

Learning Vector Quantization with Adaptive Prototype Addition
and Removal

Mihajlo Grbovic and Slobodan Vucetic

Abstract— Learning Vector Quantization (LVQ) is a popular
class of nearest prototype classifiers for multiclass
classification. Learning algorithms from this family are widely
used because of their intuitively clear learning process and ease
of implementation. They run efficiently and in many cases
provide state of the art performance. In this paper we propose
a modification of the LVQ algorithm that addresses problems
of determining appropriate number of prototypes, sensitivity to
initialization, and sensitivity to noise in data. The proposed
algorithm allows adaptive addition of prototypes at potentially
beneficial locations and removal of harmful or less useful
prototypes. The prototype addition and removal steps can be
easily implemented on top of the many existing LVQ
algorithms. Experimental results on synthetic and benchmark
datasets showed that the proposed modifications can
significantly improve LVQ classification accuracy while at the
same time determining the appropriate number of prototypes
and avoiding the problems of initialization.

I. INTRODUCTION
EARNING Vector Quantization (LVQ) has been
introduced by T. Kohonen [27] as a simple, universal

and efficient classification algorithm and has since found
many applications and extensions [21]. LVQ is a class of
learning algorithms for nearest prototype classification
(NPC). Like the nearest neighbor method [22], LVQ is a
local classification algorithm, where the classification
boundaries are approximated locally. The difference is that
instead of using all the points in the training dataset, LVQ
uses only a set of appropriately chosen prototype vectors.
This way the classification method is much more efficient,
because the number of vectors that should be stored and
compared with is significantly reduced. In addition, a
carefully chosen prototype set can greatly increase
classification accuracy on noisy problems.

LVQ is introduced as an algorithm that efficiently learns
the appropriate prototype positions used for classification. It
is defined by a set of P prototypes {(mj, cj), j = 1… P},
where mj is a K-dimensional vector in the feature space, and
cj is its class label. Typically, the number of prototypes is
larger than the number of classes. This way, each class is
represented with more than one prototype. Given an
unlabeled data point xu, its class label yu is determined as the
class cq of its nearest prototype mq

This work was supported by the U.S. National Science Foundation under

Grant IIS-0546155.
M. Grbovic and S. Vucetic are with the Center for Information Science

and Technology, Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA. (S. Vucetic phone: 215-
204-5535; fax: 215-204-5082; e-mail: vucetic at ist temple edu).

yu = cq, q = arg minj d(xu, mj) (1)

where d is the Euclidean distance. Other distances measures
can be used as well, depending on the problem at hand. The
space required to store an LVQ classifier is Θ(PK) and the
time needed to classify an unlabeled point is Θ(PK). The
number of prototypes P can be selected to meet the
computational constraints. Clearly, the number of prototypes
used represents a tradeoff between computational cost and
classifier complexity.

The training of LVQ starts with placing the prototypes at
some initial positions in the input space. In the simplest
scenario, assuming there are C classes with balanced class
distributions, P/C prototypes of each of the C classes are
selected by random sampling from training examples of the
corresponding class. LVQ algorithm then sequentially scans
the training data points, possibly in multiple rounds and in
an arbitrary order. If the LVQ classifier agrees with the
actual class of a training data point, the prototypes are not
modified. Otherwise, location of one or more prototypes is
updated in an attempt to increase the LVQ accuracy.

There are several different LVQ algorithms that deal with
the updates of the prototypes in different ways. Description
of their three main variants, LVQ1, LVQ2, and LVQ3 can
be found in [27], while some viable alternatives (LFM,
LFMW, LVQ+/-) are described in [17]. The common for all
is the idea to move the nearest prototype away from the
incorrectly classified training point and to (optionally) move
the nearest prototype of the correct class towards it.

LVQ2.1 has been shown to provide good NPC classifiers
and is commonly used as a representative of LVQ
algorithms. Given a training data point (x,y), three conditions
have to be met for LVQ2.1 to update its prototypes: 1) Class
of the prototype closest to x has to be different from y, 2)
Class of the next closest prototype has to be equal to y, and
3) x must fall near the hyperplane at the midpoint between
the closest (let us denote it as mj) and the second closest
prototype (let us denote it as mk). These two prototypes are
then modified as

mj(t+1) = mj(t) – α(t) (x – mj(t))

mk(t+1) = mk(t) + α(t) (x – mk(t))

(2)

where t represents how many updates have been made, and
α(t) is a monotonically decreasing function of time.
Common initial value for α(0) is 0.03, and it is being
decreased as α(t) = α(t−1)⋅(1−i/N), i = 1… N. Let dj and dk be
the distances between x and mj and mk. Then, x is defined as
near the midpoint if min(dj/dk, dk/dj) > s, where s is a

L

constant commonly chosen between 0.4 and 0.8. This
“window rule” is introduced to prevent prototype vectors
from diverging.
 Even though LVQ algorithms provide good classification
results and are widely used, especially in real time
applications such as speech recognition [28, 9], they have
their disadvantages. First, the classification results depend
on the initial choice of prototypes. If the initialization is not
done in a proper way good classification results might never
be achieved. Second, since LVQ algorithms typically choose
the same number of prototypes per class and the decision on
how many prototypes to use is left to the user, there is no
guarantee that the prototypes are going to adapt to the data in
the best possible way. In multiclass datasets it might happen
that some classes have more complicated distributions in the
feature space than others. It would seem logical that they get
more prototypes. This also becomes an issue when the class
distribution is highly unbalanced. Third, LVQ algorithms are
not robust to noisy data and prototypes are sometimes
trapped in the positions where they are doing more harm
than good.

