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Abstract— Learning Vector Quantization (LVQ) is a popular 
class of nearest prototype classifiers for multiclass 
classification. Learning algorithms from this family are widely 
used because of their intuitively clear learning process and ease 
of implementation. They run efficiently and in many cases 
provide state of the art performance.  In this paper we propose 
a modification of the LVQ algorithm that addresses problems 
of determining appropriate number of prototypes, sensitivity to 
initialization, and sensitivity to noise in data. The proposed 
algorithm allows adaptive addition of prototypes at potentially 
beneficial locations and removal of harmful or less useful 
prototypes. The prototype addition and removal steps can be 
easily implemented on top of the many existing LVQ 
algorithms. Experimental results on synthetic and benchmark 
datasets showed that the proposed modifications can 
significantly improve LVQ classification accuracy while at the 
same time determining the appropriate number of prototypes 
and avoiding the problems of initialization.  

I. INTRODUCTION 
EARNING Vector Quantization (LVQ) has been 
introduced by T. Kohonen [27] as a simple, universal 

and efficient classification algorithm and has since found 
many applications and extensions [21]. LVQ is a class of 
learning algorithms for nearest prototype classification 
(NPC). Like the nearest neighbor method [22], LVQ is a 
local classification algorithm, where the classification 
boundaries are approximated locally. The difference is that 
instead of using all the points in the training dataset, LVQ 
uses only a set of appropriately chosen prototype vectors. 
This way the classification method is much more efficient, 
because the number of vectors that should be stored and 
compared with is significantly reduced. In addition, a 
carefully chosen prototype set can greatly increase 
classification accuracy on noisy problems. 

LVQ is introduced as an algorithm that efficiently learns 
the appropriate prototype positions used for classification. It 
is defined by a set of P prototypes {(mj, cj), j = 1… P}, 
where mj is a K-dimensional vector in the feature space, and 
cj is its class label. Typically, the number of prototypes is 
larger than the number of classes. This way, each class is 
represented with more than one prototype. Given an 
unlabeled data point xu, its class label yu is determined as the 
class cq of its nearest prototype mq
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yu = cq, q = arg minj d(xu, mj) (1) 

where d is the Euclidean distance. Other distances measures 
can be used as well, depending on the problem at hand. The 
space required to store an LVQ classifier is Θ(PK) and the 
time needed to classify an unlabeled point is Θ(PK). The 
number of prototypes P can be selected to meet the 
computational constraints. Clearly, the number of prototypes 
used represents a tradeoff between computational cost and 
classifier complexity.  

The training of LVQ starts with placing the prototypes at 
some initial positions in the input space. In the simplest 
scenario, assuming there are C classes with balanced class 
distributions, P/C prototypes of each of the C classes are 
selected by random sampling from training examples of the 
corresponding class. LVQ algorithm then sequentially scans 
the training data points, possibly in multiple rounds and in 
an arbitrary order. If the LVQ classifier agrees with the 
actual class of a training data point, the prototypes are not 
modified. Otherwise, location of one or more prototypes is 
updated in an attempt to increase the LVQ accuracy.  

There are several different LVQ algorithms that deal with 
the updates of the prototypes in different ways. Description 
of their three main variants, LVQ1, LVQ2, and LVQ3 can 
be found in [27], while some viable alternatives (LFM, 
LFMW, LVQ+/-) are described in [17]. The common for all 
is the idea to move the nearest prototype away from the 
incorrectly classified training point and to (optionally) move 
the nearest prototype of the correct class towards it.  

LVQ2.1 has been shown to provide good NPC classifiers 
and is commonly used as a representative of LVQ 
algorithms. Given a training data point (x,y), three conditions 
have to be met for LVQ2.1 to update its prototypes: 1) Class 
of the prototype closest to x has to be different from y, 2) 
Class of the next closest prototype has to be equal to y, and 
3) x must fall near the hyperplane at the midpoint between 
the closest (let us denote it as mj) and the second closest 
prototype (let us denote it as mk). These two prototypes are 
then modified as 

mj(t+1) = mj(t) – α(t) (x – mj(t)) 

mk(t+1) = mk(t) + α(t) (x – mk(t)) 

