
Regression Learning Vector Quantization

Mihajlo Grbovic

Department of Computer and Information Sciences

Temple University

Philadelphia, USA

e-mail: mihajlo.grbovic@temple.edu

Slobodan Vucetic

Department of Computer and Information Sciences

Temple University

Philadelphia, USA

e-mail: vucetic@ist.temple.edu

Abstract— Learning Vector Quantization (LVQ) is a popular

class of nearest prototype classifiers for multiclass

classification. Learning algorithms from this family are widely

used because of their intuitively clear learning process and ease

of implementation. In this paper we propose an extension of

the LVQ algorithm to regression. Just like the LVQ algorithm,

the proposed modification uses a supervised learning

procedure to learn the best prototype positions, but unlike

LVQ algorithm for classification, it also learns the best

prototype target values. This results in the effective partition of

the feature space, similar to the one the K-means algorithm

would make. Experimental results on benchmark datasets

showed that the proposed Regression LVQ algorithm performs

better than the nearest prototype competitors that choose

prototypes randomly or through K-means clustering,

classification LVQ on quantized target values, and similarly to

the memory-based Parzen Window and Nearest Neighbor

algorithms.

Keywords-regression, learning vector quantization

I. INTRODUCTION

Learning Vector Quantization (LVQ) [8] is a simple,
universal, and efficient classification algorithm. It belongs to
a class of prototype-based learning algorithms such as
nearest neighbor, Parzen window, kernel perceptron, and
support vector machine algorithms. LVQ is defined by a set
of P prototypes {(mj, cj), j = 1…P}, where mj is a K-
dimensional vector in the feature space, and cj is its class
label. Given an unlabeled data point xu, its class label yu is
determined as the class cq of its nearest prototype mq,

yu = cq, q = arg minj d(xu, mj),

where d is a distance measure (e.g. Euclidean).
The training of LVQ starts with placing the prototypes at

some initial positions in the feature space. LVQ algorithm
then sequentially scans the training data points and updates
the prototypes. There are several different LVQ algorithms
that deal with prototype updates in different ways [1, 8].

LVQ2 [8] has been shown to achieve consistently good
accuracy and is commonly used as a representative of the
LVQ algorithms. Given a training data point (x, y), three
conditions have to be met for LVQ2 to update its prototypes:
1) Class of the prototype closest to x has to be different from
y, 2) Class of the next closest prototype has to be equal to y,
and 3) x must satisfy the “window rule” by falling near the
hyperplane at the midpoint between the closest (mj) and the

second closest prototype (mk). These two prototypes are then
modified as

mj(t+1) = mj(t) – α(t) (x – mj(t))

mk(t+1) = mk(t) + α(t) (x – mk(t)),

where t counts how many updates have been made, and α(t)
is a monotonically decreasing function of time. Let dj and dk

be the distances between x and mj and mk. Then, the “window
rule” is satisfied if min (dj / dk, dk / dj) > s, where s is a constant
commonly chosen between 0.4 and 0.8.

Equation (1) corresponds to a hard decision based solely
on the nearest-neighbor prototype, as is done in 1-Nearest
Neighbor algorithm. While hard decisions are typical of
LVQ, several soft LVQ versions have been proposed [16],
that predict based on a weighted vote from the near
prototypes. Soft versions of LVQ are reminiscent of Parzen
window and Support Vector Machines algorithms.

