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ABSTRACT 
In this paper we propose a novel fault detection algorithm for 
process control and maintenance that builds an ensemble of 
classifiers based on the modified AdaBoost technique. While 
seeking for the best fault detection accuracy, our algorithm also 
concentrates on reducing detection delay, which ensures safety 
and timely equipment service. In addition, the new algorithm can 
simultaneously detect and remove class-label noise in process 
data. Training is performed via iteratively optimizing an 
exponential cost function. The cost function also adaptively 
changes at each iteration, such that (1) the importance of the fault 
transition periods is increased to reduce the detection delay and 
(2) noisy samples are removed from training data. The algorithm 
was tested on a well known benchmark problem, the Tennessee 
Eastman Process (TEP), and compared to the baseline AdaBoost 
ensemble fault detector that does not pay specific attention to 
minimization of the detection delay and noise removal. 
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General Terms 
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1. INTRODUCTION 
Control and maintenance of complex manufacturing systems is an 
essential task in order to support quality control and to ensure 
safety. Timely detection of abnormal events and service 
requirement symptoms is critical to effective and safe operation of 
plant equipment. In general, fault detection algorithms can be 
categorized into unsupervised and supervised ones. In 
unsupervised algorithms such as principal component analysis [1] 
and independent component analysis [4], normal operation is 
modeled and faults are detected as deviations from the normal 
behavior. In supervised algorithms such as support vector 

machines and neural networks, a classifier is trained on historical 
data containing both normal and faulty conditions. In this paper 
we will concentrate on supervised methods that treat fault 
detection as a binary classification problem. 

The desirable characteristics of a fault detection algorithm include 
low detection delay time, low false positive rate, and high 
detection probability. Early detection provides invaluable warning 
about emerging problems to avoid catastrophic consequences. 
Low false positive rate ensures the usability of the detection 
system. High detection accuracy is an essential requirement for 
successful detection and tracking of fault events. These 
performance metrics define an overall quality of any fault 
detection system, although tradeoff between detection speed and 
accuracy highly depends on specific applications.  

Supervised classification algorithms in general minimize the 
overall classification error only, without explicitly considering 
detection delay. However, error minimization does not necessarily 
ensure small detection delay. As the transition periods between 
normal and faulty conditions are typically covered by a relatively 
small fraction of training data, their error contribution could be 
neglected at the expense of achieving high accuracy during the 
steady-state periods of normal or faulty behavior. Simultaneous 
minimization of detection error and detection delay is an 
important open problem to be addressed in this paper.  

Another issue common to supervised fault detection is related to 
the quality of historical data annotation and the detectability of 
various types of faults. In reality, labeling of process data can 
often be inaccurate. In addition, certain types of faults might be 
hard to detect or even completely unobservable by the installed 
sensors. Similar could be said of the transition period between 
normal and faulty condition, which could be undetectable at first, 
due to slow fault propagation through the system. Labeling 
undetectable faults and such transition periods as faults is similar 
to mislabeling and can have an adverse effect on the  accuracy.  

In this paper, we propose a learning algorithm based on AdaBoost 
which simultaneously minimizes detection delay, maximizes 
accuracy, and is robust to inaccurate annotations. The idea is to 
pose the fault detection problem as minimizing an adaptive loss 
function which penalizes misclassification such that the 
contribution from samples occurring during fault transition 
periods is emphasized. It also removes samples estimated to be 
noisy or undetectable. The model obtained as a result of 
minimizing of such a loss function favors low detection delay and 
is also robust to noisy labeling. Our experimental results show the 
propose algorithm reduces detection delay while retaining high 
accuracy. 
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2. PRELIMINARIES 
2.1 Problem Setup 
We consider a plant monitored by a network of K sensors 
providing measurements synchronously in regular time intervals. 
At time i, the measurement  at the k-th sensor is represented by a 
row vector variable xi

k of length dk. Combining all K sensors 
forms a single row vector xi = [xi

1, xi
2,…, xi

K] whose length is 
K
k kdd 1 . The true plant state at time i is denoted as   yi {–

1, +1}. Here –1 represents normal process condition; +1 presents 
a faulty state. We assume N samples of historical data are 
collected in a data set D = {(xi, yi), i =1…N} for developing the 
fault detection model. 
The classification of the system state at time i is denoted by ŷi. 
The goal is to build a single classification function h: xi → yi from 
the data set D that accurately and timely detects faults in real time. 

2.2 Fault Detection Performance Measures 
Several metrics are typically used to evaluate the performance of 
fault detection algorithms. Assume that a labeled sequence of 
observations Dtest is available for performance evaluation which 
consists of both normal and faulty conditions and is disjoint from 
the training data set. Assume Dtest  contains J fault occurrences. 