(2) 

where t represents how many updates have been made, and 
α(t) is a monotonically decreasing function of time. 
Common initial value for α(0) is 0.03, and it is being 
decreased as α(t) = α(t−1)⋅(1−i/N), i = 1… N. Let dj and dk be 
the distances between x and mj and mk. Then, x is defined as 
near the midpoint if min(dj/dk, dk/dj) > s, where s is a 
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constant commonly chosen between 0.4 and 0.8. This 
“window rule” is introduced to prevent prototype vectors 
from diverging. 
 Even though LVQ algorithms provide good classification 
results and are widely used, especially in real time 
applications such as speech recognition [28, 9], they have 
their disadvantages. First, the classification results depend 
on the initial choice of prototypes. If the initialization is not 
done in a proper way good classification results might never 
be achieved. Second, since LVQ algorithms typically choose 
the same number of prototypes per class and the decision on 
how many prototypes to use is left to the user, there is no 
guarantee that the prototypes are going to adapt to the data in 
the best possible way. In multiclass datasets it might happen 
that some classes have more complicated distributions in the 
feature space than others. It would seem logical that they get 
more prototypes. This also becomes an issue when the class 
distribution is highly unbalanced. Third, LVQ algorithms are 
not robust to noisy data and prototypes are sometimes 
trapped in the positions where they are doing more harm 
than good. 

In order to deal with such weaknesses we introduce a 
novel modification of the LVQ algorithms called Adaptive 
LVQ. Our approach is different from basic LVQ algorithms 
because it lets prototypes adapt to the data during training. 
Starting with a single prototype per class, we are adding 
prototypes at appropriate positions and removing prototypes 
from inappropriate positions in order to optimize the 
accuracy.  

In general, our method can be applied to any algorithm in 
the LVQ family. 

II. RELATED WORK 
There have been many attempts to improve the 

performance of LVQ algorithms. Besides having different 
versions of LVQ in order to achieve better classification 
results and better adapt to specific applications, there are 
whole algorithms that are developed to address the specific 
weaknesses of LVQ.  

The Generalized LVQ (GLVQ) algorithm proposed by 
Sato [4] is just one of the powerful variants of the 
Kohonen’s LVQ algorithm. GLVQ algorithm has a 
continuous and differentiable cost function. The updating 
rule is obtained by minimizing this cost function, ensuring 
algorithm convergence. Although the GLVQ algorithm has 
shown promising results in various applications it has been 
shown that its performance deteriorates when dealing with 
complex data sets with non linear class boundaries. It also 
encounters a problem of determining the appropriate number 
of prototypes and is sensitive to initialization of prototype 
positions and thus many prototypes may get trapped in local 
minimal states. 

This idea of creating an update rule by minimizing a 
certain cost function is very popular with today’s 
researchers. As a result, many Soft versions of LVQ 
algorithm have been developed [24], [20], [2], [3], [15]. 

The popular Soft LVQ introduced in [24] is similar in 
design to the VQ classifier using Deterministic Annealing 
[8]. The problem is treated as optimization, where the 
probability density that the data point x is generated by the 
model of the correct class is calculated and compared it to 
the probability density that this point is generated by the 
models of the incorrect classes. The logarithm of the ratio of 
the correct vs. the incorrect probability densities serves as 
the cost function to be maximized. One slight issue with this 
approach is that it introduces an additional hyperparameter 
σ, besides the existing α. As stated in [24], one way to use σ 
is to find the optimal value of this hyperparameter using the 
validation data set. In this way, the training set has to be 
examined several times before the start of LVQ, which is 
time consuming and could also be imprecise in the case 
when the training data set is very small. The other way to 
use σ is to calculate its initial value and then anneal it during 
the training procedure. This way, the above stated problems 
are reduced. 

There is also an issue of the update step α. Some 
researchers feel that this update step should be different for 
different prototypes. This idea culminated in development of 
the optimized learning rate LVQ1 (OLVQ1) algorithm [26] 
which gathers statistics about each prototype during the 
training procedure and then modifies their update values 
accordingly. 

In LVQ algorithms and other prototype-based models a 
data point is usually compared with a prototype according to 
the Euclidian distance. However, some researchers [19] 
claim that the specific structure of the data space can and 
should be accounted for by selecting an appropriate metric. 
Once a suitable metric is identified, only then can it can be 
further utilized for the design of good classifiers. In 
supervised scenarios, auxiliary class information can be used 
for adapting parameters improving the specificity of data 
metrics during data processing, as proposed by Kaski for 
(semi-)supervised extensions of the LVQ [23]. Another 
metric-adapting classification architecture is the generalized 
relevance learning vector quantization (GRLVQ) developed 
by Hammer and Villmann [6]. 

There has also been a lot of research done in modifying 
LVQ to perform feature selection during training. Standard 
LVQ does not discriminate between more and less 
informative features and their influence on the distance 
function is equal. Several approaches that deal with this 
problem can be found in literature [1, 18]. These algorithms 
modify feature weights and employ a weighted distance 
function. Influences of features which are frequently 
contributing to misclassifications of the system are reduced 
while the influences of very reliable features are increased. 

