
Tracking concept change with Incremental Boosting by
Minimization of the Evolving Exponential Loss

Mihajlo Grbovic and Slobodan Vucetic

Department of Computer and Information Sciences
Temple University, Philadelphia, USA

{mihajlo.grbovic,slobodan.vucetic}@temple.edu

Abstract. Methods involving ensembles of classifiers, such as bagging and boost-
ing, are popular due to the strong theoretical guarantees for their performance
and their superior results. Ensemble methods are typically designed by assum-
ing the training data set is static and completely available at training time. As
such, they are not suitable for online and incremental learning. In this paper we
propose IBoost, an extension of AdaBoost for incremental learning via optimiza-
tion of an exponential cost function which changes over time as the training data
changes. The resulting algorithm is flexible and allows a user to customize it
based on the computational constraints of the particular application. The new al-
gorithm was evaluated on stream learning in presence of concept change. Exper-
imental results showed that IBoost achieves better performance than the original
AdaBoost trained from scratch each time the data set changes, and that it also
outperforms previously proposed Online Coordinate Boost, Online Boost and its
non-stationary modifications, Fast and Light Boosting, ADWIN Online Bagging
and DWM algorithms.

Keywords: Ensemble Learning, Incremental Learning, Boosting, Concept Change

1 Introduction

There are many practical applications in which the objective is to learn an accurate
model using training data set which changes over time. A naive approach is to retrain
the model from scratch each time the data set is modified. Unless the new data set is
substantially different from the old data set, retraining can be computationally waste-
ful. It is therefore of high practical interest to develop algorithms which can perform
incremental learning. We define incremental learning as the process of updating the ex-
isting model when the training data set is changed. Incremental learning is particularly
appealing for Online Learning, Active Learning, Outlier Removal and Learning with
Concept Change.

There are many single-model algorithms capable of efficient incremental learning,
such as linear regression, Naı̈ve Bayes and kernel perceptrons. However, it is still an
open challenge how to develop efficient ensemble algorithms for incremental learning.
In this paper we consider boosting, an algorithm that trains a weighted ensemble of
simple weak classifiers. Boosting is very popular because of its ease of implementation
and very good experimental results. However, it requires sequential training of a large



2 Incremental Boosting by Minimization of the Evolving Exponential Loss

number of classifiers which can be very costly. Rebuilding a whole ensemble upon
slight changes in training data can put an overwhelming burden to the computational
resources. As a result, there exists a high interest for modifying boosting for incremental
learning applications.

In incremental learning with concept change, a typical approach is to use a slid-
ing window and train a model using examples within the window. Upon each window
repositioning the data set changes only slightly and it is reasonable to attempt to up-
date the existing model instead of training a new one. Many ensemble algorithms have
been proposed for learning with concept change [1–5]. However, in most cases, the
algorithms are based on heuristics and applicable to a limited set of problems. Boost-
ing algorithm proposed in [4] uses each new data batch to train an additional classifier
and to recalculate the weights for the existing classifiers. These weights are recalcu-
lated instead of updated, thus discarding the influence of the previous examples. In [5]
a new data batch is weighted depending on the current ensemble error and used to train
a new classifier. Instead of classifier weights, probability outputs are used for making
ensemble predictions. OnlineBoost [6], which uses a heuristic method for updating the
example weights, was modified for evolving concepts in [8] and [7]. The Online Coor-
dinate Boost (OCB) algorithm proposed in [9] performs online updates of weights of a
fixed set of base classifiers trained offline. The closed form weight update procedure is
derived by minimizing the approximation on AdaBoost’s loss. Because OCB does not
have a mechanism for adding and removing base classifiers and one cannot straightfor-
wardly be derived, the algorithm is not suitable for concept change applications.

In this paper, an extension of the popular AdaBoost algorithm for incremental learn-
ing is proposed and evaluated on concept change applications. It is based on the treat-
ment of AdaBoost as the additive model that iteratively optimizes an exponential cost
function [10]. Given this, the task of IBoost can be stated as updating of the current
boosting ensemble to minimize the modified cost function upon change of the training
data. The issue of model update consists of updating the existing classifiers and their
weights or adding new classifiers using the updated example weights. We intend to
experimentally show that IBoost, in which the ensemble update always leads towards
minimization of the exponential cost, can significantly outperform heuristically based
modifications of AdaBoost for incremental learning with concept change which do not
consider this.

1.1 Preliminaries

The AdaBoost algorithm is formulated in [10] as an ensemble of base classifiers trained
in a sequence using weighted data set versions. At each iteration, it increases the weights
of examples which were misclassified by the previously trained base classifier. Final
classifier is defined as a linear combination of all base classifiers.

While AdaBoost has been developed using arguments from the statistical learning
theory, it has been shown that it can be interpreted as fitting an additive model through
an iterative optimization of an exponential cost function.