LVQ is traditionally used for classification. In this paper,
we propose several LVQ algorithms suitable for regression.
We pose Regression LVQ as an optimization problem with
two different cost functions. The first cost function leads to
Regression LVQ with hard predictions and the second to
LVQ with soft predictions. To design an LVQ learning
algorithm, we explored two optimization approaches, one
being gradient-based and another expectation-maximization-
(EM-) based. The gradient-based approach allows both batch
and stochastic (online) updates of prototypes, while the EM-
based is naturally suited for the batch mode of operation.
Finally, we show that a simplification of one of the resulting
algorithms leads to a regression variant of the popular LVQ2

There are several main justifications for using LVQ
algorithms in regression. One is that it allows a clear
mechanism for designing a prototype-based regressor on a
fixed prototype budget. Unlike classification, where methods
such as condensing [5] have been proposed for nearest
neighbor classifiers, there is no clear alternative for building
budget-based nearest neighbor and Parzen window
algorithms for regression. Another justification is that
regression LVQ has a relatively low training cost with linear
time and constant memory scaling with training size. This
makes it very attractive for the online learning applications.
Finally, some regression problems require prototypes for
representational purposes.

We should also discuss the difference between soft and
hard predictions in prototype-based algorithms. First, hard
predictions are suboptimal in the sense that they are a special

case of soft predictions where the whole weight of decision
is given to the nearest prototype. It has long been known that
soft predictions have a smoothing effect that is useful for
approximating regression functions. However, there are
several situations where hard predictions are necessary. Two
examples are decentralized estimation [12] and meta-
learning in distributed data mining [10, 11]. In both
applications, instead of sending raw data or predictions to the
fusion center, it might be more appropriate to send index of
the nearest prototype. This can be useful when there are
communication channel and energy constrains in the fusion
system, or when there are the data privacy concerns.

II. METHODOLOGY

The starting point in the design of Regression LVQ
(RLVQ) algorithms is to introduce probability p (j

| x) of

assigning observation x to prototype j that is dependent on
their (Euclidean) distance. Let us assume that the probability
density p (x) of x can be described by a mixture model

,)()|()(
1

P

j

jpjxpxp

where P is the number of components, p (j) is the prior
probability that a data point is generated by a particular
component and p (x | j) is the conditional probability that
component j generates particular data point x.

Let us represent the conditional density function p (x | j)
with the normalized exponential form

)),,(exp()()|(jmxfjKjxp

and consider a Gaussian mixture with K (j) = (2π σp

2
)

1/2
 and

f (x, mj) = (x mj)
2

 / 2σp
2
. In this case, component j is

completely represented by its mean mj and standard
deviation σp. Therefore, we can describe component j as
prototype j and we will follow this convention through the
rest of the paper. We should observe that it was assumed that
all prototypes have the same standard deviation (width) σp.
Additionally, we will assume that each prototype has the
same prior, p(j) = 1/P. Given this, using the Bayes’ rule we
can write the assignment probability as

.

)2)(exp(

)2)(exp(
)|(

1

22

22

P

l

pl

pj

mx

mx
xjp

Starting from equation (5), in sections II.A and II.B, we
are proposing two cost functions that naturally lead to hard
and soft versions of regression LVQ.

A. Hard RLVQ

To develop cost function for Hard RLVQ we propose the
following prediction model: data point x is assigned to a
single prototype j

*
 by chance following the assignment

probabilities p (j | x) and its label is predicted as label q j* of
prototype j

*
. The expected Mean Squared Error (MSE) of

such a model can be expressed as

,)()|(
1 11 1

2

1

N

i

P

j

ijij

N

i

P

j

jii egqyxjpD

where p (j | xi) is from equation (5). For the compactness of
notation, we defined gij ≡ p (j | xi) and eij ≡ (yi – qj)

2
.

To see why D1 from (6) is suitable as cost function for
Hard RLVQ, consider the case when σp → 0. Then, the
assignment probability p (j | xi) for the nearest prototype is
one, while the assignment probability for other prototypes is
zero. This is exactly the MSE of Hard LVQ. The reason why
cases when σp is nonzero are interesting has to do with the
training procedure, as will be described shortly.

