing two cost functions that naturally lead to hard 
and soft versions of regression LVQ. 

A. Hard RLVQ 

To develop cost function for Hard RLVQ we propose the 
following prediction model: data point x is assigned to a 
single prototype j

*
 by chance following the assignment 

probabilities p (  j | x ) and its label is predicted as label q j* of 
prototype j

*
. The expected Mean Squared Error (MSE) of 

such a model can be expressed as 
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where p ( j | xi ) is from equation (5). For the compactness of 
notation, we defined gij ≡ p ( j | xi ) and eij ≡ ( yi  – qj )

2
.  

To see why D1 from (6) is suitable as cost function for 
Hard RLVQ, consider the case when σp → 0. Then, the 
assignment probability p ( j | xi ) for the nearest prototype is 
one, while the assignment probability for other prototypes is 
zero. This is exactly the MSE of Hard LVQ. The reason why 
cases when σp is nonzero are interesting has to do with the 
training procedure, as will be described shortly. 

The objective of LVQ learning is to estimate the 
unknown model parameters, namely prototype positions mj 
and target values qj,  j = 1…P. This is done by minimizing 
the cost function D1 with respect to the parameters. To do 
this we propose to use the gradient descent method. For this, 

we have to calculate derivatives D1/ mk and D1/ qk for k = 

1…P. Interestingly, D1/ qk = 0 can be expressed in the 
closed form and, therefore, prototype labels could be updated 
exactly. The resulting learning rules for Hard RLVQ are 
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where t is the iteration number and  (t) is the learning rate. 
At t = 0, the procedure starts by selecting at random (or as 
the first, in the on-line case) P training points as initial 
prototypes. Then, prototype labels are calculated as in (7) 
and the procedure is iterated. Learning is terminated when 
the loss function D1 stops improving (e.g. by more than 10

-5
). 

An important issue to be addressed is choice of parameter 
σp. Setting it to a value near zero would hurt the learning 
process and possibly lead to poor RLVQ model, as observed 
in the related optimization problems [13, 16]. Therefore, we 
initially set σp to a large value and slowly anneal it towards 
zero. The update rule can be derived using the gradient 

descent method σp
2

 (t+1) = σp
2

 (t)  α(t)· D/ σp
2

 . However, 
we experimentally determined that this could lead to 
instabilities in the learning process. A much better approach 
is to anneal σp

2
 using a specific schedule. Following the 

suggestion from [16], the annealing was performed using the 
schedule σp

2
 (t+1) = σp

2
 (0)·σT /(σT+t), where σT is the 

parameter that controls how fast is the annealing. For batch 
versions it was set to σT  = 5 by default, while for stochastic 
versions we used σT = 5N. 

Hard RLVQ algorithm summarized in (7) is batch-mode 
– it requires a pass through whole training set to perform a 
single iteration. It can easily be converted to the stochastic 
(online) mode that updates model after each training point, as 
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We can observe that the main difference is in the way 
prototype targets are updated – here, we could not use the 
closed-form update of (7) because it would require a pass 
through whole training data set, thus defeating the purpose of 
stochastic updating. 

B. Soft RLVQ 

To develop cost function for Soft RLVQ, we use the 
prediction model that assigns data point x to the prototypes 
probabilistically and predicts based on the weighted average 
of the prototype labels. Assuming this mixture model, we 
can express the posterior probability p ( y |  x  ) as 
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that was obtained by observing the conditional independence 
between x and y given j, p ( y |  x,  j ) = p ( y |  j ). For p ( j | x ) we 
use the Gaussian distribution from (5). For the probability of 
generating target y by prototype j, p ( y | j ), we also assume 
Gaussian error model with mean ( y – qj ) and standard 
deviation σy . The resulting cost function D2 for Soft RLVQ 
can be written as the negative log-likelihood 
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where, for the compactness of notation, we defined 
gij ≡ p ( j | xi ) and eij ≡ N ( yi – qj , σy 

2
 )

2
.  

Let us first derive the gradient descent rule for 
minimization of D2, similar to the stochastic gradient 
algorithm (8), 
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Comparing to the learning rule for qk in (8) we see that (11) 
uses a weighting term that takes into account how well 
prototype j does relative to the other prototypes. The batch 
version of update rules in (11) can be obtained using the 
batch gradient descent in a straightforward manner. 