For a two-class classification setup, let us assume a data set D is available for train-
ing, D = {(xi, yi), i = 1, ..., N}, where xi is a K-dimensional feature vector and



Incremental Boosting by Minimization of the Evolving Exponential Loss 3

Algorithm 1 AdaBoost algorithm
Input: D = {(xi, yi), i = 1, ..., N}, initial data weights w0

i = 1/N , # iterations M

FOR m = 0 TO M − 1
(a) Fit a classifier fm+1(x) to training data by minimizing

Jm+1 =

N∑
i=1

wmi I(yi 6= fm+1(xi)) (1)

(b) Evaluate the quantities:

εm+1 =

N∑
i=1

wmi I(yi 6= fm+1(xi))/

N∑
i=1

wmi (2)

(c) and then use these to evaluate

αm+1 = ln(
1− εm+1

εm+1
) (3)

(d) Update the example weights

wm+1
i = wmi e

αm+1I(yi 6=fm+1(xi)) (4)

END
Make Predictions for new point X using:

Y = sign(

M∑
n=1

αmfm(X)) (5)

yi ∈ {+1,−1} is its class label. The exponential cost function is defined as

Em =

N∑
i=1

e−yi·Fm(xi), (6)

where Fm(x) is the current additive model defined as a linear combination of m base
classifiers produced so far,

Fm(x) =

m∑
j=1

αjfj(x), (7)

where base classifier fj(x) can be any classification model with output values +1 or
−1 and αj are constant multipliers called the confidence parameters. The ensemble
prediction is made as the sign of the weighted committee, sign(Fm(x)).

Given the additive model Fm(x) at iteration m − 1 the objective is to find an im-
proved one, Fm+1(x) = Fm(x)+αm+1fm+1(x), at iteration m. The cost function can
be expressed as

Em+1 =

N∑
i=1

e−yi·(Fm(xi)+αm+1fm+1(xi)) =

N∑
i=1

wmi e
−yiαm+1fm+1(xi), (8)

where
wmi = e−yiFm(xi) (9)



4 Incremental Boosting by Minimization of the Evolving Exponential Loss

are called the example weights. By rearranging Em+1 we can obtain an expression that
leads to the familiar AdaBoost algorithm,

Em+1 = (eαm+1 − e−αm+1)

N∑
i=1

wmi I(yi 6= fm+1(xi)) + e−αm+1

N∑
i=1

wmi . (10)

For fixed αm+1, classifier fm+1(x) can be trained by minimizing (10). Since αm+1

is fixed, the second term is constant and the multiplication factor in front of the sum in
the first term does not affect the location of minimum, the base classifier can be found
as fm+1(x) = argminf(x) Jm+1, where Jm+1 is defined as the weighted error func-
tion (1). Depending on the actual learning algorithm, the classifier can be trained by
directly minimizing the cost function (1) (e.g. Naı̈ve Bayes) or by resampling the train-
ing data according to the weight distribution (e.g. decision stumps). Once the training
of the new base classifier fm+1(x) is finished, αm+1 can be determined by minimizing
(10) assuming fm+1(x) is fixed. By setting ∂Em+1/∂αm+1 = 0 the closed form solu-
tion can be derived as (3), where εm+1 is defined as in (2). After we obtain fm+1(x)
and αm+1, before continuing to round m + 1 of the boosting procedure and training
of fm+2, the example weights wmi have to be updated. By making use of (9), weights
for the next iteration can be calculated as (4), where I(yi 6= fm+1(xi)) is an indica-
tor function which equals 1 if i-th example is misclassified by fm+1 and 0 otherwise.
Thus, weight wm+1

i depends on the performance of all previous base classifiers on i-th
example. The procedure of training an additive model by stage-wise optimization of
the exponential function is executed in iterations, each time adding a new base clas-
sifier. The resulting learning algorithm is identical to the familiar AdaBoost algorithm
summarized in Algorithm 1.

Consequences. There is an important aspect of AdaBoost relevant to development
of its incremental variant. Due to the iterative nature of the algorithm, ∂Em+1/∂αj = 0
will only hold for the most recent classifier, j = m + 1, but not necessarily for the
previous ones, j = 1, ...,m. Thus, AdaBoost is not a global optimizer of the confidence
parameters αj [12]. As an alternative to the iterative optimization, one could attempt to
globally optimize all a parameters after addition of a base classifier. In spite of being
more time consuming, this would lead to better overall performance.

Weak learners (e.g decision stumps) are typically used as base classifiers because of
their inability to overfit the weighted data, which could produce a very large or infinite
value of αm+1.

As observed in [10], AdaBoost guarantees exponential progress towards minimiza-
tion of the training error (6) with addition of each new weak classifier, as long as they
classify the weighted training examples better than random guessing (αm+1 > 0). The
convergence rate is determined in [13]. Note that αm+1 can also be negative if fm+1

does worse than 50% on the weighted set. In this case (m+1)-th classifier automatically
changes polarity because it is expected to make more wrong predictions than the correct
ones. Alternatively, fm+1 can be removed from the ensemble. A common approach is
to terminate the boosting procedure when weak learners with positive confidence pa-
rameters can no longer be produced.

In the next section, we introduce IBoost, an algorithm which naturally extends Ad-
aBoost to incremental learning where the cost function changes as the data set changes.



Incremental Boosting by Minimization of the Evolving Exponential Loss 5

2 Incremental Boosting (IBoost)

Let us assume an AdaBoost committee with m base classifiers Fm(x) has been trained
on data set Dold = {(xi, yi), i = 1, ..., N} and that we wish to train a committee
upon the data set changed to Dnew by addition of Nin examples, Din = {(xi, yi), i =
1, ..., Nin}, and removal of Nout examples, Dout ⊂ D. The new training data set is
Dnew = Dold −Dout +Din.