The objective of LVQ learning is to estimate the
unknown model parameters, namely prototype positions mj
and target values qj, j = 1…P. This is done by minimizing
the cost function D1 with respect to the parameters. To do
this we propose to use the gradient descent method. For this,

we have to calculate derivatives D1/ mk and D1/ qk for k =

1…P. Interestingly, D1/ qk = 0 can be expressed in the
closed form and, therefore, prototype labels could be updated
exactly. The resulting learning rules for Hard RLVQ are

,

)(
)()(

11

1

1
2

1

1

N

i

iki

N

i

ik

t

k

N

i p

t

kiik
P

j

ijijik

t

k

t

k

gygq

mxg
egetmm

where t is the iteration number and (t) is the learning rate.
At t = 0, the procedure starts by selecting at random (or as
the first, in the on-line case) P training points as initial
prototypes. Then, prototype labels are calculated as in (7)
and the procedure is iterated. Learning is terminated when
the loss function D1 stops improving (e.g. by more than 10

-5
).

An important issue to be addressed is choice of parameter
σp. Setting it to a value near zero would hurt the learning
process and possibly lead to poor RLVQ model, as observed
in the related optimization problems [13, 16]. Therefore, we
initially set σp to a large value and slowly anneal it towards
zero. The update rule can be derived using the gradient

descent method σp
2

 (t+1) = σp
2

 (t) α(t)· D/ σp
2

 . However,
we experimentally determined that this could lead to
instabilities in the learning process. A much better approach
is to anneal σp

2
 using a specific schedule. Following the

suggestion from [16], the annealing was performed using the
schedule σp

2
 (t+1) = σp

2
 (0)·σT /(σT+t), where σT is the

parameter that controls how fast is the annealing. For batch
versions it was set to σT = 5 by default, while for stochastic
versions we used σT = 5N.

Hard RLVQ algorithm summarized in (7) is batch-mode
– it requires a pass through whole training set to perform a
single iteration. It can easily be converted to the stochastic
(online) mode that updates model after each training point, as

).(2)(

)()(

1

2
1

1

i

t

kik

t

k

t

k

p

t

ki
ik

P

j

ijijik

t

k

t

k

yqgtqq

mx
gegetmm

We can observe that the main difference is in the way
prototype targets are updated – here, we could not use the
closed-form update of (7) because it would require a pass
through whole training data set, thus defeating the purpose of
stochastic updating.

B. Soft RLVQ

To develop cost function for Soft RLVQ, we use the
prediction model that assigns data point x to the prototypes
probabilistically and predicts based on the weighted average
of the prototype labels. Assuming this mixture model, we
can express the posterior probability p (y | x) as

,)|()|()|(
1

P

j

jypxjpxyp

that was obtained by observing the conditional independence
between x and y given j, p (y | x, j) = p (y | j). For p (j | x) we
use the Gaussian distribution from (5). For the probability of
generating target y by prototype j, p (y | j), we also assume
Gaussian error model with mean (y – qj) and standard
deviation σy . The resulting cost function D2 for Soft RLVQ
can be written as the negative log-likelihood

N

i

P

j

yjiij

N

i

P

j

yjiij

N

i

ii

qyNgLD

qyNgxyPL

1 1

2

2

1 1

2

1

2

,),(lnln

),()|(

where, for the compactness of notation, we defined
gij ≡ p (j | xi) and eij ≡ N (yi – qj , σy

2
)

2
.

Let us first derive the gradient descent rule for
minimization of D2, similar to the stochastic gradient
algorithm (8),

.
)(

)(

)(

2

1

1

2

1

11

y

t

ki

P

j

ijij

ikikt

k

t

k

p

t

ki
ikP

j

ijij

ik

P

j

ijij

t

k

t

k

qy

eg

eg
tqq

mx
g

eg

eeg

tmm

Comparing to the learning rule for qk in (8) we see that (11)
uses a weighting term that takes into account how well
prototype j does relative to the other prototypes. The batch
version of update rules in (11) can be obtained using the
batch gradient descent in a straightforward manner.

In the proposed Soft LVQ version, we use the same
annealing schedules for σp

2
 and α. The main difference is that

we do not wish σp
2
 to drop to a value near zero, but instead to

set it to an appropriate positive value. To achieve this, we
resort to using the validation data set and continue to
decrease σp

2
 as long as D2 value is being improved on the

validation data set. Soft RLVQ uses σp
2
 value achieved at the

termination of training.