In the proposed Soft LVQ version, we use the same 
annealing schedules for σp

2
 and α. The main difference is that 

we do not wish σp
2
 to drop to a value near zero, but instead to 

set it to an appropriate positive value. To achieve this, we 
resort to using the validation data set and continue to 
decrease σp

2
 as long as D2 value is being improved on the 

validation data set. Soft RLVQ uses σp
2
 value achieved at the 

termination of training. 

Compared to Hard RLVQ, Soft RLVQ has σy
2
 as an 

additional parameter. In our algorithm, parameter σy
2 
is set as 

the mean squared error of the current RLVQ model.  
Given an unlabeled data point xu, its target value yu is 

predicted in a soft way, using the gating function, as a 
weighted average of the prototype target values qj 

.
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As an alternative to the gradient descent algorithm for 
minimization of D2 we explored the Expectation-
Maximization (EM) approach [3]. The resulting update 
steps for the algorithm parameters (not shown due to length 
constraint) are similar but applicable only to batch mode.  

C. Regression LVQ 2 

Starting from Hard RLVQ and simplifying the 
assignment probabilities such that only two closest 
prototypes are consulted each time the prediction is needed, 
we will demonstrate that the resulting prototype updates 
closely resemble LVQ 2 learning rule from (2). Given a 
training data point xi with label yi, let us denote the closest 
prototype as mk and the second closest prototype as mj. We 
will neglect the remaining prototypes. This is acceptable as 
an approximation of the Hard LVQ, because assignment 
probabilities of the two closest prototypes are the highest.  

Let us consider two extreme scenarios. In the first, mk 
and mj are in similar proximity to xi. As a consequence, their 
assignment probabilities will be approximately the same, 
gik = gi  = 0.5. The update rule from equation (7) could then 
be expressed as 
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where p
2
 has been neglected for simplicity (it could be 

incorporated in the learning rate parameter anyway). The 
update rule is very similar to LVQ2 update in (2). The only 

difference is the ( eik  eij ) term which makes the amount of 
update dependent on the difference in errors. It has an 
intuitive interpretation. If errors of the 2 prototypes are 
similar, their positions will not be updated. If error of k-th 
prototype is larger, it is moved away from data point xi and j-
th prototype is moved towards it. This is exactly the intuition 
used in LVQ2. The difference from LVQ2 is the case when 
error of k-th prototype is smaller. There, RLVQ2 is moving 
the k-th prototype towards and j-th prototype away from the 
data point. Unlike it, LVQ2 would stay put. 

The second scenario is when the closest prototype is 
much closer than the second closest, which makes gij ≈ 0. 
Following update rule (7), it could be approximated that  
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This result is analogous to the very successful “window 
rule” of LVQ2. Therefore, in our application of RLVQ2, we 



use exactly the “window rule” used in LVQ2 to decide 
whether the prototype positions should be updated.  

In addition to update of prototype positions, in the 
Regression LVQ case we have to update the prototype target 
values as well. We derive stochastic update rule from (8) and 
batch update rule from (7) as  
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Given an unlabeled data point xu, its target value yu is 
determined as the target value qc of its nearest prototype mc 

Yu = qc, c = arg minj d(xu,  mj).

Finally, in Fig. 1 we summarize the resulting RLVQ2.1 
algorithm in the stochastic mode. Value of s is chosen 
between 0.4 and 0.8.  

 

Receive a new training point (xi,yi) 
 

Find two closest prototypes mk and mj 

if  min (dik / dij, dij / dik) > s  // the window rule 

use (13) and (15) 

 else  

use (14) and (15) 

Figure 1.  Stochastic RLVQ2.1 algorithm 

It is interesting to note that, in contrast to LVQ 2.1, Hard 
RLVQ was derived via optimization of a specific cost 
function. Interestingly, as we showed, it can be reduced to a 
simple heuristic in a very natural way.  