One option is to discard Fm(x) and train a new ensemble from scratch. Another
option, more appealing from the computational perspective, is to reuse the existing
ensemble. If the reuse option is considered, it is very important in the design of incre-
mental AdaBoost to observe that the cost function changes upon change of the data set.
Specifically, it changes from

Eoldm =
∑
i∈Dold

e−yi·Fm(xi) (11)

to
Enewm =

∑
i∈Dnew

e−yi·Fm(xi). (12)

There are several choices regarding reuse of the current ensemble Fm(x):
1. update αt, t = 1, ...,m, to better fit the new data set;
2. update base classifiers in Fm(x);
3. update both at, αt, t = 1, ...,m and base classifiers in Fm(x);
4. add a new base classifier fm+1 and its αm+1.
Second and third alternatives are not considered here because they would require

potentially costly updates of base classifiers and would also require updates of example
weights and confidence parameters of base classifiers. In the remainder of the paper, it
will be assumed that trained base classifiers are fixed. It will be allowed, however, to
remove the existing classifiers from an ensemble. The first alternative involves updating
confidence parameters αj , j = 1, ...,m, in such way that they now minimize (12). This
can be achieved in two ways.

Batch Update updates each αj using the gradient descent algorithm αnewj = αoldj −
η · ∂Enewm /∂αoldj , where η is the learning rate. The resulting update rule is

αnewj = αoldj +
∑

i∈Dnew

yifj(xi)e
−yi

m∑
k=1

αold
k fk(xi)

. (13)

One update of the m confidence parameters takes O(N · m) time. If the training set
changed only slightly, only a few updates should be sufficient for the convergence.
The number of batch updates to be performed should be selected depending on the
computational constraints.

Stochastic Update is a faster alternative for updating each αj . It uses stochastic
gradient descent instead of the batch version. The update of αj only using example
(xi, yi) ∈ Dnew is

αnewj = αoldj + yifj(xi)e
−yi

m∑
k=1

αold
k fk(xi)

. (14)



6 Incremental Boosting by Minimization of the Evolving Exponential Loss

At the extreme, we can run the stochastic gradient using only the new examples, (xi, yi) ∈
Din. This kind of updating is especially appropriate for an aggressive iterative schedule
where data are arriving one example at a time at a very fast rate and it is infeasible to
perform batch update.

The fourth alternative (adding a new base classifier) is attractive because it allows
training a new base classifier on the new data set in a way that optimally utilizes the ex-
isting boosting ensemble. Before training fm+1 we have to determine example weights.

Weight Calculation. There are three scenarios when there is a need to calculate or
update the example weights.

First, if confidence parameters were unchanged since the last iteration, we can keep
the weights of the old examples and only calculate the weights of the new ones using

wmi = e

m∑
t=1

αtI(yi 6=ft(xi))
, i ∈ Din. (15)

Second, if confidence parameters were updated, then all example weights have to be
calculated using (9).

Third, if any base classifier fj was removed, the example weights can be updated
by applying

wmi = wm−1i e−αjI(yi 6=fj(xi)), (16)

which is as fast as (4).
Adding Base Classifiers. After updating the example weights, we can proceed to

train a new base classifier in the standard boosting fashion. When deciding how exactly
to update the ensemble when the data changes, one should consider a tradeoff between
the accuracy and computational effort. The first question is whether to train a new clas-
sifier and the second whether to update α values, and if the answer is affirmative, which
update mode to use and how many update iterations to run.

In applications where data set is being changed very frequently and by a little it
can become infeasible to train a new base classifier after each change. In that case one
can intentionally wait until enough incoming examples are misclassified by the current
model Fm and only then decide to add a new base classifier fm+1. In the meantime, the
computational resources can be used to update α parameters.

Removing Base Classifiers. In order to avoid an unbounded growth in number
of base classifiers, we propose a strategy that removes a base classifier each time a
predetermined budget is exceeded. Similar strategies, in which the oldest [5] or the
base model with the poorest performance on the current data [1, 2, 4] is removed, were
proposed.

Additionally, in case of data with concept change, a classifier fj can become out-
dated and receive negative αj , as a result of (13) or (14), because it is trained on older
examples that were drawn from a different concept.

Following this discussion, our strategy is to remove classifiers if one of the two
scenarios occurs: Memory is full and we want to add fm+1, remove the classifier with
the lowest α Remove fj if αj becomes negative during a updates

If classifier fj is removed, it is equivalent to setting αi = 0. To account for this
change, a parameters of the remaining classifiers are updated using (13) or (14) and the
example weights are recalculated using (9). If the time does not permit any modification



Incremental Boosting by Minimization of the Evolving Exponential Loss 7

of a parameters, influence of the removed classifier on example weights can be canceled
using (16).

Convergence. An appealing feature of IBoost is that it retains the AdaBoost con-
vergence properties. At any given time and for any given set of m base classifiers
f1, f2, ..., fm, as long as the confidence parameters α1, α2, ..., αm are positive and min-
imize Enewm , addition of new base classifier fm+1 by minimizing (1) and calculation of
αm+1 using (3) will lead towards minimization of Enewm . This ensures the convergence
of IBoost.

2.1 IBoost Flowchart

Figure 1 presents a summary of IBoost algorithm. We are taking a slightly wider view
and point to all the options a practitioner could select, depending on the particular ap-
plication and computational constraints.

Initial data and example weights are used to train the first base classifier. After
the data set is updated, the user always has a choice of just updating the confidence
parameters, training a new classifier, or doing both.

train fm

(1)
train 
fm ? YES

update α (13) or (14)
update weights (9)

NO

budget 
full ?

remove f 
with min. α

YES

NONO

update 
α ? 