In order to deal with such weaknesses we introduce a
novel modification of the LVQ algorithms called Adaptive
LVQ. Our approach is different from basic LVQ algorithms
because it lets prototypes adapt to the data during training.
Starting with a single prototype per class, we are adding
prototypes at appropriate positions and removing prototypes
from inappropriate positions in order to optimize the
accuracy.

In general, our method can be applied to any algorithm in
the LVQ family.

II. RELATED WORK
There have been many attempts to improve the

performance of LVQ algorithms. Besides having different
versions of LVQ in order to achieve better classification
results and better adapt to specific applications, there are
whole algorithms that are developed to address the specific
weaknesses of LVQ.

The Generalized LVQ (GLVQ) algorithm proposed by
Sato [4] is just one of the powerful variants of the
Kohonen’s LVQ algorithm. GLVQ algorithm has a
continuous and differentiable cost function. The updating
rule is obtained by minimizing this cost function, ensuring
algorithm convergence. Although the GLVQ algorithm has
shown promising results in various applications it has been
shown that its performance deteriorates when dealing with
complex data sets with non linear class boundaries. It also
encounters a problem of determining the appropriate number
of prototypes and is sensitive to initialization of prototype
positions and thus many prototypes may get trapped in local
minimal states.

This idea of creating an update rule by minimizing a
certain cost function is very popular with today’s
researchers. As a result, many Soft versions of LVQ
algorithm have been developed [24], [20], [2], [3], [15].

The popular Soft LVQ introduced in [24] is similar in
design to the VQ classifier using Deterministic Annealing
[8]. The problem is treated as optimization, where the
probability density that the data point x is generated by the
model of the correct class is calculated and compared it to
the probability density that this point is generated by the
models of the incorrect classes. The logarithm of the ratio of
the correct vs. the incorrect probability densities serves as
the cost function to be maximized. One slight issue with this
approach is that it introduces an additional hyperparameter
σ, besides the existing α. As stated in [24], one way to use σ
is to find the optimal value of this hyperparameter using the
validation data set. In this way, the training set has to be
examined several times before the start of LVQ, which is
time consuming and could also be imprecise in the case
when the training data set is very small. The other way to
use σ is to calculate its initial value and then anneal it during
the training procedure. This way, the above stated problems
are reduced.

There is also an issue of the update step α. Some
researchers feel that this update step should be different for
different prototypes. This idea culminated in development of
the optimized learning rate LVQ1 (OLVQ1) algorithm [26]
which gathers statistics about each prototype during the
training procedure and then modifies their update values
accordingly.

In LVQ algorithms and other prototype-based models a
data point is usually compared with a prototype according to
the Euclidian distance. However, some researchers [19]
claim that the specific structure of the data space can and
should be accounted for by selecting an appropriate metric.
Once a suitable metric is identified, only then can it can be
further utilized for the design of good classifiers. In
supervised scenarios, auxiliary class information can be used
for adapting parameters improving the specificity of data
metrics during data processing, as proposed by Kaski for
(semi-)supervised extensions of the LVQ [23]. Another
metric-adapting classification architecture is the generalized
relevance learning vector quantization (GRLVQ) developed
by Hammer and Villmann [6].

There has also been a lot of research done in modifying
LVQ to perform feature selection during training. Standard
LVQ does not discriminate between more and less
informative features and their influence on the distance
function is equal. Several approaches that deal with this
problem can be found in literature [1, 18]. These algorithms
modify feature weights and employ a weighted distance
function. Influences of features which are frequently
contributing to misclassifications of the system are reduced
while the influences of very reliable features are increased.

Another idea that can be found in literature is to take more
"runners-up" into account [25] because it occurs quite
commonly that an input vector has several neighboring
codebook vectors that are almost equidistant from it.
Therefore, in order to increase the accuracy of learning, the
corrections might not only be restricted to the "winner" and

the first "runner-up", but could also take the "runners-up"
into account. An additional advantage of this approach is
that, whereas the "runners-up" are often of the correct class,
their simultaneous correction tends to update them more
smoothly.

Some researchers extend a local prototype-based learning
model by active learning, which gives the learner the
capability to select training samples during the model
adaptation procedure. It is claimed [10] that by using these
active learning strategies the generalization ability of the
model could be improved accompanied by a significantly
improved learning speed.

Some recent work proposes margin analysis of LVQ to
provide theoretical justification for the LVQ algorithm.
Roughly speaking, margins measure the level of confidence
a classifiers has with respect to its decisions. Margin
analysis has become a primary tool in machine learning
during the last decade (SVM [29]). Buckingham and Geva
[16] were the first to suggest that LVQ is indeed a maximum
margin algorithm. They presented a variant named LMVQ
and analyzed it. In [14], a geometrically based margin
similar to SVM was defined and used for analysis.