D. Time Complexity 

Time complexity of each run of Regression LVQ 

through all training examples is (N·P M), where N is the 
number of training points, M is the number of features, and 
P is the number of prototypes. Time complexity of 
calculating the assignment probabilities gij of each point xi, 

is (2·P M), and of calculating the error eij each prototype 

makes is (P M). Time complexity of target value 

prediction for an unlabeled point is (P M).  
While all proposed RLVQ algorithms have same time 

complexity, RLVQ 2 algorithm works the fastest because it 
does not have to deal with soft assignments. It also has the 
fewest hyperparameters, since it only uses α from the basic 
classification LVQ2 and does not use σp

2
 or σy

2 
needed for 

Soft RLVQ and Hard RLVQ algorithms. 

III. EXPERIMENTAL RESULTS 

All proposed versions of Regression LVQ algorithm 
were evaluated on various regression tasks, both real-life and 
synthetic. We were interested in comparing the proposed 

Hard and Soft Regression LVQ algorithms and Regression 
LVQ2 with several benchmark algorithms. Only results of 
the stochastic Regression LVQs are shown dues to lack of 
space. Compared with the batch versions, stochastic versions 
resulted in slightly higher accuracies, as was expected [2]. 

A. Benchmark Regression Algorithms 

In the following, we describe regression algorithms used 
for benchmarking of proposed Regression LVQ algorithms.  

K-Nearest Neighbor algorithm is a traditional 
prototype-based algorithm that works both for classification 
and regression. Prototypes are typically all training points. 
There, K corresponds to the number of neighbors consulted 
in making the prediction. In regression scenario, prediction 
is given as the average label of K nearest neighbors. 

Parzen Window Regression is an algorithm that 
behaves as a soft version of the Nearest Neighbor algorithm. 
It makes the prediction as the weighted average of prototype 
labels, where the weight is determined based on the kernel 
distance from the query data point. The smoothing strength 
of the weighting is decided by the kernel width parameter. 

K-Means Regression is based on selection of 
prototypes using standard K-means algorithm [19] that 
partitions training observations into P clusters. The 
prototypes are defined as the cluster centers. Given such a 
set of prototypes, both nearest neighbor and Parzen window 
algorithm can be used to provide predictions. This approach 
ensures fixed prototype budget, consistent with the RLVQ 
algorithms. Therefore, it is appropriate for benchmarking. 

Random Prototypes is a simple approach where P 
prototypes are selected at random from the training data. 
Again, both nearest neighbor and Parzen window algorithms 
can be used with such prototypes. 

Quantization LVQ uses classification to solve 
regression problems. It quantizes the target variables into M 
discrete values and treats them as M classes. Then it 
performs LVQ2.1 on M classes using P prototypes. 

B. Data Description 

We evaluated Regression LVQ algorithms on several 
benchmark regression datasets from StatLib, Delve and UCI 
ML Repositories. Data sets we used can be divided in two 
groups: time series data sets (Table II) and the rest (Table I). 

TABLE I.  NON-TIME SERIES DATA SETS 

Data Set Source Training Size Test Size Features 

Abalone UCI 1897 949 8 

Air NM10 StatLib 333 167 7 

Air NO2 StatLib 333 167 7 

Body Fat StatLib 168 84 14 

Boston UCI 337 169 13 

Concrete UCI 687 343 8 

CPU small Delve 5461 2731 12 

Forest UCI 345 172 9 

Houses StatLib 13760 6880 8 

MG [4] 923 462 6 

Motor StatLib 1454 727 6 

MPG UCI 198 99 7 

Space StatLib 2071 1036 6 

Tecator StatLib 172 43 122 



TABLE II.  TIME SERIES DATA SETS 

Data Set Source Training Size Test Size Lag 

Balloon StatLin 1331 665 6 

Ocean Shear StatLib 4580 2290 5 

River Flow StatLib 628 314 4 

Santa Fe [17] 9991 2482 9 

Sun Spots StatLib 1878 939 3 

Yield StatLib 1655 827 9 

C. Regression on a fixed budget 

The proposed Regression LVQ algorithms used moderate 
prototype budgets of 100 on all but the 3 smallest data sets 
(there, budget was set to 50). The same prototype budgets 
were used for K-Means Regression and Random Prototypes 
benchmark algorithms. For the K-Nearest Neighbor we 
explored K = 1, 2 and 3. The kernel width for Parzen 
window was optimized using cross-validation. 