YES

Update 
Weights

update data
Dnew= Dold –Dout+Din

update 
weights (16)

update α (13) or (14)
update weights (9)

calculate weights 
for Din only (15)

calculate αm (3)
update weights (4)

Fig. 1: IBoost algorithm flowchart

First, the user decides whether to train a new classifier or not. If the choice is not
to, the algorithm just updates the confidence parameters using (13) or (14) and modifies
the example weights (9). Otherwise, it proceeds to check if the budget is full and poten-
tially removes the base classifier with minimum a. Next, the user can choose whether
to update a parameters. If the choice is to perform the update, a parameters are up-
dated using (13) or (14) which is followed by recalculation of example weights (9).
Otherwise, before proceeding to training a new base classifier, the algorithm still has to
calculate weights for the new examples Din using (15). Finally, the algorithm proceeds
with training fm by minimizing (1), calculating αm (3) and updating example weights
(4).

IBoost (Fig. 1) was designed to provide large flexibility with respect to budget,
training and prediction speed, and stream properties. In this paper, we present an IBoost
variant for Concept Change. However, using the flowchart we can also easily design
variants for Active Learning or Outlier Removal.



8 Incremental Boosting by Minimization of the Evolving Exponential Loss

2.2 IBoost for Concept Change

Learning under concept change has received a great deal of attention during the last
decade, with a number of developed learning strategies (see overview [14]). IBoost
falls into the category of adaptive ensembles with instance weighting.

When dealing with data streams with concept change it is beneficial to use a sliding
window approach. At each step, one example is being added and one is being removed.
The common strategy is to remove the oldest one; however, other strategies exist. Se-
lection of window size n presents a tradeoff between achieving maximum accuracy on
the current concept and fast recovery from distribution changes.

As we previously discussed, IBoost is highly flexible as it can be customized to meet
memory and time constrains. For concept change applications we propose the IBoost
variant summarized in Algorithm 2. In this setup, after each window repositioning the
data within the window is used to update the a parameters and potentially train a new
base classifier fm+1. The Stochastic version performs b updates of each a using the
newest example only, while Batch version performs b iterations of a updates using all
the examples in the window. The new classifier is added when the AddCriterion: (k
mod p = 0) ∧ (yk 6= Fm(xk)) is satisfied, where (xk, yk) is the new data point,
Fm(xk) is the current ensemble prediction and p is the parameter which controls how
often are base models potentially added. This is a common criterion used in ensemble
algorithms which perform base model addition and removal [4, 5].

The free parameters (M,n, p and b) are quite intuitive and should be relatively easy
to select for a specific application. Larger p values can speed-up the process with slight
decrease in performance. As the budget n increases, so does the accuracy at cost of
increased cost of prediction, model update and storage requirements. Finally, selection
of b is a tradeoff between accuracy, concept change recovery and time.

Algorithm 2 IBoost variant for Concept Change applications
Input: Data set D = {(xi, yi), i = 1, ..., N}, window size n, budget M , frequency of model
addition p, number of gradient descent updates b

(0) initialize window Dnew = {(xi, yi), i = 1, ..., n} and window data weights w0
i = 1/n

(a) k = n, Train f1 (1) using Dnew, calculate α1 (3), update weights wnewi (4), m = 1
(b) Slide the window: k = k + 1, Dnew = Dold + (xk, yk)− (xk−n, yk−n)
(c) If (k mod p = 0) ∧ (yk 6= Fm(xk)),

(c.1) If (m =M)
(c.1.1) Remove fj with minimum αj ,m = m− 1

(c.2) Update αj , j = 1, ...,m (13) or (14) b times, Recalculate wnewi using (9)
(c.3) Train fm+1 (1), calculate αm+1 (3), update weights wnewi (4)
(c.4) m = m+ 1

(d) Else
(d.1) Update αj , j = 1, ...,m (13) or (14) b times, Recalculate wnewi using (9)

(e) If any αj < 0, j = 1, ...,m
(e.1) Remove fj ,m = m− 1
(e.2) Update αj , j = 1, ...,m (13) or (14) b times, Recalculate wnewi using (9)

(f) Jump to (b)



Incremental Boosting by Minimization of the Evolving Exponential Loss 9

3 Experiments

In this section, IBoost performance in four different concept change applications will
be evaluated. Three synthetic and one real-world data set, with different drift types
(sudden, gradual and rigorous) were used. The data generation and all the experiments
were repeated 10 times. The average test set classification accuracy is reported.

3.1 Data Sets

SEA synthetic data [15]. The data consists of three attributes, each one in the range
from 0 to 10, and the target variable yi which is set to +1 if xi1 + xi2 = b and −1
otherwise, where b ∈ {7, 8, 9, 9.5}. The data stream used has 50, 000 examples. For
the first 12, 500 examples, the target concept is with b = 8. For the second 12, 500
examples, b = 9; the third, b = 7; and the fourth, b = 9.5. After each window slide, the
current ensemble is tested using the current concept 2, 500 test set examples.

Santa Fe time series data (collection A) [16] was used to test IBoost performance
on a real life gradual concept change problem. The goal is to predict the measure-
ment gi ∈ R based on 9 previous observations The original regression problem with
a target value gi was converted to classification such that yi = 1 if gi = b, where
b ∈ {−0.5, 0, 1} and yi = −1 otherwise. The data stream contains 9, 990 examples.
For the first 3, 330 examples, b = −0.5; for the second 3, 330 examples, b = 0; and
b = 1 for the remaining ones. Testing is done using a holdout data with 825 examples
from the current concept. Gradual drifts were simulated by smooth transition of b over
1, 000 examples.