Adequate initialization of the codebook vectors is highly
important issue with the LVQ algorithm [25]. In general, the
optimal numbers of prototypes per class are not easy to
derive due to the complexities of class-conditional densities
and variability in class distributions. The simplest way to
initialize prototypes is to select them by random sampling
from the available training points. An alternative way, as
suggested by some researchers, is to use the K-means
clustering [12], [11] to define the initial locations of
prototypes. One option is to perform clustering on each class
separately and take cluster centroids as initial prototypes. A
slightly different version of K-means initialization can be
found in [11] where the placement of prototypes is
determined without taking their classification into account.
In this case, the prototypes are labeled based on the majority
classes assigned to their cluster. This choice, although rather
successful in the case of smooth and continuous
distributions, does not guarantee any stable or unique
distribution in difficult cases where it can even happen that
some classes remain without prototype representatives.

Interesting alternatives for the initialization include
supervised neural gas (SNG) algorithm [5] and cost-function
adaptation [3] that replaces minimum Euclidian distances
with harmonic average distances and alleviates the
initialization sensitiveness problem.

The number of prototypes to be assigned to each class is
another problem to which there is no clear solution.
Experimentally it has been found that a good strategy in
practice, in absence of any other, is to assign an identical
number of prototypes to each class, even when the class
distributions are very dissimilar [26]. An alternative would
be to assign the number of prototypes proportionally to the
class distribution. Another approach is to make sure that the
average distances between the adjacent prototypes in each

class are smaller than the standard deviations of the
respective class samples [26]. This condition has to be
satisfied in order to start the training procedure. If this is not
the case prototypes are re-initialized by assigning the larger
number of prototypes to the classes that didn’t satisfy the
condition. Finally, one might try all the possible
combinations of numbers and perform the comparative
classifications [26], but this method is formidably slow.

In this paper, we address the issues of prototype
initialization and deciding their number and distribution
among classes. In order to find the optimal number of
prototypes that provides high classification accuracy we start
with the single prototype per class and then let the algorithm
decide when and where to add or remove prototypes. This
way we avoid the aforementioned initialization issues. The
details of the proposed approach are given in the following
section.

III. METHODOLOGY

A. Basic Idea of the Algorithm
Adaptive LVQ is a modification that improves LVQ

classification performance. It consists of adaptive removal of
less useful or harmful prototypes and addition of new
prototypes at locations that are potentially beneficial. The
idea is to start with an initial, small, and equal number of
prototypes per each class. Then, candidate prototypes are
added where they can be the most beneficial and prototypes
are removed when it results in decrease in classification
error.

Instead of fixing the number of prototypes, the adaptive
algorithm only sets a threshold B defining an upper bound
on the number of LVQ prototypes. To balance the budget B,
when the total number of prototypes reaches B new
prototypes can be added only after some existing are deleted.

Adaptive LVQ consists of two methods that can be easily
appended to an LVQ algorithm of choice: LVQadd adds
prototypes where current LVQ is making many mistakes,
while LVQremove removes prototypes if it can result in
decrease in classification error. LVQremove and LVQadd are
performed in this order after each pass of the baseline LVQ
algorithm through the training data.

B. LVQadd
LVQadd concentrates on misclassified points of each class

during LVQ training. Using hierarchical clustering [22, 13]
with average linkage, the significant size clusters of
misclassified points are determined for each class. Assuming
there are M classes, and there are nj misclassified points of
class j, we apply hierarchical clustering on each of these
subsets. We can control the number of clusters for each class
by setting two bounds: an upper bound, max_clusters, on the
number of clusters, and a lower bound, min_cluster_size, on
the cluster size. Then, new prototypes are introduced at
positions of cluster centroids.

 Since we are working on a budget (B), all new prototypes
of all classes are grouped together and sorted by their size

and only prototypes from the largest clusters are added to the
budget. When the total number of prototypes reaches B,
LVQadd is suspended until the complementary LVQremove
does not remove some of them. Default values for
max_clusters is 5 and for min_cluster_size is 3.

C. LVQremove
LVQ-Remove detects prototypes whose removal would

result in accuracy increase. Such prototypes are typically
outliers or those trapped in the regions with majority of the
training data points of different class. During each pass of
LVQ through training data statistics are gathered about
every prototype and then combined into a unique score. For
each prototype mj its score is measured as

Scorej = Aj−BBj+Cj (3)

where Aj counts how many times prototype mj classified
correctly and hasn’t been moved, BBj how many times it was
moved away as the prototype of the wrong class and Cj how
many times it was moved towards as the prototype of the
correct class. Prototypes with negative scores are likely to be
detrimental to accuracy and as a result they are removed in
the LVQremove stage of the algorithm.

The Score is slightly modified only for the LVQ1
algorithm, where Aj does not exist, so it is set to zero. When
Adaptive LVQ is applied to other LVQ algorithms such as
LVQ2, LVQ2.1, LVQ3, LFM, LFMW, all three statistics
used in Score can be positive.

D. The Algorithm
The goal of classification is to build an efficient classifier

from N training points, D = {(xi, yi), i = 1... N}, where xi is a
K-dimensional vector in the feature space and yi is its class
label, an integer from a set {1…M}. We start by defining a
LVQ classifier by an initial set of p0 prototypes by randomly
choosing p0/M prototypes per each class label {(mj, cj), j =
1… p0}, where mj is a K-dimensional vector in the feature
space, and cj is its class label. The default value is set to p0 =
M.