Another idea that can be found in literature is to take more 
"runners-up" into account [25] because it occurs quite 
commonly that an input vector has several neighboring 
codebook vectors that are almost equidistant from it. 
Therefore, in order to increase the accuracy of learning, the 
corrections might not only be restricted to the "winner" and 



 
 

 

the first "runner-up", but could also take the "runners-up" 
into account. An additional advantage of this approach is 
that, whereas the "runners-up" are often of the correct class, 
their simultaneous correction tends to update them more 
smoothly.  

Some researchers extend a local prototype-based learning 
model by active learning, which gives the learner the 
capability to select training samples during the model 
adaptation procedure. It is claimed [10] that by using these 
active learning strategies the generalization ability of the 
model could be improved accompanied by a significantly 
improved learning speed. 

Some recent work proposes margin analysis of LVQ to 
provide theoretical justification for the LVQ algorithm. 
Roughly speaking, margins measure the level of confidence 
a classifiers has with respect to its decisions. Margin 
analysis has become a primary tool in machine learning 
during the last decade (SVM [29]). Buckingham and Geva 
[16] were the first to suggest that LVQ is indeed a maximum 
margin algorithm. They presented a variant named LMVQ 
and analyzed it. In [14], a geometrically based margin 
similar to SVM was defined and used for analysis. 

Adequate initialization of the codebook vectors is highly 
important issue with the LVQ algorithm [25]. In general, the 
optimal numbers of prototypes per class are not easy to 
derive due to the complexities of class-conditional densities 
and variability in class distributions. The simplest way to 
initialize prototypes is to select them by random sampling 
from the available training points. An alternative way, as 
suggested by some researchers, is to use the K-means 
clustering [12], [11] to define the initial locations of 
prototypes. One option is to perform clustering on each class 
separately and take cluster centroids as initial prototypes. A 
slightly different version of K-means initialization can be 
found in [11] where the placement of prototypes is 
determined without taking their classification into account. 
In this case, the prototypes are labeled based on the majority 
classes assigned to their cluster. This choice, although rather 
successful in the case of smooth and continuous 
distributions, does not guarantee any stable or unique 
distribution in difficult cases where it can even happen that 
some classes remain without prototype representatives. 

Interesting alternatives for the initialization include 
supervised neural gas (SNG) algorithm [5] and cost-function 
adaptation [3] that replaces minimum Euclidian distances 
with harmonic average distances and alleviates the 
initialization sensitiveness problem.  

The number of prototypes to be assigned to each class is 
another problem to which there is no clear solution. 
Experimentally it has been found that a good strategy in 
practice, in absence of any other, is to assign an identical 
number of prototypes to each class, even when the class 
distributions are very dissimilar [26]. An alternative would 
be to assign the number of prototypes proportionally to the 
class distribution. Another approach is to make sure that the 
average distances between the adjacent prototypes in each 

class are smaller than the standard deviations of the 
respective class samples [26]. This condition has to be 
satisfied in order to start the training procedure. If this is not 
the case prototypes are re-initialized by assigning the larger 
number of prototypes to the classes that didn’t satisfy the 
condition. Finally, one might try all the possible 
combinations of numbers and perform the comparative 
classifications [26], but this method is formidably slow. 

In this paper, we address the issues of prototype 
initialization and deciding their number and distribution 
among classes. In order to find the optimal number of 
prototypes that provides high classification accuracy we start 
with the single prototype per class and then let the algorithm 
decide when and where to add or remove prototypes. This 
way we avoid the aforementioned initialization issues.  The 
details of the proposed approach are given in the following 
section. 

III. METHODOLOGY 

A. Basic Idea of the Algorithm 
Adaptive LVQ is a modification that improves LVQ 

classification performance. It consists of adaptive removal of 
less useful or harmful prototypes and addition of new 
prototypes at locations that are potentially beneficial. The 
idea is to start with an initial, small, and equal number of 
prototypes per each class. Then, candidate prototypes are 
added where they can be the most beneficial and prototypes 
are removed when it results in decrease in classification 
error.  

Instead of fixing the number of prototypes, the adaptive 
algorithm only sets a threshold B defining an upper bound 
on the number of LVQ prototypes. To balance the budget B, 
when the total number of prototypes reaches B new 
prototypes can be added only after some existing are deleted. 

Adaptive LVQ consists of two methods that can be easily 
appended to an LVQ algorithm of choice: LVQadd adds 
prototypes where current LVQ is making many mistakes, 
while LVQremove removes prototypes if it can result in 
decrease in classification error. LVQremove and LVQadd are 
performed in this order after each pass of the baseline LVQ 
algorithm through the training data. 