Random RBF synthetic data [3]. This generator can create data which contains
a rigorous concept change type. First, a fixed number of centroinds are generated in
feature space, each assigned a single class label, weight and standard deviation. The ex-
amples are then generated by selecting a center at random, taking weights into account,
and displacing them in random direction from the centroid by random displacement
length, drown from a Gaussian distribution with centeroids standard deviation. Drift is
introduced by moving the centers with constant speed. In order to test IBoost on large
binary data sets, we generated 10 centers, which are assigned class labels {−1,+1} and
a drift parameter 0.001, and simulated one million RBF data examples. Evaluation was
done using interleaved test-then-train methodology: every example was used for testing
the model before it was used for training the model.

LED data. The goal is to predict the digit displayed on a seven segment LED dis-
play, where each binary attribute has a 10% chance of being inverted. The original
10-class problem was converted to binary by representing digits 1, 2, 4, 5, 7 (non-round
digits) as +1 and digits 3, 6, 8, 9, 0 (round digits) as −1. Four attributes (out of 7) were
selected to have drifts. We simulated one million examples and evaluated the perfor-
mance using interleaved test-then-train. The data is available in UCI repository.

3.2 Algorithms

IBoost was compared to non-incremental AdaBoost, Online Coordinate Boost, Online-
Boost and its two modifications for concept change (NSOnlineBoost and FLC), Fast
and Light Boosting, DWM and AdWin Online Bagging.



10 Incremental Boosting by Minimization of the Evolving Exponential Loss

OnlineBoost [6] starts with some initial base models fj , j = 1, ...,m which are as-
signed weights λscj = 0 and λswj = 0. When a new example (xi, yi) arrives it is assigned
an initial example weight of λd = 1. Than, OnlineBoost uses a Poisson distribution for
sampling and updates each fj model k = Poisson(λd) times using (xi, yi). Next, if
fj(xi) = yi the example weight is updated as λd = λd/2(1− εj) and λscj = λscj + λd;
otherwise λd = λd/2εj and λswj = λswj + λd, where εj = λswj /(λswj + λscj ), before
proceeding to updating the next base model fj+1. Confidence parameters α for each
base classifier are obtained using (3) and the final predictions are made using (5). Since
OnlineBoost updates all the base models using each new observation, their performance
on the previous examples changes and so should the weighted sums λscm and λswm . Still,
the unchanged sums are used to calculate α, and thus the resulting a are not optimized.

NSOnlineBoost [7] In the original OnlineBoost algorithm, initial classifiers are in-
crementally learned using all examples in an online manner. Base classifier addition
or removal is not used. This is why poor recovery from concept change is expected.
NSOnlineBoost modification introduces a sliding window and base classifier addition
and removal. The training is conducted in the OnlineBoost manner until the update pe-
riod pns is reached. Then, the ensemble Fm classification error on the examples in the
window is calculated and compared to the ensemble Fm− fj , where m includes all the
base models trained using at least Kns = 100 points. If removing any fj improves the
ensemble performance on the window, it is removed and a new classifier is added with
initial values λscm = 0, λswm = 0 and εm = 0.

Fast and Light Classifier (FLC) [8] is a straightforward extension of OnlineBoost
that uses an Adaptive Window (AdWin) change detection technique [17] to heuristically
increase example weights when the change is detected. The base classifiers and their
confidence parameters are initialized and updated in the same way as in OnlineBoost.
When a new example arrives (λd = 1), AdWin checks, for every possible split into
”large enough” sub-windows, if their average classification rates differ by more than
a certain threshold d, set to k window standard deviations. If the change is detected,
the new example updates all m base classifiers with weights that are calculated using
λd = (1 − εj)/εj , where εj = λswj /(λswj + λscj ), j = 1, ...,m. The window then
drops the older sub-window and continues to grow back to its maximum size with the
examples from the new concept. If the change is not detected, the example weights and
base classifiers are updated in the same manner as in OnlineBoost.

AdWin Bagging [3] is the OnlineBagging algorithm proposed in [6] which uses the
AdWin technique [17] as a change detector and to estimate the error rates for each base
model. It starts with initial base models fj , j = 1, ...,m. Then, when a new example
(xi, yi) arrives, each model fj is updated k = Poisson(1) times using (xi, yi). Final
prediction is given by simple majority vote. If the change is detected, the base classifier
with the highest error rate εj is removed and a new one is added.

Online Coordinate Boost (OCB) [9] requires initial base models fj , j = 1, ...,m,
trained offline using some initial data. The initial training also provides the starting
confidence parameter values αj , j = 1, ...,m, and sums of weights of correctly and in-
correctly classified examples for each base classifier, (λscj and λswj , respectively). When
a new example (xi, yi) arrives, the goal is to find the appropriate updates ∆αj for αj
such that the AdaBoost loss (6) with the addition of the last example is minimized. Be-



Incremental Boosting by Minimization of the Evolving Exponential Loss 11

Table 1: Dividing concept change algorithms into overlapping groups

Characteristics IBoost Online
Boost

NSO
Boost

FLC AdWin
Bagg

OCB DWM FLB

Change Detector Used • • •
Online Base Classifier Update • • • • •
Classifier Addition and Removal • • • • •
Sliding Window • • • • •

cause these updates cannot be found in the closed form, the authors derived closed form
updates that minimize the approximate loss instead of the exact one. Such optimization
requires keeping and updating the sums of weights (λsc(j,l) and λsw(j,l)) which involve two
weak hypotheses j and l and introduction of the order parameter o. To avoid numerical
errors, the algorithm requires initialization with the data of large enough length nocb
and selection of the proper order parameter.