Next, we define an upper bound B on how many
prototypes we can have in total, as well as the initial value of
the LVQ hyperparameter α0. LVQadd parameters
max_clusters and min_cluster_size are set to their default
values. LVQ training rounds are repeated I times, unless
early stopping occurs when training set accuracy stops
improving. LVQremove and LVQadd are performed after
each pass of LVQ through the training data. Before the next
training round, the training data are shuffled.

Figure 1 describes the complete Adaptive LVQ2.1
algorithm. Pseudo codes for LVQadd and LVQremove
procedures are described in Figure 2. It should be noted that
both LVQremove and LVQadd are not performed after the
last training round of LVQ. This is done because of the
nature of LVQadd that might be adding prototypes in the
noisy regions where they are not needed. Adaptive LVQ can
effectively determine which class needs more prototypes and
which less. The default choice for the initial number of

prototypes is a single prototype per class, p0=M, but it could
be higher if desired.

When computational time and memory for classification
is not an issue, budget B can be set to infinity. Then, the
LVQadd and LVQremove of the adaptive algorithm
determine the appropriate number of prototypes for each
class that maximizes classification accuracy.

Input: Training Set of size N, M classes, Budget B, p0=M,
α0=0.08, αT=4N (update step), s=0.6, I=30, significant error
rate esig=10−5, max_clusters=5, min_cluster_size=3

α=α0;
t=1;
it=1;
Initialize prototypes
P=p0;

WHILE (it ≠ I) and (errit-errit-1<esig)
 FOR i = 1 TO N
 find nearest prototype (mj,cj)
 find second nearest prototype (mk,ck)
 IF (cj ≠ yi) and (ck = yi)
 dj=d(xi,mj);
 dk=d(xi,mk);
 IF (min(dj/dk, dk/dj) > s)
 //update prototypes

mj(t+1) = mj(t) – α(t) (xi – mj(t)) ;
Bj++ ;
mk(t+1) = mk(t) + α(t) (xi – mk(t)) ;
Ck++ ;

 END
 ELSE Aj++ ;
 END
 t++;
 α(t)=α0*αT/(αT+t);
 END
 Calculate classification error errit
 IF (errit<errit-1)

store current prototypes as Final_Prototypes
 IF NOT Last Iteration
 LVQremove
 LVQadd
 END
 Shuffle data for next iteration
 it++;
END
Calculate test error using Final_Prototypes

Figure 1. Pseudo code for Adaptive LVQ2.1 algorithm

When working on a tight budget Adaptive LVQ is a very
useful tool as it tries to optimally utilize the available
prototypes for classification. Adaptively adding and
removing prototypes while working on a budget is much
more efficient than using the entire budget right away and
spread the prototypes to all classes evenly.

E. Time Complexity
Time complexity of each LVQ round is Θ(N·P⋅K). It

should be noted that in the Adaptive version P increases
from initial p0 to some final value which can be B at

maximum, making the total cost of the LVQ part of the
algorithm O(N·P⋅K).

The proposed LVQadd and LVQremove increase the total
time only slightly. Since the clustering is performed only on
the misclassified data points, the time complexity involved
in LVQadd follows from the complexity of hierarchical
clustering with average linkage and can be calculated as

Θ() ∑
=

M

i
ii nn

1

2 log (4)

where ni is the number of misclassified data points with class
label i. As the majority of total N data points is already well
classified after a single LVQ iteration, LVQadd typically
uses significantly less training points than N and its time
complexity is significantly less than Θ(N 2logN). Moreover,
after each training round, the fraction of misclassified points
is expected to decrease, thus further decreasing the cost of
LVQAdd.

LVQremove gathers prototype statistics during the LVQ
training round and then it simply eliminates the prototypes
with the negative score. Therefore, it always scales linearly
with the number of prototypes and does not introduce a
noticeable increase in the total training time.

IV. EXPERIMENTAL RESULTS
The original LVQ algorithms LVQ1, LVQ2.1, and LVQ3

with k-means prototype initialization were compared to their
Adaptive counterparts that start from a single prototype per

class and use LVQAdd and LVQRemove steps to optimize the
number of prototypes and their locations. In addition, these
algorithms were compared to the popular Soft LVQ (its
annealing version) algorithm presented in [24]. We intend to
show that our algorithm, that uses simple heuristics,
outperforms the basic LVQ algorithms and that it is
comparable and, in noisy data cases, even better than the
optimization-oriented Soft LVQ algorithm.