Compared to Hard RLVQ, Soft RLVQ has σy
2
 as an

additional parameter. In our algorithm, parameter σy
2
is set as

the mean squared error of the current RLVQ model.
Given an unlabeled data point xu, its target value yu is

predicted in a soft way, using the gating function, as a
weighted average of the prototype target values qj

.

1

P

j

juju qgy

As an alternative to the gradient descent algorithm for
minimization of D2 we explored the Expectation-
Maximization (EM) approach [3]. The resulting update
steps for the algorithm parameters (not shown due to length
constraint) are similar but applicable only to batch mode.

C. Regression LVQ 2

Starting from Hard RLVQ and simplifying the
assignment probabilities such that only two closest
prototypes are consulted each time the prediction is needed,
we will demonstrate that the resulting prototype updates
closely resemble LVQ 2 learning rule from (2). Given a
training data point xi with label yi, let us denote the closest
prototype as mk and the second closest prototype as mj. We
will neglect the remaining prototypes. This is acceptable as
an approximation of the Hard LVQ, because assignment
probabilities of the two closest prototypes are the highest.

Let us consider two extreme scenarios. In the first, mk
and mj are in similar proximity to xi. As a consequence, their
assignment probabilities will be approximately the same,
gik = gi = 0.5. The update rule from equation (7) could then
be expressed as

),())((

)())((

1

1

t

jiijik

t

j

t

j

t

kiijik

t

k

t

k

mxeetmm

mxeetmm

where p
2
 has been neglected for simplicity (it could be

incorporated in the learning rate parameter anyway). The
update rule is very similar to LVQ2 update in (2). The only

difference is the (eik eij) term which makes the amount of
update dependent on the difference in errors. It has an
intuitive interpretation. If errors of the 2 prototypes are
similar, their positions will not be updated. If error of k-th
prototype is larger, it is moved away from data point xi and j-
th prototype is moved towards it. This is exactly the intuition
used in LVQ2. The difference from LVQ2 is the case when
error of k-th prototype is smaller. There, RLVQ2 is moving
the k-th prototype towards and j-th prototype away from the
data point. Unlike it, LVQ2 would stay put.

The second scenario is when the closest prototype is
much closer than the second closest, which makes gij ≈ 0.
Following update rule (7), it could be approximated that

.1

1

t
j

t
j

t
k

t
k

mm

mm

This result is analogous to the very successful “window
rule” of LVQ2. Therefore, in our application of RLVQ2, we

use exactly the “window rule” used in LVQ2 to decide
whether the prototype positions should be updated.

In addition to update of prototype positions, in the
Regression LVQ case we have to update the prototype target
values as well. We derive stochastic update rule from (8) and
batch update rule from (7) as

),()(

)()(:

1

1

t
ji

t
j

t
j

t
ki

t
k

t
k

qytqq

qytqqstohastic

k

n

i

i
t

k
n

y

qbatch

k

11 : .11

j

n

i

i
t

j
n

y

q

j

Given an unlabeled data point xu, its target value yu is
determined as the target value qc of its nearest prototype mc

Yu = qc, c = arg minj d(xu, mj).

Finally, in Fig. 1 we summarize the resulting RLVQ2.1
algorithm in the stochastic mode. Value of s is chosen
between 0.4 and 0.8.

Receive a new training point (xi,yi)

Find two closest prototypes mk and mj

if min (dik / dij, dij / dik) > s // the window rule

use (13) and (15)

 else

use (14) and (15)

Figure 1. Stochastic RLVQ2.1 algorithm

It is interesting to note that, in contrast to LVQ 2.1, Hard
RLVQ was derived via optimization of a specific cost
function. Interestingly, as we showed, it can be reduced to a
simple heuristic in a very natural way.