FLB [5] The algorithm assumes that data are arriving in disjoint blocks of size
nfb. Given a new block Bj ensemble example weights are calculated depending on the
ensemble error rate εj , where the weight of a misclassified example xi is set to wi =
(1 − εj)/εj and the weight of a correctly classified sample is left unchanged. A new
base classifier is trained using the weighted block. The process repeats until a new block
arrives. If the number of classifiers reaches the budget M , the oldest one is removed.
The base classifier predictions are combined by averaging the probability predictions
and selecting the class with the highest probability. There is also a change detection
algorithm running in the background, which discards the entire ensemble when a change
is detected. It is based on the assumption that the ensemble performance θ on the batch
follows Gaussian distribution. The change is detected when the distribution of θ changes
from one Gaussian to another, which is detected using a threshold τ .

DWM [1] is a heuristically-based ensemble method for handling concept change.
It starts with a single classifier f1 trained using the initial data and α1 = 1. Then,
each time a new example xk arrives it updates weights a for the existing classifiers: a
classifier that incorrectly labels the current example receives a reduction in its weight by
multiplicative constant β = 0.5. After each pdwm examples classifiers whose weights
fall under a threshold θr = 0.01 are removed and if, in addition, (yk 6= Fm(xk)) a
new classifier fm+1 with αm+1 = 1 is trained using the data in the window. Finally,
all classifiers are updated using (xk, yk) and their weights a are normalized. The global
prediction for the current ensemble Fm(xk) is always made by the weighted majority
(5). When the memory for storing base classifiers is full and a new classifier needs to
be stored, the classifier with the lowest α is removed.

In general, the described concept change algorithms can be divided into several
groups based on their characteristics (Table 1).

3.3 Results

We performed an in-depth evaluation of IBoost and competitor algorithms for different
values of window size n = {100, 200, 500, 1000, 2000}, base classifier budget M =
{20, 50, 100, 200, 500} and update frequency p = {1, 10, 50}. We also evaluated the



12 Incremental Boosting by Minimization of the Evolving Exponential Loss

Table 2: Performance Comparison on SEA dataset

Algorithm
window size n = 200 budget size M = 200

budget size M window size n
20 50 100 200 500 100 200 500 1000 2000

IBoost test accuracy (%) 94.5 96.4 96.7 97.1 97.5 96.9 97.1 97.3 97.5 98
Stochastic recovery (%) 92.5 93.1 93.3 93.5 93.4 93.4 93.5 92.4 90.1 89.6
b = 5 time (s) 39 90 183 372 751 221 372 396 447 552
IBoost test accuracy (%) 95.9 97.4 97.8 97.9 98 97.2 97.9 98.1 98.3 98.5
Batch recovery (%) 91.5 92.1 92.9 92.5 93.4 92.8 92.5 91.2 88.8 88.4
b = 5 time (s) 77 188 401 898 2.1K 801 885 1K 1.7K 2.3K

test accuracy (%) 94.5 95 95 94.9 94.9 92.8 94.9 96.7 97 97.5
AdaBoost recovery (%) 92 92.1 92.2 91.9 91.9 91.7 91.9 89.9 88.1 86.3

time (s) 91 192 432 913 2.1K 847 913 1K 1.3K 1.8K
test accuracy (%) 92.7 93.9 94.3 94.4 94.1 91.3 94.4 95.4 95.8 96.8

OCB recovery (%) 84.3 86.4 89.8 91.2 91.2 88.7 91.2 90.1 84.4 93.5
time (s) 47 120 259 590 2K 584 590 567 560 546
test accuracy (%) 82.6 89.4 92.9 94.4 94.9 94.7 94.4 90.5 87.5 83.4

FLB recovery (%) 82.3 85.3 86.1 84.7 84.9 85.2 84.7 83.8 83.5 81.9
time (s) 73 104 156 207 435 183 207 262 390 456

performance of IBoost for different values of b = {1, 5, 10}. Both IBoost Batch (13)
and IBoost Stochastic (14) were considered.

In the first set of experiments IBoost was compared to the benchmark AdaBoost
algorithm, OCB and FLB on the SEA data set. Simple Decision Stumps (single-level
Decision Trees) were used as base classifiers. Their number was limited to M . Both
AdaBoost and IBoost start with a single example and when the number of examples
reaches n they begin using a window of size n. Each time the window slides and the
AddCriterion with p = 1 is satisfied, AdaBoost retrains M classifiers from scratch,
while IBoost trains a single new classifier (Alg. 2).

OCB was initialized using the first nocb = n data points and then it updated confi-
dence parameters using the incoming data. Depending on the budgetM , the OCB order
parameter o was set to the value that resulted in the best performance. Increasing o re-
sults in improved performance. However, performance deteriorates if it is increased too
much. In FLB, disjoint data batches of size nfb = n were used (equivalent to p = nfb).
Five base models were trained using each batch while constraining the budget as ex-
plained in [5]. Class probability outputs for Decision Stumps were calculated based on
the distance from the split and the threshold for the change detector was selected such
that the false positive rate is 1%.

Figure 2 compares the algorithms in the M = 200, n = 200 setting. Performances
for different values ofM and n are compared in Table 2 based on the test accuracy, con-
cept change recovery (average test accuracy on the first 600 examples after introduction
of new concept) and training times.