Data Sets Training Size Test Size Attributes M
Adult 21048 9114 123 2

Banana 4300 1000 2 2
Gauss 20000 20000 2 2
IJCNN 49990 91701 22 2
Letter 16000 4000 16 26

Pendigits 7494 3498 16 10
Shuttle 42603 14167 9 7
USPS 7291 2007 256 10

Checker 8000 10000 2 2
NChecker 8000 10000 2 2
Synthetic 250 1000 2 2

Table 1. Data Set summaries

Procedure LVQremove

FOR j = 1 TO P
 Scorej=Aj-BBj+Cj;

END
Find prototypes with negative scores;
Remove prototypes with negative scores;
FOR j = 1 TO P

Aj=0;
Bj=0;
Cj=0;

END

Procedure LVQadd

FOR j = 1 TO M
 Uj= {(xi,yi), yi=j} // Misclassified points in class j
 Cj= ClusterData(Uj, max_clusters, min_cluster_size)
 // Cj – centroids found for class j

END
AllCentorids={C1,C2,…,CM};
Sort AllCentroids by cluster size

WHILE P<B

 Remove the first centoid form AllCentorids
 and add it to the existing prototypes
 P++;
END

Figure 2. Pseudo code for LVQadd and LVQremove

Two different sets of experiments are performed.
Experimental design and details involved in implementation
for both sets of experiments are described in the following
sections.

A. Data Description
We evaluated Adaptive LVQ algorithm on several

benchmark classification datasets from UCI ML Repository
as well as on several synthetic data sets. Data set properties
are summarized in Table 1. The experiments are performed
on both binary and multi-class data sets. The digits data sets
Pendigits and USPS are 10-class datasets of handwritten
digits collected from different writers, where each class
represent a handwritten digit from 0 to 9. Letter data set is a
26-class dataset containing black-and-white rectangular
pixel displays of each of the 26 capital letters in the English
alphabet in several different fonts. Shuttle data set is a 7-
class data set, where approximately 80% of the data belongs
to class 1. Therefore the default accuracy is about 80%.
IJCNN is also a highly unbalanced data set. It consists of 2
classes, where 90% of all data belongs to class 1. Adult data
set contains records of more than 30,000 individuals, each
represented with 123 attributes. Prediction task is to
determine whether a person makes over 50K a year.
Checkerboard data set was generated as a uniformly
distributed two-dimensional 4x4 checkerboard with
alternating class assignments (see Figure 3). Checkerboard
is a noise-free data set in the sense that each box consists
exclusively of examples from a single class. N-
Checkerboard is a noisy version of Checkerboard where
class assignment was switched for 15% of the randomly
selected examples. For both data sets we used a noise-free
Checkerboard as a test set. This way a highest reachable
accuracy for both Checkerboard and N-Checkerboard was

100%. Gauss data set is a synthetic 2-class data set
generated as two Gaussians of different class overlapping in
2D space. Synthetic data set, taken from [7] (Figure 4), as
well as Banana data set are 2-class data sets of two different
distributions overlapping in 2D.

B. Classification with an Optimal Number of Prototypes
In the first set of experiments, the proposed Adaptive

LVQ algorithms with a large budget B were employed to try
to maximize accuracy, and, as a by-product, to determine the
optimal number of prototypes for each data set. Then, we
trained the original LVQ algorithms using the same number
of prototypes as the Adaptive LVQ, where k-means was
used for prototype initialization (separate clustering was
performed for each class).

LVQ algorithms used in these experiments were LVQ1,
LVQ2.1 and LVQ3. LVQ1 differs from LVQ2.1 in a way
that each time we visit a training point only the nearest
prototype is updated by moving it towards (away from) the
training point if their class labels match (differ). LVQ3
differs from LVQ2.1 by an additional update rule for the two
nearest prototypes if both of them have the same class label
as the training point. They are both moved slightly towards
the training point, controlled by parameter ε which is scaling
the learning rate α.

Both Adaptive LVQ and original LVQ versions used the
same hyperparameters α0=0.08 and update step αT=4N. In the
case of LVQ2.1 and LVQ3, the window size was set to
s=0.6 and in the case of LVQ3 ε was set to 0.1. They also
used the same number of training rounds I=30 and the
stopping criterion equal to the error rate of esig=10-5. Initial
number of prototypes used in Adaptive LVQ algorithms was
p0=M, and the LVQadd used in all data sets max_clusters=5
and min_cluster_size=3. The upper bound B was set to
infinity.

All experiments were repeated 10 times and the average
and standard deviations of both the accuracy on the test set

and the number of prototypes are reported in Table 2.
As can be seen from the results, Adaptive LVQ achieves

very high accuracy on all data sets. More importantly, it
successfully determines the appropriate number of
prototypes. In most cases, this number is very stable over 10
repetitions. For example, in Gauss and Checkerboard data
sets, where we knew in advance that the best choice of
prototypes is 2 and 16, respectively, Adaptive LVQ in most
cases found this to be the best choice as well. Among the
three alternative original LVQ algorithms, Adaptive LVQ2.1
performed best on average, better than Adaptive LVQ1 and
even Adaptive LVQ3 despite the heuristic correction rule
supporting the divergence of prototypes.

Finally, when we compare the performance of Adaptive
LVQ versions to the performance of original LVQ versions
with k-means initialization, dominance of Adaptive versions
can be recognized in all cases. Most significant differences
in the classification accuracy can be observed on Ijcnn,
Gauss, Letter and N-Checkerboard data sets. Also, it can be
noticed that Adaptive LVQ2.1 achieves the biggest
improvement over its original counterpart LVQ2.1.

C. Classification on a Budget
The second set of experiments was performed by

restricting the algorithms to a very tight budget. This was
done in order to illustrate the behavior of the proposed
algorithm in the highly resource constrained applications.