D. Time Complexity

Time complexity of each run of Regression LVQ

through all training examples is (N·P M), where N is the
number of training points, M is the number of features, and
P is the number of prototypes. Time complexity of
calculating the assignment probabilities gij of each point xi,

is (2·P M), and of calculating the error eij each prototype

makes is (P M). Time complexity of target value

prediction for an unlabeled point is (P M).
While all proposed RLVQ algorithms have same time

complexity, RLVQ 2 algorithm works the fastest because it
does not have to deal with soft assignments. It also has the
fewest hyperparameters, since it only uses α from the basic
classification LVQ2 and does not use σp

2
 or σy

2
needed for

Soft RLVQ and Hard RLVQ algorithms.

III. EXPERIMENTAL RESULTS

All proposed versions of Regression LVQ algorithm
were evaluated on various regression tasks, both real-life and
synthetic. We were interested in comparing the proposed

Hard and Soft Regression LVQ algorithms and Regression
LVQ2 with several benchmark algorithms. Only results of
the stochastic Regression LVQs are shown dues to lack of
space. Compared with the batch versions, stochastic versions
resulted in slightly higher accuracies, as was expected [2].

A. Benchmark Regression Algorithms

In the following, we describe regression algorithms used
for benchmarking of proposed Regression LVQ algorithms.

K-Nearest Neighbor algorithm is a traditional
prototype-based algorithm that works both for classification
and regression. Prototypes are typically all training points.
There, K corresponds to the number of neighbors consulted
in making the prediction. In regression scenario, prediction
is given as the average label of K nearest neighbors.

Parzen Window Regression is an algorithm that
behaves as a soft version of the Nearest Neighbor algorithm.
It makes the prediction as the weighted average of prototype
labels, where the weight is determined based on the kernel
distance from the query data point. The smoothing strength
of the weighting is decided by the kernel width parameter.

K-Means Regression is based on selection of
prototypes using standard K-means algorithm [19] that
partitions training observations into P clusters. The
prototypes are defined as the cluster centers. Given such a
set of prototypes, both nearest neighbor and Parzen window
algorithm can be used to provide predictions. This approach
ensures fixed prototype budget, consistent with the RLVQ
algorithms. Therefore, it is appropriate for benchmarking.

Random Prototypes is a simple approach where P
prototypes are selected at random from the training data.
Again, both nearest neighbor and Parzen window algorithms
can be used with such prototypes.

Quantization LVQ uses classification to solve
regression problems. It quantizes the target variables into M
discrete values and treats them as M classes. Then it
performs LVQ2.1 on M classes using P prototypes.

B. Data Description

We evaluated Regression LVQ algorithms on several
benchmark regression datasets from StatLib, Delve and UCI
ML Repositories. Data sets we used can be divided in two
groups: time series data sets (Table II) and the rest (Table I).

TABLE I. NON-TIME SERIES DATA SETS

Data Set Source Training Size Test Size Features

Abalone UCI 1897 949 8

Air NM10 StatLib 333 167 7

Air NO2 StatLib 333 167 7

Body Fat StatLib 168 84 14

Boston UCI 337 169 13

Concrete UCI 687 343 8

CPU small Delve 5461 2731 12

Forest UCI 345 172 9

Houses StatLib 13760 6880 8

MG [4] 923 462 6

Motor StatLib 1454 727 6

MPG UCI 198 99 7

Space StatLib 2071 1036 6

Tecator StatLib 172 43 122

TABLE II. TIME SERIES DATA SETS

Data Set Source Training Size Test Size Lag

Balloon StatLin 1331 665 6

Ocean Shear StatLib 4580 2290 5

River Flow StatLib 628 314 4

Santa Fe [17] 9991 2482 9

Sun Spots StatLib 1878 939 3

Yield StatLib 1655 827 9

C. Regression on a fixed budget

The proposed Regression LVQ algorithms used moderate
prototype budgets of 100 on all but the 3 smallest data sets
(there, budget was set to 50). The same prototype budgets
were used for K-Means Regression and Random Prototypes
benchmark algorithms. For the K-Nearest Neighbor we
explored K = 1, 2 and 3. The kernel width for Parzen
window was optimized using cross-validation.