Both IBoost versions achieved much higher classification accuracy than AdaBoost
and it was faster to train. This can be explained by the fact that AdaBoost deletes the



Incremental Boosting by Minimization of the Evolving Exponential Loss 13

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

80

85

90

95

100

Time Step

T
e

st
 A

cc
u

ra
cy

 (
%

)

 

 

IBoost−DS Batch, training time: 1,113 sec
IBoost−DS Stochastic, training time: 898 sec
AdaBoost−DS, training time: 913 sec
OCB−DS, training time: 590 sec
FLB−DS, training time: 207 sec

Fig. 2: Predictive Accuracy on SEA Data Set, M = 200, n = 200

Table 3: IBoost performance for different b and p values on SEA dataset

Algorithm M = 200, n = 200
p = 1 b = 1

b = 1 b = 5 b = 10 b = 10 b = 50 b = 100

IBoost Stochastic
test accuracy (%) 96.7 97.1 97.4 96.5 94.7 93.1
recovery (%) 93.1 93.5 93.7 92.8 92.7 92.1
time (s) 201 372 635 104 45 22

IBoost Batch
test accuracy (%) 97.6 97.9 98.2 97.1 95.6 93.7
recovery (%) 92.3 92.5 92.9 92.6 91.6 91.4
time (s) 545 898 1.6K 221 133 96

influence of all previously seen examples outside the current window by discarding
the whole ensemble and retraining. Better performance of IBoost than OCB can be
explained by the difference in updating confidence parameters and the fact that OCB
never adds or removes base classifiers. Inferior FLC results show that removing the
entire ensemble when the change is detected is not the most effective solution.

IBoost Batch was more accurate than IBoost Stochastic. However, the training time
of IBoost Batch was significantly higher. Considering this, IBoost Stochastic represents
a reasonable tradeoff between performance and time. Fastest recovery for all three con-
cept changes was achieved by IBoost Stochastic. This is because the confidence param-
eters updates of IBoost Stochastic are performed using only the most recent example.

Some general conclusions are that the increase in budget M resulted in larger train-
ing times and accuracy gain for all algorithms. Also, as the window size n grew, the per-
formance of both IBoost and retrained AdaBoost improved at cost of increased training
time and slower concept change recovery. With a larger window the recovery perfor-
mance gap between the two approaches increased, while the test accuracy gap reduced
as the retrained AdaBoost generalization error decreased.

As we discussed in section 3.2, one can select different IBoost b and p parameters
depending on the stream properties. Table 3 shows how the performance on SEA data
changed as they were adjusted. We can conclude that bigger values of b improved the
performance at cost of increasing the training time, while bigger values of p degraded
the performance (some just slightly, e.g. p = 10) coupled with big time savings.

In the second set of experiments, IBoost Stochastic (p = 1, b = 5) was compared
to the algorithms from Table 1 on both SEA and Santa Fe data sets. Naı̈ve Bayes was



14 Incremental Boosting by Minimization of the Evolving Exponential Loss

chosen to be the base classifier in these experiments because of its ability to be incre-
mentally improved, which is a prerequisite for some of the competitors (Table 1). All
algorithms used a budget of M = 50. The algorithms that use a moving window had
a window of size n = 200. Additional parameters for different algorithms were set as
follows: OCB was initialized offline with nocb = 2K data points and used o = 5, FLB
used batches of size pfb = 200, NSOnlineBoost used pns = 10 and DWM pdwm = 50.

Results for the SEA data set are presented in Fig. 3. As expected, OnlineBoost had
poor concept change recovery because it never removes or adds new models. Its two
non-stationary versions, NSOnlineBoost and FLC, outperformed it. FLC was particu-
larly good during the first three concepts where it had almost the same performance as
IBoost. However, its performance deteriorated after introduction of the fourth concept.
The opposite happened for DWM which was worse than IBoost in all but the fourth
concept. We can conclude that IBoost outperformed all algorithms, while being very
fast (it came in second, after DWM).

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

80

85

90

95

100

Time Step

T
e

st
 A

cc
u

ra
cy

 (
%

)

 

 

IBoost−NB Stochastic, training time: 104 sec
OCB−NB, training time: 164 sec
AdWin OnlineBagg−NB, training time: 1,113 sec
FLC−NB, training time: 1,156 sec
OnlineBoost−NB, training time: 929 sec
DWM−NB, training time: 21 sec
FLB−NB, training time: 323 sec
NSOnlineBoost−NB, training time: 4,621 sec

Fig. 3: Predictive Accuracy on SEA Data Set, M = 50

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

50

60

70

80

90

100

Time Step

T
e

st
 A

cc
u

ra
cy

 (
%

)

 

 

IBoost−NB Stochastic, training time: 52.4 sec
OCB−NB, training time: 40.3 sec
AdWin OnlineBagg−NB, training time: 394 sec
FLC−NB, training time: 387 sec
OnlineBoost−NB, training time: 361 sec
DWM−NB, training time: 12.8 sec
FLB−NB, training time: 38.1 sec
NSOnlineBoost−NB, training time: 2,315 sec

Fig. 4: Predictive Accuracy on Santa Fe Data Set, M = 50

Results for the Santa Fe data set are presented in Fig. 4. Similar conclusions as
previously can be drawn. In the first concept several algorithms showed almost iden-
tical performance. However, when the concept changed IBoost was the most accurate.
Table 4 summarizes test accuracies on both data sets.

AdWin Online Bagging had an interesting behavior in both SEA and Santa Fe data
sets. It did not suffer as large accuracy drop due to concept drift as the other algorithms,



Incremental Boosting by Minimization of the Evolving Exponential Loss 15

Table 4: SEA and Santa Fe performance summary based on the test accuracy

Data Set IBoost
Stochastic

Online
Boost

NSO
Boost

FLC AdWin
Bagg

OCB DWM FLB

SEA 98.0 95.6 96.9 97.4 94.5 95.2 96.9 94.9
Santa Fe 94.1 81.8 85.1 83.4 80.0 80.6 88.8 87.6

and the direction of improvement suggests that it would reach IBoost performance if
duration of each particular concept were longer.