B. LVQadd 
LVQadd concentrates on misclassified points of each class 

during LVQ training. Using hierarchical clustering [22, 13] 
with average linkage, the significant size clusters of 
misclassified points are determined for each class. Assuming 
there are M classes, and there are nj misclassified points of 
class j, we apply hierarchical clustering on each of these 
subsets. We can control the number of clusters for each class 
by setting two bounds: an upper bound, max_clusters, on the 
number of clusters, and a lower bound, min_cluster_size, on 
the cluster size. Then, new prototypes are introduced at 
positions of cluster centroids.  

 Since we are working on a budget (B), all new prototypes 
of all classes are grouped together and sorted by their size 



 
 

 

and only prototypes from the largest clusters are added to the 
budget. When the total number of prototypes reaches B, 
LVQadd is suspended until the complementary LVQremove 
does not remove some of them. Default values for 
max_clusters is 5 and for min_cluster_size is 3. 

C. LVQremove  
LVQ-Remove detects prototypes whose removal would 

result in accuracy increase. Such prototypes are typically 
outliers or those trapped in the regions with majority of the 
training data points of different class. During each pass of 
LVQ through training data statistics are gathered about 
every prototype and then combined into a unique score. For 
each prototype mj its score is measured as 

Scorej = Aj−BBj+Cj (3) 

where Aj counts how many times prototype mj classified 
correctly and hasn’t been moved, BBj how many times it was 
moved away as the prototype of the wrong class and Cj how 
many times it was moved towards as the prototype of the 
correct class. Prototypes with negative scores are likely to be 
detrimental to accuracy and as a result they are removed in 
the LVQremove stage of the algorithm.  

The Score is slightly modified only for the LVQ1 
algorithm, where Aj does not exist, so it is set to zero. When 
Adaptive LVQ is applied to other LVQ algorithms such as 
LVQ2, LVQ2.1, LVQ3, LFM, LFMW, all three statistics 
used in Score can be positive. 

D. The Algorithm 
The goal of classification is to build an efficient classifier 

from N training points, D = {(xi, yi), i = 1... N}, where xi is a 
K-dimensional vector in the feature space and yi is its class 
label, an integer from a set {1…M}. We start by defining a 
LVQ classifier by an initial set of p0 prototypes by randomly 
choosing p0/M prototypes per each class label {(mj, cj), j = 
1… p0}, where mj is a K-dimensional vector in the feature 
space, and cj is its class label. The default value is set to p0 = 
M. 

Next, we define an upper bound B on how many 
prototypes we can have in total, as well as the initial value of 
the LVQ hyperparameter α0. LVQadd parameters 
max_clusters and min_cluster_size are set to their default 
values. LVQ training rounds are repeated I times, unless 
early stopping occurs when training set accuracy stops 
improving. LVQremove and LVQadd are performed after 
each pass of LVQ through the training data. Before the next 
training round, the training data are shuffled. 

Figure 1 describes the complete Adaptive LVQ2.1 
algorithm. Pseudo codes for LVQadd and LVQremove 
procedures are described in Figure 2. It should be noted that 
both LVQremove and LVQadd are not performed after the 
last training round of LVQ. This is done because of the 
nature of LVQadd that might be adding prototypes in the 
noisy regions where they are not needed. Adaptive LVQ can 
effectively determine which class needs more prototypes and 
which less. The default choice for the initial number of 

prototypes is a single prototype per class, p0=M, but it could 
be higher if desired.  

When computational time and memory for classification 
is not an issue, budget B can be set to infinity.  Then, the 
LVQadd and LVQremove of the adaptive algorithm 
determine the appropriate number of prototypes for each 
class that maximizes classification accuracy.  

Input: Training Set of size N, M classes, Budget B, p0=M, 
α0=0.08, αT=4N (update step), s=0.6, I=30, significant error 
rate esig=10−5, max_clusters=5, min_cluster_size=3 
 
α=α0; 
t=1;  
it=1;  
Initialize prototypes 
P=p0; 
 
WHILE (it ≠ I) and (errit-errit-1<esig)  
 FOR i = 1 TO N 
  find nearest prototype (mj,cj) 
  find second nearest prototype (mk,ck) 
  IF (cj ≠ yi) and (ck = yi) 
   dj=d(xi,mj);  
   dk=d(xi,mk); 
   IF (min(dj/dk, dk/dj) > s)    
    //update prototypes 

mj(t+1) = mj(t) – α(t) (xi – mj(t)) ; 
Bj++ ; 
mk(t+1) = mk(t) + α(t) (xi – mk(t)) ; 
Ck++ ; 