Each of the Regression LVQ versions used the same 
hyperparameter value α0 = 0.04 and the update step 

α(t) = α0 αT /(αT+t), where t is the time and αT = 5N, where N 
is the size of the training set. The hyperparamether σp was 
initialized as the value of within-data variance and updated 
using the schedule described in Section II depending on the 
type of the algorithm (Soft or Hard). Hyperparamether σy 
used by the Soft RLVQ was always set to the standard 
deviation of the squared error made by the prototypes.  

In the cases where the data set was not explicitly divided 
into training and test sets by the authors, we randomly 

selected 2/3 of the data set for training and 1/3 for testing. 
This process was repeated 10 times and the average R

2
 

values on the test sets are reported in Table III. In addition to 
showing the R

2
 accuracies on each data set, in Table III we 

report how many times each algorithm was among Top 2 and 
Bottom 2 performers, as well as the average rank of each 
algorithm. 

Based on the Top 2 and average rank scores we can 
conclude that all three versions of Regression LVQ on a 
fixed budget perform similarly to Non-budget Parzen 
window and KNN algorithms. Budget versions of 1NN and 
Parzen window were less accurate then Budget Regression 
LVQ algorithms. Additionally, K-means clustering selection 
of prototypes was more successful than random prototype 
selection in both Budget 1NN and Budget Parzen window 
methods. Finally, Quantization LVQ performed poorly and 
did not show up as a successful idea. 

Comparing of Regression LVQ algorithms shows that 
Soft RLVQ is slightly better than Hard RLVQ. Interestingly, 
despite its simplicity, RLVQ2 was quite competitive. 

To illustrate the behavior of the proposed algorithms in 
the highly resource constrained scenarios, another set of 
experiments was performed where the budget algorithms 
were restricted to a very tight budget (results not shown). As 
expected, the resulting R

2
 accuracies were lower than when 

larger budgets are used. Comparing with K-means and 
random prototype selection approaches for budget 
maintenance, we observed an even larger dominance of 

TABLE III.      PERFORMANCE RESULTS ON A FIXED BUDGET. COMPARISON WITH BUDGET AND NON-BUDGET ALGORITHMS 

Data Set P 

Hard 

RLVQ 

Soft 

RLVQ 
RLVQ 2 Budget 

QLVQ 

M=32 

K-means  

Regression 

Random 

Prototypes 
Non-budget K-NN Non-budget 

Parzen 

Hard Soft Hard 1-NN Parzen 1-NN Parzen K=1 K=2 K=3 

Abalone 100 0.497 0.471 0.489 0.219 0.540 0.528 0.200 0.468 0.350 0.492 0.538 0.561 

AirNM10 100 0.220 0.253 0.203 -0.585 0.080 0.185 -0.348 0.071 0.208 0.112 0.164 0.241 

AirNO2 100 0.447 0.491 0.453 0.088 0.343 0.420 0.098 0.358 0.272 0.400 0.438 0.494 
Balloon 100 0.151 0.153 0.148 0.119 0.117 0.125 -0.378 -0.128 -0.331 -0.055 0.022 0.148 

Balloonres 100 0.109 0.111 0.106 -0.321 0.065 0.082 -0.638 -0.023 -0.349 -0.168 -0.081 0.131 

Boston  100 0.741 0.749 0.679 0.350 0.553 0.612 0.387 0.497 0.677 0.710 0.682 0.703 
Body Fat 50 0.751 0.796 0.718 0.697 0.703 0.796 0.674 0.754 0.768 0.822 0.88 0.809 
Concrete 100 0.711 0.666 0.694 0.326 0.503 0.559 0.302 0.485 0.604 0.635 0.644 0.646 

CPU 100 0.952 0.949 0.947 0.909 0.947 0.953 0.905 0.929 0.955 0.964 0.968 0.969 

Forest 100 0.056 -0.033 0.041 -0.406 -0.608 -0.583 -4.626 -0.400 -2.863 -1.018 -1.104 -0.022 
Houses 100 0.534 0.567 0.641 0.433 0.510 0.552 0.085 0.231 0.548 0.645 0.679 0.676 

MG 50 0.721 0.726 0.713 0.493 0.694 0.714 0.464 0.647 0.541 0.648 0.681 0.705 

Motor 100 0.011 0.016 0.007 -0.054 0.009 0.008 -0.094 0.004 0.096 0.109 0.112 0.026 