Each of the Regression LVQ versions used the same
hyperparameter value α0 = 0.04 and the update step

α(t) = α0 αT /(αT+t), where t is the time and αT = 5N, where N
is the size of the training set. The hyperparamether σp was
initialized as the value of within-data variance and updated
using the schedule described in Section II depending on the
type of the algorithm (Soft or Hard). Hyperparamether σy
used by the Soft RLVQ was always set to the standard
deviation of the squared error made by the prototypes.

In the cases where the data set was not explicitly divided
into training and test sets by the authors, we randomly

selected 2/3 of the data set for training and 1/3 for testing.
This process was repeated 10 times and the average R

2

values on the test sets are reported in Table III. In addition to
showing the R

2
 accuracies on each data set, in Table III we

report how many times each algorithm was among Top 2 and
Bottom 2 performers, as well as the average rank of each
algorithm.

Based on the Top 2 and average rank scores we can
conclude that all three versions of Regression LVQ on a
fixed budget perform similarly to Non-budget Parzen
window and KNN algorithms. Budget versions of 1NN and
Parzen window were less accurate then Budget Regression
LVQ algorithms. Additionally, K-means clustering selection
of prototypes was more successful than random prototype
selection in both Budget 1NN and Budget Parzen window
methods. Finally, Quantization LVQ performed poorly and
did not show up as a successful idea.

Comparing of Regression LVQ algorithms shows that
Soft RLVQ is slightly better than Hard RLVQ. Interestingly,
despite its simplicity, RLVQ2 was quite competitive.

To illustrate the behavior of the proposed algorithms in
the highly resource constrained scenarios, another set of
experiments was performed where the budget algorithms
were restricted to a very tight budget (results not shown). As
expected, the resulting R

2
 accuracies were lower than when

larger budgets are used. Comparing with K-means and
random prototype selection approaches for budget
maintenance, we observed an even larger dominance of

TABLE III. PERFORMANCE RESULTS ON A FIXED BUDGET. COMPARISON WITH BUDGET AND NON-BUDGET ALGORITHMS

Data Set P

Hard

RLVQ

Soft

RLVQ
RLVQ 2 Budget

QLVQ

M=32

K-means

Regression

Random

Prototypes
Non-budget K-NN Non-budget

Parzen

Hard Soft Hard 1-NN Parzen 1-NN Parzen K=1 K=2 K=3

Abalone 100 0.497 0.471 0.489 0.219 0.540 0.528 0.200 0.468 0.350 0.492 0.538 0.561

AirNM10 100 0.220 0.253 0.203 -0.585 0.080 0.185 -0.348 0.071 0.208 0.112 0.164 0.241

AirNO2 100 0.447 0.491 0.453 0.088 0.343 0.420 0.098 0.358 0.272 0.400 0.438 0.494
Balloon 100 0.151 0.153 0.148 0.119 0.117 0.125 -0.378 -0.128 -0.331 -0.055 0.022 0.148

Balloonres 100 0.109 0.111 0.106 -0.321 0.065 0.082 -0.638 -0.023 -0.349 -0.168 -0.081 0.131

Boston 100 0.741 0.749 0.679 0.350 0.553 0.612 0.387 0.497 0.677 0.710 0.682 0.703
Body Fat 50 0.751 0.796 0.718 0.697 0.703 0.796 0.674 0.754 0.768 0.822 0.88 0.809
Concrete 100 0.711 0.666 0.694 0.326 0.503 0.559 0.302 0.485 0.604 0.635 0.644 0.646