   END 
  ELSE Aj++ ; 
  END 
  t++; 
  α(t)=α0*αT/(αT+t); 
 END 
 Calculate classification error errit
 IF (errit<errit-1)  

store current prototypes as Final_Prototypes 
 IF NOT Last Iteration 
  LVQremove 
  LVQadd 
 END  
 Shuffle data for next iteration 
 it++; 
END 
Calculate test error using Final_Prototypes 

 
Figure 1. Pseudo code for Adaptive LVQ2.1 algorithm 

When working on a tight budget Adaptive LVQ is a very 
useful tool as it tries to optimally utilize the available 
prototypes for classification. Adaptively adding and 
removing prototypes while working on a budget is much 
more efficient than using the entire budget right away and 
spread the prototypes to all classes evenly. 

E. Time Complexity 
Time complexity of each LVQ round is Θ(N·P⋅K). It 

should be noted that in the Adaptive version P increases 
from initial p0 to some final value which can be B  at 



 
 

 

maximum, making the total cost of the LVQ part of the 
algorithm O(N·P⋅K). 

The proposed LVQadd and LVQremove increase the total 
time only slightly. Since the clustering is performed only on 
the misclassified data points, the time complexity involved 
in LVQadd follows from the complexity of hierarchical 
clustering with average linkage and can be calculated as 

Θ( ) ∑
=

M

i
ii nn

1

2 log (4) 

where ni is the number of misclassified data points with class 
label i. As the majority of total N data points is already well 
classified after a single LVQ iteration, LVQadd typically 
uses significantly less training points than N and its time 
complexity is significantly less than Θ(N 2logN). Moreover, 
after each training round, the fraction of misclassified points 
is expected to decrease, thus further decreasing the cost of 
LVQAdd.  

LVQremove gathers prototype statistics during the LVQ 
training round and then it simply eliminates the prototypes 
with the negative score. Therefore, it always scales linearly 
with the number of prototypes and does not introduce a 
noticeable increase in the total training time. 

IV. EXPERIMENTAL RESULTS 
The original LVQ algorithms LVQ1, LVQ2.1, and LVQ3 

with k-means prototype initialization were compared to their 
Adaptive counterparts that start from a single prototype per 

class and use LVQAdd and LVQRemove steps to optimize the 
number of prototypes and their locations. In addition, these 
algorithms were compared to the popular Soft LVQ (its 
annealing version) algorithm presented in [24]. We intend to 
show that our algorithm, that uses simple heuristics, 
outperforms the basic LVQ algorithms and that it is 
comparable and, in noisy data cases, even better than the 
optimization-oriented Soft LVQ algorithm.  

Data Sets Training Size Test Size Attributes M 
Adult 21048 9114 123 2 

Banana 4300 1000 2 2 
Gauss 20000 20000 2 2 
IJCNN 49990 91701 22 2 
Letter 16000 4000 16 26 

Pendigits 7494 3498 16 10 
Shuttle  42603 14167 9 7 
USPS 7291 2007 256 10 

Checker 8000 10000 2 2 
NChecker 8000 10000 2 2 
Synthetic 250 1000 2 2 

 
Table 1. Data Set summaries 

Procedure LVQremove 
 

FOR j = 1 TO P 
   Scorej=Aj-BBj+Cj; 

END 
Find prototypes with negative scores; 
Remove prototypes with negative scores; 
FOR j = 1 TO P 

Aj=0; 
Bj=0; 
Cj=0; 

END 
 
Procedure LVQadd 
 

FOR j = 1 TO M 
   Uj= {(xi,yi), yi=j} // Misclassified points in class j 
   Cj= ClusterData(Uj, max_clusters, min_cluster_size)    
    // Cj – centroids found for class j 

END 
AllCentorids={C1,C2,…,CM}; 
Sort AllCentroids by cluster size 
 
WHILE P<B 

  Remove the first centoid form AllCentorids   
      and add it to the existing prototypes  
       P++; 
END 

 
Figure 2. Pseudo code for LVQadd and LVQremove 

Two different sets of experiments are performed. 
Experimental design and details involved in implementation 
for both sets of experiments are described in the following 
sections. 