We compared 4 different algorithms, LVQ2.1 with
random prototype initialization (Regular LVQ2.1), LVQ2.1
with k-means prototype initialization (K-Means LVQ2.1),
our Adaptive LVQ2.1, and annealing version of Soft LVQ.
The hyperparameters of LVQ2.1 were set to the same values
as in IV.B. Original LVQ2.1 and Soft LVQ algorithms used
the same number of prototypes per class, B/M. The Adaptive
LVQ2.1 started with a single prototype per class.

In Soft LVQ, the prototypes θl of class l were initialized to
cluster centroids μl of training data and by adding noise θl=μl

Adaptive LVQ1 K-Means LVQ1 Adaptive LVQ2.1 K-Means LVQ2.1 Adaptive LVQ3 K-Means LVQ3 DATA
SET Accuracy P Accuracy P Accuracy P Accuracy P Accuracy P Accuracy P

Adult 83.83 (0.21) 50.2 (3.9) 81.81 (0.31) 50 83.51 (0.35) 74.2 (5.3) 77.96 (0.70) 76 81.81 (0.46) 48.3 (11) 81.51 (1.03) 50

Banana 89.51 (0.49) 27.9 (2.7) 87.58 (0.24) 28 88.69 (0.96) 29.5 (2.2) 86.2 (0.56) 30 86.67 (2.27) 21.9 (4.1) 85.94 (1.64) 22

Gauss 91.92 (0.05) 5.5 (2.5) 68.93 (0.11) 6 91.59 (0.46) 4 (2.7) 86.08 (1.53) 4 91.89 (0.11) 6.2 (3.9) 85.80 (1.04) 6

IJCNN 91.05 (0.59) 74.4 (15.7) 74.90 (2.00) 76 98.21 (0.31) 83.5 (8.1) 77.93 (7.63) 84 92.01 (0.97) 12.3 (4.1) 86.36 (2.79) 12

Letter 87.35 (0.49) 350.3 (18.3) 84.84 (0.42) 364 87.33 (0.52) 271.7 (2.7) 81.80 (0.61) 286 81.85 (0.91) 289.2 (2.5) 79.31 (0.78) 312

Pendigits 95.80 (0.30) 109 (8.4) 94.11 (1.13) 110 96.86 (0.26) 34.5 (2.9) 91.08 (1.07) 40 95.62 (0.62) 112.5 (17) 93.36 (1.06) 120

Shuttle 98.07 (0.27) 29.3 (2.9) 96.76 (0.39) 35 99.74 (0.06) 18.8 (3.4) 96.31 (0.06) 21 97.21 (1.02) 13.7 (3.4) 88.49 (0.10) 14

USPS 92.56 (0.36) 207.6 (11.5) 91.99 (0.55) 210 92.31 (0.31) 77.2 (5.2) 90.69 (0.36) 80 91.96 (0.49) 208.8 (19) 91.40 (0.34) 210

Synthetic 88.74 (1.66) 9.7 (2.2) 85.82 (2.42) 10 88.98 (1.29) 9.1 (1.3) 85.57 (2.31) 10 88.61 (1.70) 9.3 (1.8) 86.68 (1.90) 10

CheckB 95.69 (1.58) 17.4 (1.5) 92.18 (0.64) 18 98.63 (0.28) 22.9 (5.4) 92.99 (0.94) 24 97.67 (0.36) 16.8 (1.4) 97.12 (0.59) 18

N-CheckB 93.24 (0.92) 18.8 (4.2) 89.56 (1.83) 20 97.52 (0.46) 21.8 (1.2) 88.26 (2.11) 22 95.53 (0.62) 17.1 (1.6) 73.83 (4.94) 18

Table 2. Performance comparison of Adaptive LVQ and LVQ algorithms with k-means initialization after 30 iterations

based on the average classification accuracy and its standard deviation presented in percents

+0.02·ζ·σl·ξ, where σl is the vector of standard deviations of
training points with label l along the coordinate axes, ζ is the
number of prototypes per class, and ξ∈ [-1 1] is a number
drawn randomly from a uniform distribution. Initial value of
α hyperparameter used by Soft LVQ was α0=0.08 and its
update step was αT=4N. The hyperparamether σ used by Soft
LVQ was initialized as the minimal value of within-class
variance of all classes and its update step was set to σT=6N.
Annealing of σ was performed using the schedule σ=σ0·σT/(
σT+t). Learning was terminated after I=30 iterations or when
the error improved by less than esig=10-5.

Depending on the data set at hand we decided on the
assigned budget. In most datasets we decided on a very tight
budget of 20 prototypes, except in the multi-class data sets
Letter and Shuttle where we assigned budgets of 52 and 21
prototypes, respectively. Exceptions were also Gauss and
Synthetic data set where we used the budget of 10 prototypes
as well as the Checkerboard and N-Checkerboard data sets
where we assigned a budget of 16 prototypes, as that should
be enough to correctly classify all of its 16 cells.

All experiments were repeated 10 times and the average
and standard deviations of the accuracy on the test set for all
four algorithms are reported in Table 3. The results for
Checkerboard data set classification are presented both
through visualization (Figure 3) and classification accuracy.