MPG 100 0.889 0.876 0.852 0.783 0.843 0.862 0.764 0.815 0.820 0.856 0.862 0.866 

Ocean 100 0.996 0.995 0.994 0.989 0.995 0.995 0.989 0.990 0.997 0.997 0.998 0.997 
River 100 0.836 0.859 0.852 0.737 0.838 0.850 0.724 0.811 0.774 0.819 0.837 0.837 

Santa Fe 100 0.937 0.969 0.903 0.788 0.896 0.921 0.795 0.821 0.986 0.989 0.989 0.989 

Space 100 0.526 0.564 0.485 0.147 0.519 0.551 0.095 0.448 0.468 0.555 0.577 0.611 
Sun Spot 100 0.847 0.859 0.848 0.819 0.848 0.857 0.731 0.839 0.739 0.806 0.824 0.859 
Tecator 50 0.740 0.706 0.669 0.459 0.659 0.675 0.484 0.571 0.762 0.852 0.862 0.819 

Yield 100 0.324 0.317 0.302 0.032 0.286 0.301 0.077 0.196 0.306 0.347 0.354 0.357 

Top 2  6 9 3 0 1 0 0 0 1 4 9 9 

Bottom 2  0 0 0 16 0 0 21 1 4 0 0 0 

Average 

Rank 
 4.33 3.47 5.66 10.66 7.52 5.76 11.66 9.14 7.42 5.33 4.23 2.76 

 

 



RLVQ algorithms. This is expected, because proper 
prototype selection becomes ever more important as the 
budget decreases. 

IV. RELATED WORK 

The idea of soft partition of the feature space for LVQ 
was introduced in [16] and resulted in derivation of Soft 
LVQ algorithm. The authors introduced two variants of 
Learning Vector Quantization using Gaussian mixture 
assumption about prototypes. The learning rule was derived 
by minimizing an objective function based on a likelihood 
ratio using the gradient descent method. The form of the 
resulting learning algorithm resembles the traditional LVQ 
algorithms. It was shown that soft partition can lead to better 
classification as compared to the traditional LVQ algorithms. 
However, Soft LVQ is limited to performing classification 
tasks and cannot directly be extended to perform regression.  

Deterministic Annealing algorithm is a soft prototype 
partition algorithm first introduced for clustering [14] and 
then extended for vector quantization [12, 15], classification 
[9] and regression [13]. The general idea behind 
Deterministic Annealing (DA) is to find the optimal 
prototype positions (and target values in the regression case) 
by minimizing the objective cost function subject to a 
constraint on the entropy of the solution which is weighted 
by a “temperature” term that anneals during the training 
procedure. Our cost function D1 can be derived from this DA 
cost function by omitting the entropy constraint. The 
intuition behind annealing the “temperature” is that it can 
avoid shallow local minima and produces a hard solution at 
the limit of zero temperature. Its drawback is that, since the 
cost function is defined and minimized at each temperature, 
the solution cannot be found in an on-line manner and can 
take quite long to produce due to the slow annealing process.  

Mixture of local experts [6, 9 and 7] is a supervised 
learning procedure that decomposes a complex task into a 
number of simpler learning problems. The model consists of 
a number of specialized predictors and a gating function that 
decides how to combine them to make a final prediction. By 
using the gradient descent [6] or EM [7, 9] method each 
expert learns to handle a subset of the complete data set and 
the gating function learns how to combine the expert’s 
predictions. This procedure can be viewed as an associative 
version of competitive learning. RLVQ resembles the 
mixture of experts approach if we treat prototypes as experts 
and use their distances from a query point to calculate the 
gating weights. In fact, the cost function D2 proposed in Soft 
RLVQ closely resembles the cost function used in the 
mixture of experts [6]. 

V. CONCLUSION 

In this paper we presented a regression extension of the 
popular LVQ algorithm for classification. After a thorough 
study of soft partition regression and expert related 
algorithms, we realized that the expert networks can be 
replaced by much more easily implemented and intuitively 

clearer LVQ prototypes. As a result, we proposed three 
different versions of LVQ algorithm for regression, one of 
them using a soft partition of feature space and the other two 
using the hard partition. The experimental results showed 
that all versions of our algorithm are very efficacious and 
that they achieve considerable improvement in prediction 
accuracy when compared to other prototype based methods 
and perform similar to memory unconstrained methods.  
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