A. Data Description 
We evaluated Adaptive LVQ algorithm on several 

benchmark classification datasets from UCI ML Repository 
as well as on several synthetic data sets. Data set properties 
are summarized in Table 1. The experiments are performed 
on both binary and multi-class data sets. The digits data sets 
Pendigits and USPS are 10-class datasets of handwritten 
digits collected from different writers, where each class 
represent a handwritten digit from 0 to 9. Letter data set is a 
26-class dataset containing black-and-white rectangular 
pixel displays of each of the 26 capital letters in the English 
alphabet in several different fonts. Shuttle data set is a 7-
class data set, where approximately 80% of the data belongs 
to class 1. Therefore the default accuracy is about 80%. 
IJCNN is also a highly unbalanced data set. It consists of 2 
classes, where 90% of all data belongs to class 1. Adult data 
set contains records of more than 30,000 individuals, each 
represented with 123 attributes. Prediction task is to 
determine whether a person makes over 50K a year. 
Checkerboard data set was generated as a uniformly 
distributed two-dimensional 4x4 checkerboard with 
alternating class assignments (see Figure 3). Checkerboard 
is a noise-free data set in the sense that each box consists 
exclusively of examples from a single class. N-
Checkerboard is a noisy version of Checkerboard where 
class assignment was switched for 15% of the randomly 
selected examples. For both data sets we used a noise-free 
Checkerboard as a test set. This way a highest reachable 
accuracy for both Checkerboard and N-Checkerboard was 



 
 

 

100%. Gauss data set is a synthetic 2-class data set 
generated as two Gaussians of different class overlapping in 
2D space. Synthetic data set, taken from [7] (Figure 4), as 
well as Banana data set are 2-class data sets of two different 
distributions overlapping in 2D. 

B. Classification with an Optimal Number of Prototypes  
In the first set of experiments, the proposed Adaptive 

LVQ algorithms with a large budget B were employed to try 
to maximize accuracy, and, as a by-product, to determine the 
optimal number of prototypes for each data set. Then, we 
trained the original LVQ algorithms using the same number 
of prototypes as the Adaptive LVQ, where k-means was 
used for prototype initialization (separate clustering was 
performed for each class).  

LVQ algorithms used in these experiments were LVQ1, 
LVQ2.1 and LVQ3. LVQ1 differs from LVQ2.1 in a way 
that each time we visit a training point only the nearest 
prototype is updated by moving it towards (away from) the 
training point if their class labels match (differ). LVQ3 
differs from LVQ2.1 by an additional update rule for the two 
nearest prototypes if both of them have the same class label 
as the training point. They are both moved slightly towards 
the training point, controlled by parameter ε which is scaling 
the learning rate α.  

Both Adaptive LVQ and original LVQ versions used the 
same hyperparameters α0=0.08 and update step αT=4N. In the 
case of LVQ2.1 and LVQ3, the window size was set to 
s=0.6 and in the case of LVQ3 ε was set to 0.1. They also 
used the same number of training rounds I=30 and the 
stopping criterion equal to the error rate of esig=10-5. Initial 
number of prototypes used in Adaptive LVQ algorithms was 
p0=M, and the LVQadd used in all data sets max_clusters=5 
and min_cluster_size=3. The upper bound B was set to 
infinity. 

All experiments were repeated 10 times and the average 
and standard deviations of both the accuracy on the test set 

and the number of prototypes are reported in Table 2. 
As can be seen from the results, Adaptive LVQ achieves 

very high accuracy on all data sets. More importantly, it 
successfully determines the appropriate number of 
prototypes. In most cases, this number is very stable over 10 
repetitions. For example, in Gauss and Checkerboard data 
sets, where we knew in advance that the best choice of 
prototypes is 2 and 16, respectively, Adaptive LVQ in most 
cases found this to be the best choice as well. Among the 
three alternative original LVQ algorithms, Adaptive LVQ2.1 
performed best on average, better than Adaptive LVQ1 and 
even Adaptive LVQ3 despite the heuristic correction rule 
supporting the divergence of prototypes. 

Finally, when we compare the performance of Adaptive 
LVQ versions to the performance of original LVQ versions 
with k-means initialization, dominance of Adaptive versions 
can be recognized in all cases. Most significant differences 
in the classification accuracy can be observed on Ijcnn, 
Gauss, Letter and N-Checkerboard data sets. Also, it can be 
noticed that Adaptive LVQ2.1 achieves the biggest 
improvement over its original counterpart LVQ2.1. 

C. Classification on a Budget 
The second set of experiments was performed by 

restricting the algorithms to a very tight budget. This was 
done in order to illustrate the behavior of the proposed 
algorithm in the highly resource constrained applications.  

We compared 4 different algorithms, LVQ2.1 with 
random prototype initialization (Regular LVQ2.1), LVQ2.1 
with k-means prototype initialization (K-Means LVQ2.1), 
our Adaptive LVQ2.1, and annealing version of Soft LVQ. 
The hyperparameters of LVQ2.1 were set to the same values 
as in IV.B. Original LVQ2.1 and Soft LVQ algorithms used 
the same number of prototypes per class, B/M. The Adaptive 
LVQ2.1 started with a single prototype per class.  