To study the performance on large problems, we used only IBoost Stochastic (p =
10, b = 1) version because fast processing of the data was required. Budget was set
to M = 20 and for algorithms that require window we used n = 200. Parameters for
remaining algorithms were set as: OCB (nocb = 2K and o = 5), DWM (pdwm = 500).

Figure 5 shows the results for LED data. We can conclude that AdWin Online Bag-
ging outperformed OnlineBoost, FLC and DWM, and was very similar to OCB. IBoost
Stochastic was the most accurate algorithm (except in the first 80K examples).

1000 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000
78

78.5

79

79.5

80

80.5

81

81.5

82

Time Step

T
e

st
 A

cc
u

ra
cy

 (
%

)

 

 

IBoost−NB Stochastic, total time: 2,216 sec
OCB−NB, total time: 2,329 sec
Adwin OnlineBagg−NB, total time: 4,913 sec
FLC−NB, total time: 4,835 sec
OnlineBoost−NB, total time: 4,421 sec
DWM−NB, total time: 1,277 sec

Fig. 5: LED Data Set, 10% noise, 4 drifting attributes, M = 20

In Figure 6 we present the results for RBF data. IBoost Stochastic was the most
accurate model, by a large margin. It was the second fastest, after DWM. AdWin Online
Bagging was reasonably accurate, and it was the second performing overall.

1,000 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

55

60

65

70

75

80

85

90

Time Step

T
e

st
 A

cc
u

ra
cy

 (
%

)

 

 

IBoost−NB Stochastic, total time: 1,420 sec
OCB−NB, total time: 2,030 sec
AdWin OnlineBagg−NB, total time: 2,224 sec
FLC−NB, total time: 2,060 sec
OnlineBoost−NB, total time: 1,925 sec
DWM−NB, total time: 1,108 sec

Fig. 6: RBF Data Set, 10 centroids, drift 0.001, M = 20



16 Incremental Boosting by Minimization of the Evolving Exponential Loss

4 Conclusion

In this paper we addressed a very important problem of incremental learning. We pro-
posed an extension of AdaBoost to incremental learning. The idea was to reuse and
upgrade the existing ensemble when the training data are modified. The new algo-
rithm was evaluated on concept change applications. The results showed that IBoost
is more efficient, accurate, and resistant than the original AdaBoost, mainly because it
retains memory about the examples that are removed from the training sliding window.
It also performed better than previously proposed OnlineBoost and its non-stationary
versions, DWM, Online Coordinate Boosting, FLB and AdWin Online Bagging. Our
future work will include extending IBoost to perform multi-class classification, com-
bining it with the powerful AdWin change detection technique and experimenting with
Hoeffding Trees as base classifiers.

References

[1] Kolter J. Z., Maloof M. A.: Dynamic weighted majority: A new ensemble method for track-
ing concept drift, In: ICDM, pp. 123–130 (2003)

[2] Scholz M.: Knowledge-Based Sampling for Subgroup Discovery, In: Local Pattern Detec-
tion, Springer pp. 171–189 (2005)

[3] Bifet A., Holmes G., Pfahringer B., Kirkby R., Gavald R.: New ensemble methods for
evolving data streams, In: ACM SIGKDD (2009)

[4] Wang H., Fan W., Yu P. S., Han J.: Mining concept-drifting data streams using ensemble
classifiers, In: Proc. ACM SIGKDD, pp. 226–235 (2003)

[5] Chu F., Zaniolo C.: Fast and light boosting for adaptive mining of data streams, In: Proc.
PAKDD, pp. 282–292 (2004)

[6] Oza N., Russell S.: Experimental comparisons of online and batch versions of bagging and
boosting, In: ACM SIGKDD, (2001)

[7] Pocock A., Yiapanis P., Singer J., Lujan M., Brown G.: Online Non-Stationary Boosting,
In: Intl Workshop on Multiple Classifier Systems (2010)

[8] Attar V., Sinha P., Wankhade K.: A fast and light classifier for data streams, In: Evolving
Systems, vol. 1, number 4, pp. 199–207 (2010)

[9] Pelossof R., Jones M., Vovsha I., Rudin C.: Online Coordinate Boosting, In: On-line Learn-
ing for Computer Vision Workshop, ICCV (2009)

[10] Friedman J., Hastie T., Tibshirani R.: Additive logistic regression: a statistical view of boost-
ing, In: The Annals of Statistics, vol. 28 pp. 337–407 (2000)

[11] Freund Y., Schapire R. E.: Experiments with a new boosting algorithm, In: Machine Learn-
ing: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)

[12] Schapire R. E., Singer Y.: Improved Boosting Algorithms Using Confidence-rate Predic-
tions, In: Machine Learning Journal, vol. 37 pp. 297–336 (1999)

[13] Schapire R. E.: The convergence rate of adaboost. In: COLT (2010)
[14] Zliobaite I.: Learning under Concept Drift: an Overview, Technical Report, Vilnius Univer-

sity, Faculty of Mathematics and Informatics (2009)
[15] Street W., Kim Y.: A streaming ensemble algorithm (SEA) for large-scale classification, In:

ACM SIGKDD, pp. 377–382 (2001)
[16] Weigend A. S., Mangeas M., Srivastava A. N.: Nonlinear gated experts for time series:

discovering regimes and avoiding overfitting, In: IJNS, vol. 6, pp. 373–399 (1995)
[17] Bifet A., Gavald R.: Learning from time changing data with adaptive windowing, In: SIAM

International Conference on Data Mining, pp. 443–448 (2007)