Looking at the results in the table it can be seen that

Adaptive LVQ2.1 consistently performs better than the
Regular LVQ2.1 and K-Means LVQ2.1. Most significant
differences can be observed in Letter, Ijcnn, Pendigits,
Checkerboard and N-Checkerboard data sets. When
compared to the annealing version of Soft LVQ, Adaptive
LVQ2.1 algorithm, in most cases, performs slightly better,
except on Checkerdoard, N-Checkerboard and Adult data
sets where more noticeable improvements can be observed,
and in Ijcnn and Banana data sets, where it performs slightly
worse.

 (a) (b) (c) (d)

Figure 3. Classification results on the Checkerboard data set. The images represent the Test Set results when using the
prototypes obtained during the training procedure after 30 iterations of (a) Adaptive LVQ2.1, (b) K-means LVQ2.1, (c)
Regular LVQ2.1, (d) Soft LVQ. Dark gray represents class 1, light gray represents class 2 and X’s represent the prototype
positions

On average Adaptive LVQ2.1 provides classification
accuracy of 92.88%. When we compare this to 86.92% (Soft
LVQ), 84.87% (K-Means LVQ2.1) and 75.74% (Regular
LVQ2.1) we can conclude that our method, on average,
achieved considerable improvement in classification
accuracy.

V. CONCLUSION
In this paper we addressed some of the problems that

people usually encounter when using LVQ algorithms for
classification. After a thorough study of LVQ related work
we realized that there has been little progress in resolving
the problem of correct initialization, determining optimal
number of prototypes, and their distribution among classes.
As a result, we proposed a new LVQ algorithm which allows
addition and removal of prototypes in an adaptive fashion

Adult

M=2

Letter

M=26

Usps

M=10

Shuttle

M=7

Ijcnn

M=2

Banana

M=2

Pendigits

M=10

CheckerB

M=2

N-CheckerB

M=2

Gauss

Data M=2

Synthetic

Data M=2

ALGORITHM

BB20 BB52 BB20 BB21 BB20 BB20 BB20 BB16 BB16 BB10 BB10

Regular LVQ 2.1
78.36
(0.90)

61.37
(0.36)

70.05
(3.66)

88.11
(4.95)

56.36
(5.78)

80.99
(4.66)

89.49
(0.10)

69.31
(6.35)

66.30
(5.09)

87.65
(3.40)

85.19
(1.42)

K-Means LVQ 2.1
78.96
(0.29)

61.16
(0.36)

87.49
(0.18)

96.31
(0.06)

75.13
(8.95)

85.88
(1.71)

89.50
(0.11)

92.61
(0.80)

92.89
(0.03)

88.16
(1.85)

85.51
(2.48)

Adaptive LVQ 2.1
83.42
(0.29)

84.59
(0.44)

92.40
(0.42)

99.72
(0.03)

97.89
(0.69)

88.83
(1.38)

96.51
(0.32)

99.43
(0.92)

98.21
(0.27)

91.84
(0.17)

88.94
(1.30)

Soft LVQ
81.15
(0.76)

84.04
(0.25)

91.32
(0.51)

99.41
(0.08)

98.22
(0.06)

89.75
(0.71)

96.12
(0.11)

80.72
(3.20)

58.67
(11.05)

88.11
(0.41)

88.69
(0.19)

Table 3. Performance comparison of Adaptive LVQ2.1, K-means LVQ2.1, Regular LVQ2.1 and Soft LVQ algorithms after

30 iterations based on the average classification accuracy and its standard deviation presented in percents

during the training process. The experimental results showed
that our algorithm is very successful. It significantly
improves the accuracy of original LVQ algorithms and it is
very successful in guiding the allocation of prototypes in
learning scenarios with tight budgets.

REFERENCES
[1] A. Cataron and R. Andonie, Energy generalized LVQ with relevance

factors. Proceedings of the IEEE International Joint Conference on
Neural Networks, pp. 1421-1426, 2004.

[2] A.K. Qin and P.N. Suganthan, A Novel Kernel Prototype-Based
Learning Algorithm, Proceedings of the 17th International Conference
on Pattern Recognition, pp. 621-624, Vol. 4, 2004.

[3] A.K. Qin and P.N. Suganthan, Initialization Insensitive LVQ
Algorithm Based on Cost-Function Adaptation, Pattern Recognition
Journal, pp. 773-776, 2005.

[4] A. Sato, K. Yamada, Generalized learning vector quantization,
Advances in NIPS, MIT Press, pp. 423-429, Vol. 7, 1995.

[5] B. Hammer, M. Strickert, T. Villmann, Supervised neural gas with
general similarity measure, Neural Processing Letters, pp. 21-44,
2005.

[6] B. Hammer and T. Villmann. Generalized Relevance Learning Vector
Quantization. Neural Networks, pp. 1059-1068, 2002.

[7] B.D Ripley, Pattern Recognition and Neural Networks, Cambridge
University Press ISBN 0 521 46986 7, 1996.

[8] D. Miller, A. Rao, K. Rose, and A. Gersho, A global optimization
technique for statistical classifier design, IEEE Transactions on Signal
Processing, pp. 3108-3121, 1996.

[9] E. McDermott, S. Katagiri, Prototype-based minimum classification
error/generalized probabilistic descent training for various speech
units, Computer Speech and Language, pp. 351-368, Vol. 8, 1994.