In Soft LVQ, the prototypes θl of class l were initialized to 
cluster centroids μl of training data and by adding noise θl=μl 

Adaptive LVQ1         K-Means LVQ1 Adaptive LVQ2.1 K-Means LVQ2.1 Adaptive LVQ3 K-Means LVQ3 DATA 
SET Accuracy P Accuracy P Accuracy P Accuracy P Accuracy P Accuracy P 

Adult 83.83 (0.21) 50.2 (3.9) 81.81 (0.31) 50 83.51 (0.35) 74.2 (5.3) 77.96 (0.70) 76 81.81 (0.46) 48.3 (11) 81.51 (1.03) 50 

Banana 89.51 (0.49) 27.9 (2.7) 87.58 (0.24) 28 88.69 (0.96) 29.5 (2.2) 86.2 (0.56) 30 86.67 (2.27) 21.9 (4.1) 85.94 (1.64) 22 

Gauss 91.92 (0.05) 5.5 (2.5) 68.93 (0.11) 6 91.59 (0.46) 4 (2.7) 86.08 (1.53) 4 91.89 (0.11) 6.2 (3.9) 85.80 (1.04) 6 

IJCNN 91.05 (0.59) 74.4 (15.7) 74.90 (2.00) 76 98.21 (0.31) 83.5 (8.1) 77.93 (7.63) 84 92.01 (0.97) 12.3 (4.1) 86.36 (2.79) 12 

Letter 87.35 (0.49) 350.3 (18.3) 84.84 (0.42) 364 87.33 (0.52) 271.7 (2.7) 81.80 (0.61) 286 81.85 (0.91) 289.2 (2.5) 79.31 (0.78) 312 

Pendigits 95.80 (0.30) 109 (8.4) 94.11 (1.13) 110 96.86 (0.26) 34.5 (2.9) 91.08 (1.07) 40 95.62 (0.62) 112.5 (17) 93.36 (1.06) 120 

Shuttle 98.07 (0.27) 29.3 (2.9) 96.76 (0.39) 35 99.74 (0.06) 18.8 (3.4) 96.31 (0.06) 21 97.21 (1.02) 13.7 (3.4) 88.49 (0.10) 14 

USPS 92.56 (0.36) 207.6 (11.5) 91.99 (0.55) 210 92.31 (0.31) 77.2 (5.2) 90.69 (0.36) 80 91.96 (0.49) 208.8 (19) 91.40 (0.34) 210 

Synthetic 88.74 (1.66) 9.7 (2.2) 85.82 (2.42) 10 88.98 (1.29) 9.1 (1.3) 85.57 (2.31) 10 88.61 (1.70) 9.3 (1.8) 86.68 (1.90) 10 

CheckB 95.69 (1.58) 17.4 (1.5) 92.18 (0.64) 18 98.63 (0.28) 22.9 (5.4) 92.99 (0.94) 24 97.67 (0.36) 16.8 (1.4) 97.12 (0.59) 18 

N-CheckB 93.24 (0.92) 18.8 (4.2) 89.56 (1.83) 20 97.52 (0.46) 21.8 (1.2) 88.26 (2.11) 22 95.53 (0.62) 17.1 (1.6) 73.83 (4.94) 18 

 
Table 2. Performance comparison of Adaptive LVQ and LVQ algorithms with k-means initialization after 30 iterations 

based on the average classification accuracy and its standard deviation presented in percents 



 
 

 

+0.02·ζ·σl·ξ, where σl is the vector of standard deviations of 
training points with label l along the coordinate axes, ζ is the 
number of prototypes per class, and ξ∈ [-1 1] is a number 
drawn randomly from a uniform distribution. Initial value of 
α hyperparameter used by Soft LVQ was α0=0.08 and its 
update step was αT=4N. The hyperparamether σ used by Soft 
LVQ was initialized as the minimal value of within-class 
variance of all classes and its update step was set to σT=6N. 
Annealing of σ was performed using the schedule σ=σ0·σT/( 
σT+t). Learning was terminated after I=30 iterations or when 
the error improved by less than esig=10-5. 

Depending on the data set at hand we decided on the 
assigned budget. In most datasets we decided on a very tight 
budget of 20 prototypes, except in the multi-class data sets 
Letter and Shuttle where we assigned budgets of 52 and 21 
prototypes, respectively. Exceptions were also Gauss and 
Synthetic data set where we used the budget of 10 prototypes 
as well as the Checkerboard and N-Checkerboard data sets 
where we assigned a budget of 16 prototypes, as that should 
be enough to correctly classify all of its 16 cells.  