CPU 100 0.952 0.949 0.947 0.909 0.947 0.953 0.905 0.929 0.955 0.964 0.968 0.969

Forest 100 0.056 -0.033 0.041 -0.406 -0.608 -0.583 -4.626 -0.400 -2.863 -1.018 -1.104 -0.022
Houses 100 0.534 0.567 0.641 0.433 0.510 0.552 0.085 0.231 0.548 0.645 0.679 0.676

MG 50 0.721 0.726 0.713 0.493 0.694 0.714 0.464 0.647 0.541 0.648 0.681 0.705

Motor 100 0.011 0.016 0.007 -0.054 0.009 0.008 -0.094 0.004 0.096 0.109 0.112 0.026

MPG 100 0.889 0.876 0.852 0.783 0.843 0.862 0.764 0.815 0.820 0.856 0.862 0.866

Ocean 100 0.996 0.995 0.994 0.989 0.995 0.995 0.989 0.990 0.997 0.997 0.998 0.997
River 100 0.836 0.859 0.852 0.737 0.838 0.850 0.724 0.811 0.774 0.819 0.837 0.837

Santa Fe 100 0.937 0.969 0.903 0.788 0.896 0.921 0.795 0.821 0.986 0.989 0.989 0.989

Space 100 0.526 0.564 0.485 0.147 0.519 0.551 0.095 0.448 0.468 0.555 0.577 0.611
Sun Spot 100 0.847 0.859 0.848 0.819 0.848 0.857 0.731 0.839 0.739 0.806 0.824 0.859
Tecator 50 0.740 0.706 0.669 0.459 0.659 0.675 0.484 0.571 0.762 0.852 0.862 0.819

Yield 100 0.324 0.317 0.302 0.032 0.286 0.301 0.077 0.196 0.306 0.347 0.354 0.357

Top 2 6 9 3 0 1 0 0 0 1 4 9 9

Bottom 2 0 0 0 16 0 0 21 1 4 0 0 0

Average

Rank
 4.33 3.47 5.66 10.66 7.52 5.76 11.66 9.14 7.42 5.33 4.23 2.76

RLVQ algorithms. This is expected, because proper
prototype selection becomes ever more important as the
budget decreases.

IV. RELATED WORK

The idea of soft partition of the feature space for LVQ
was introduced in [16] and resulted in derivation of Soft
LVQ algorithm. The authors introduced two variants of
Learning Vector Quantization using Gaussian mixture
assumption about prototypes. The learning rule was derived
by minimizing an objective function based on a likelihood
ratio using the gradient descent method. The form of the
resulting learning algorithm resembles the traditional LVQ
algorithms. It was shown that soft partition can lead to better
classification as compared to the traditional LVQ algorithms.
However, Soft LVQ is limited to performing classification
tasks and cannot directly be extended to perform regression.

Deterministic Annealing algorithm is a soft prototype
partition algorithm first introduced for clustering [14] and
then extended for vector quantization [12, 15], classification
[9] and regression [13]. The general idea behind
Deterministic Annealing (DA) is to find the optimal
prototype positions (and target values in the regression case)
by minimizing the objective cost function subject to a
constraint on the entropy of the solution which is weighted
by a “temperature” term that anneals during the training
procedure. Our cost function D1 can be derived from this DA
cost function by omitting the entropy constraint. The
intuition behind annealing the “temperature” is that it can
avoid shallow local minima and produces a hard solution at
the limit of zero temperature. Its drawback is that, since the
cost function is defined and minimized at each temperature,
the solution cannot be found in an on-line manner and can
take quite long to produce due to the slow annealing process.

Mixture of local experts [6, 9 and 7] is a supervised
learning procedure that decomposes a complex task into a
number of simpler learning problems. The model consists of
a number of specialized predictors and a gating function that
decides how to combine them to make a final prediction. By
using the gradient descent [6] or EM [7, 9] method each
expert learns to handle a subset of the complete data set and
the gating function learns how to combine the expert’s
predictions. This procedure can be viewed as an associative
version of competitive learning. RLVQ resembles the
mixture of experts approach if we treat prototypes as experts
and use their distances from a query point to calculate the
gating weights. In fact, the cost function D2 proposed in Soft
RLVQ closely resembles the cost function used in the
mixture of experts [6].