[10] F.-M. Schleif, B. Hammer, and Th. Villmann. Margin based Active
Learning for LVQ Networks. In Proc. of ESANN, pp. 539-545, 2006.

[11] H. Iwamida, S. Katagiri, E. McDermott, and Y. Tohkura, A Hybrid
Speech Recognition System using HMMS with an LVQ-Trained
Codebook, ICASSP, pp. 489-492, 1990

[12] J. Makhoul, S. Roucos, and H. Gish, Vector quantization in speech
coding, Proc. IEEE, pp. 1551-1588, vol. 73, 1985.

[13] J. Seo, B. Shneiderman, Interactively exploring hierarchical clustering
results, IEEE Computer, pp. 80-86, Vol. 35, 2002.

[14] K. Crammer, R. Gilad-Bachrach, A.Navot, and A.Tishby, Margin
analysis of the LVQ algorithm, Proc. 17th Conference on Neural

Information Processing Systems, 2002.
[15] K.L. Wu and M.S Yang, Alternative learning vector quantization,

Pattern Recognition Journal, pp. 351-362, Vol. 39, 2006.
[16] L. Buckingham and S. Geva, Lvq is a maximum margin algorithm. In

Pacific Knowledge Acquisition Workshop PKAW’2000, 2000.
[17] M. Biehl, A. Ghosh, B. Hammer, Dynamics and Generalization

Ability of LVQ Algorithms, The Journal of Machine Learning
Research, pp. 323-360, Vol. 8, 2007.

[18] M. Pregenzer, G. Pfurtscheller, D. Flotzinger, Automated feature
selection with a distinction sensitive learning vector quantizer,
Neurocomputing, pp. 19-29, Vol. 11, 1996.

[19] M. Strickert, U. Seiffert, N. Sreenivasulu, W. Weschke, T. Villmann,
B. Hammer, Generalized Relevance LVQ (GRLVQ) with Correlation
Measures for Gene Expression Analysis, Neurocomputing , pp. 651-
659, Vol. 69, 2006.

[20] N.B. Karayiannis, M. M. Randolph-Gips, Soft learning vector
quantization and clustering algorithms based on mean-type
aggregation operators, Int. J. Fuzzy Syst., pp. 90-94, Vol. 4, 2002.

[21] Neural Networks Research Centre Helsinki Univ. of Tech.,
Bibliography on the Self-Organizing Map (SOM) and Learning
Vector Quantization (LVQ),
http://liinwww.ira.uka.de/bibliography/Neural /SOM.LVQ.html, 2002.

[22] R. O. Duda, and P.E. Hart, Pattern classification and scene analysis,
John Wiley & Sons, 1973.

[23] S. Kaski, Bankruptcy analysis with self-organizing maps in learning
metrics, IEEE Transactions on Neural Networks, pp. 936-947, Vol.
12, 2001.

[24] S. Seo and K. Obermayer. Soft learning vector quantization, Neural
Computation, pp. 1589-1604, Vol. 15, 2003.

[25] T. Kohonen, Improved versions of learning vector quantiztion,
International Joint Conference on Neural Networks, pp. 545-550, Vol.
1, 1990.

[26] T. Kohonen, J. Kangas, J. Laaksoonen, and K. Torkolla, LVQ-PAK
Learning vector quantization program package, Lab. Comput. Inform.
Sci. Rakentajanaukio, Finland, Tech. Rep. 2C, 1992.

[27] T. Kohonen, The Self-organizing Map, Proceedings of the IEEE, pp.
1464-1480, 1990.

[28] T. Komori, and S. Katagiri, Application of a probabilistic descent
method to dynamic time warping-based speech recognition. In IEEE
International Conference on Acoustics, Speech, and Signal
Processing, pp. 497-500, 1994

[29] V.N. Vapnik. The Nature of Statistical Learning Theory, Springer-
Verlag, 1995.

 (a) (b) (c)

 (d) (e)

Figure 4. Classification results on the Synthetic data set. The images represent the Test Set (a) and results when using the
prototypes obtained during the training procedure after 30 iterations of (b) Adaptive LVQ2.1, (c) Regular LVQ2.1, (d)
K-means LVQ2.1 and (e) Soft LVQ. Dark gray represents class 1, light gray represents class 2 and X’s represent the
prototype positions

http://portal.acm.org/citation.cfm?id=1248672&dl=GUIDE&coll=GUIDE&CFID=10821976&CFTOKEN=16305764
http://portal.acm.org/citation.cfm?id=1248672&dl=GUIDE&coll=GUIDE&CFID=7898120&CFTOKEN=21022045
http://portal.acm.org/citation.cfm?id=1248672&dl=GUIDE&coll=GUIDE&CFID=7898120&CFTOKEN=21022045
http://liinwww.ira.uka.de/bibliography/Neural%20/SOM.LVQ.html

	I. INTRODUCTION
	II. Related Work
	III. Methodology
	A. Basic Idea of the Algorithm
	B. LVQadd
	C. LVQremove
	D. The Algorithm
	E. Time Complexity

	IV. Experimental Results
	A. Data Description
	B. Classification with an Optimal Number of Prototypes
	C. Classification on a Budget

	V. Conclusion