All experiments were repeated 10 times and the average 
and standard deviations of the accuracy on the test set for all 
four algorithms are reported in Table 3. The results for 
Checkerboard data set classification are presented both 
through visualization (Figure 3) and classification accuracy.  

Looking at the results in the table it can be seen that 

Adaptive LVQ2.1 consistently performs better than the 
Regular LVQ2.1 and K-Means LVQ2.1. Most significant 
differences can be observed in Letter, Ijcnn, Pendigits, 
Checkerboard and N-Checkerboard data sets. When 
compared to the annealing version of Soft LVQ, Adaptive 
LVQ2.1 algorithm, in most cases, performs slightly better, 
except on Checkerdoard, N-Checkerboard and Adult data 
sets where more noticeable improvements can be observed, 
and in Ijcnn and Banana data sets, where it performs slightly 
worse.  

 
                      (a)                                             (b)                                              (c)                                          (d) 
 
Figure 3. Classification results on the Checkerboard data set. The images represent the Test Set results when using the 
prototypes obtained during the training procedure after 30 iterations of (a) Adaptive LVQ2.1, (b) K-means LVQ2.1, (c) 
Regular LVQ2.1, (d) Soft LVQ. Dark gray represents class 1, light gray represents class 2 and X’s represent the prototype 
positions 

On average Adaptive LVQ2.1 provides classification 
accuracy of 92.88%. When we compare this to 86.92% (Soft 
LVQ), 84.87% (K-Means LVQ2.1) and 75.74% (Regular 
LVQ2.1) we can conclude that our method, on average, 
achieved considerable improvement in classification 
accuracy. 

V. CONCLUSION 
In this paper we addressed some of the problems that 

people usually encounter when using LVQ algorithms for 
classification. After a thorough study of LVQ related work 
we realized that there has been little progress in resolving 
the problem of correct initialization, determining optimal 
number of prototypes, and their distribution among classes. 
As a result, we proposed a new LVQ algorithm which allows 
addition and removal of prototypes in an adaptive fashion 
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ALGORITHM 

BB20 BB52 BB20 BB21 BB20 BB20 BB20 BB16 BB16 BB10 BB10

Regular LVQ 2.1 
78.36 
(0.90) 

61.37 
(0.36) 

70.05 
(3.66) 

88.11 
(4.95) 

56.36 
(5.78) 

80.99 
(4.66) 

89.49 
(0.10) 

69.31       
(6.35) 

66.30    
(5.09) 

87.65 
(3.40) 

85.19 
(1.42) 

K-Means LVQ 2.1 
78.96 
(0.29) 

61.16 
(0.36) 

87.49 
(0.18) 

96.31 
(0.06) 

75.13 
(8.95) 

85.88 
(1.71) 

89.50 
(0.11) 

92.61        
(0.80) 

92.89    
(0.03) 

88.16    
(1.85) 

85.51    
(2.48) 

Adaptive LVQ 2.1 
83.42 
(0.29) 

84.59 
(0.44) 

92.40 
(0.42) 

99.72 
(0.03) 

97.89 
(0.69) 

88.83 
(1.38) 

96.51 
(0.32) 

99.43        
(0.92) 

98.21    
(0.27) 

91.84   
(0.17) 

88.94   
(1.30) 

Soft LVQ 
81.15 
(0.76) 

84.04 
(0.25) 

91.32 
(0.51) 

99.41 
(0.08) 

98.22 
(0.06) 

89.75 
(0.71) 

96.12 
(0.11) 

80.72        
(3.20) 

58.67          
(11.05) 

88.11   
(0.41) 

88.69   
(0.19) 

 
Table 3. Performance comparison of Adaptive LVQ2.1, K-means LVQ2.1, Regular LVQ2.1 and Soft LVQ algorithms after 

30 iterations based on the average classification accuracy and its standard deviation presented in percents 



 
 

 

during the training process. The experimental results showed 
that our algorithm is very successful. It significantly 
improves the accuracy of original LVQ algorithms and it is 
very successful in guiding the allocation of prototypes in 
learning scenarios with tight budgets. 
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Figure 4. Classification results on the Synthetic data set. The images represent the Test Set (a) and results when using the 
prototypes obtained during the training procedure after 30 iterations of (b) Adaptive LVQ2.1, (c) Regular LVQ2.1, (d) 
K-means LVQ2.1 and (e) Soft LVQ. Dark gray represents class 1, light gray represents class 2 and X’s represent the 
prototype positions 
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