V. CONCLUSION

In this paper we presented a regression extension of the
popular LVQ algorithm for classification. After a thorough
study of soft partition regression and expert related
algorithms, we realized that the expert networks can be
replaced by much more easily implemented and intuitively

clearer LVQ prototypes. As a result, we proposed three
different versions of LVQ algorithm for regression, one of
them using a soft partition of feature space and the other two
using the hard partition. The experimental results showed
that all versions of our algorithm are very efficacious and
that they achieve considerable improvement in prediction
accuracy when compared to other prototype based methods
and perform similar to memory unconstrained methods.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation under Grant IIS-0546155.

REFERENCES

[1] Biehl M., Ghosh A., Hammer B., Dynamics and generalization ability

of LVQ algorithms, The Journal of Machine Learning Research, vol.
8, pp. 323-360, 2007.

[2] Bottou L., Stochastic learning, Advanced Lectures on Machine
Learning pp. 153-174, 2003.

[3] Dempster A. P., Laird N. M. and Rubin D. B., Maximum likelihood
from incomplete data via the EM algorithm, J. Royal Statistical
Society B, vol. 39, pp. 1-38, 1977.

[4] Flake G. W. and Lawrence S., Efficient SVM regression training with
SMO. Machine Learning, vol 46, pp. 271-290, 2002.

[5] Hart P. E., The condensed nearest neighbor rule, IEEE Trans. Inform.
Theory, vol. IT-14, pp. 515–516, 1968.

[6] Jacobs R. A., Jordan M. I., Nowlan S.J and Hinton G.E., Adaptive
mixtures of local experts, Neural Computation, vol. 3, pp. 79-87,
1991.

[7] Jordan M. I., Jacobs R. A., Hierarchical mixtures of experts and the
EM algorithm, Neural Computation, vol. 6, pp. 181-214,1994.

[8] Kohonen T., The Self-organizing Map, Proceedings of the IEEE, vol
78, pp. 1464-1480, 1990.

[9] Miller D., Rao A. V., Rose K., and Gersho A., A global optimization
technique for statistical classifier design, IEEE Trans. Signal
Processing, vol. 44, pp. 3108–3122, 1996.

[10] Prodromidis A., Chan P., Stolfo S., Advances in Distributed and
Parallel Knowledge Discovery, MIT Press Cambridge, MA, 2000.

[11] Prodromidis A., Chan P., and Stolfo S., Meta-learning in distributed
data mining systems: Issues and approaches. In H. Kargupta and P.
Chan, editors, Advances in Distributed and Parallel Knowledge
Discovery. AAAI/MIT Press, Cambridge, MA, 2000.

[12] Rao A., Miller D., Rose K. and Gersho A., A generalized VQ method
for combined compression and estimation, IEEE Intern. Conf. on
Acoustics Speech and Sig. Proc., vol. 4, pp. 2032-2035, 1996.

[13] Rose K., Deterministic Annealing for Clustering, Compression,
classification, regression and related optimization problems, Proc.
IEEE, vol 86, pp. 2210–2239, 1998.

[14] Rose K., Gurewitz E., Fox G., A deterministic annealing approach to
clustering, Pattern Recognition Letters, vol 11, pp. 589-594, 1990.

[15] Rose K., Gurewitz E., Fox G., Vector quantization by deterministic
annealing, IEEE Transactions on Information Theory, vol 38, pp.
1249-1257, 1992.

[16] Seo S. and Obermayer K.. Soft learning vector quantization, Neural
Computation, vol. 15, pp. 1589-1604, 2003.

[17] Weigend A. S., Mangeas M. and Srivastava A. N., Nonlinear gated
experts for time series: discovering regimes and avoiding overfitting,
International Journal of Neural Systems, vol. 6, pp. 373-399, 1995.