The true positive rate (TPR) is defined as 
,100)/( 11 NnTPR  (1) 

where n1 is the number of correctly detected faulty samples and N1 
is the total number of faulty samples in Dtest.  
The false positive rate (FPR) is given by, 

,100)/( 00 NnFPR  (2) 
where n0 is the number of misclassified normal condition samples 
and N0 is the total number of normal condition samples in Dtest. 
The detection delay DDj for the j-th faulty occurrence from Dtest is 
defined as the delay between tj

0, the introduction time of the fault 
and its detection time tj

1
, i.e., 

.01
jjj ttDD  (3) 

The average detection delay DD for all fault occurrences in Dtest is  

./
1

J

j
j JDDDD  

(4) 

In Figure 1 a subset of the training data set Dtest is shown, where 
the flat line is the true label and the dotted line is outcome from 
the fault detection model. It illustrates the detection delay region 
as well as examples of false positive and false negative predictions. 
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Figure 1. Illustration of detector performance during a fault 

2.3 The AdaBoost Algorithm 
The AdaBoost algorithm is formulated in [6] as an ensemble of 
base classifiers trained in a sequence using weighted versions of 
the training data set. At each iteration, it increases the weights of 
examples which were misclassified by the previously trained base 
classifiers. Final classifier is defined as a linear combination of all 
base classifiers. While AdaBoost has been developed using 
arguments from the statistical learning theory, it has been shown 

[7] that it can be interpreted as fitting an additive model through 
an iterative optimization of an exponential cost function. 

Given: Data set D = {(xi , yi), i = 1…N}, initial data weight 
coefficients wi

0 = 1/N, number of iterations M 

FOR m = 0 TO M 1 
(a) Fit a classifier fm+1(x) to training data by minimizing  

))((
1

11

N

i
imi

m
im xfyIwJ (5)

 (b) Evaluate the quantities:  
N

i

m
i

N

i
imi

m
im wxfyIw

11
11 /))((  

(6) 

      and then use these to evaluate 

1

1
1

1ln
m

m
m  

(7) 

(c) Update the example weights  
))((1 11 imim xFyIm

i
m
i eww  (8) 

END 
Make predictions for new point xtest using:  

))((ˆ
1

M

m
testmm xfsigny  

(9) 

 

Figure 2. AdaBoost algorithm 

For a two-class classification setup, let us consider the 
exponential cost function defined as 

,
1

)(
N

i

xFy
m

imieE  (10) 

where Fm (x) is the current additive model defined as a linear 
combination of m base classifiers produced so far, 

,)()(
1

m

j
jjm xfxF  

(11) 

the base classifier fj(x) can be any classification model with output 
values +1 or –1 and αj are constant multipliers called the 
confidence parameters.  

Given the additive model Fm(x) at iteration m – 1 the objective is 
to find an improved one, Fm+1(x) = Fm(x) + αm+1·fm+1(x), at iteration 
m. The cost function can be expressed as 

,
1
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1
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where  
,)( imi xFym

i ew  (13) 

are called the example weights. By rearranging Em+1, we can 
obtain an expression that leads to the familiar AdaBoost 
algorithm, 

.))(()(
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m
im wexfyIweeE mmm  

(14) 

where I(yi ≠ fm+1(xi)) is an indicator function which equals 1 if i-th 
example is misclassified by fm+1 and 0 otherwise. For fixed αm+1, 
classifier fm+1(x) can be trained by minimizing (14). Since αm+1 is 
fixed, the second term is constant and the multiplication factor in 
front of the sum in the first term does not affect the location of 
minimum, the base classifier can be found as 
fm+1(x) = arg minf(x) Jm+1, where Jm+1 is defined as the weighted 
error function (5). Once the training of the new base classifier 
fm+1(x) is finished, αm+1 can be determined by minimizing (14) 
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assuming fm+1(x) is fixed. By setting ∂Em+1/∂αm+1 = 0 the closed 
form solution can be derived as (7), where εm+1 is defined as in 
(6). After we obtain fm+1(x) and αm+1, before continuing to round 
m + 1 of the boosting procedure and training of fm+2, the example 
weights wi

m have to be updated. By making use of (13), weights 
for the next iteration can be calculated as (8). Thus, weight wi

m+1 
depends on the performance of all previous base classifiers on i-th 
example. The procedure of training an additive model by stage-
wise optimization of the exponential function is executed in 
iterations, each time adding a new base classifier. The resulting 
learning algorithm is identical to the familiar AdaBoost algorithm 
summarized in Figure 2. 

In the next section, we introduce a new algorithm for joint 
detection delay and classification error minimization, which is 
also able to detect class-label noise. The algorithm naturally 
extends AdaBoost by changing the cost function at each iteration 
based on detection delay performance during the previous iteration 

3. DEM-DEN BOOST 
(De)lay (m)inimization and (De)-(n)oising Boosting algorithm is 
derived by introducing an additional multiplier into the original 
AdaBoost cost function,  

.)(

Di

xFy
im

imiegE  (15) 

Function gi allows us to increase the penalty of wrong predictions 
for each sample separately. A default value of gi = 1, for all 
i = 1…N corresponds to the original AdaBoost cost function. 
Minimizing the detection delay is achieved by increasing the 
penalty of wrong predictions (achieved by assigning high gi value) 
for examples within the fault transition region. Our algorithm 
modifies gi values after each iteration, which creates a need to 
optimize slightly different cost function Em after each iteration. 
AdaBoost is very appropriate for this setup, because we can 
utilize the existing ensemble when constructing a new fault 
detection classifier on the modified cost function. 

Let us assume that up to iteration m an AdaBoost committee with 
m base classifiers Fm(x) has been trained by minimizing  
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Upon the change of g in iteration m, the cost function changes to 
.)(

Di

xFynew
i

new
m

imiegE  (17) 

Before proceeding to finding a new base classifier fm+1 and its 
confidence parameter αm+1 there are two changes one should make 
to adapt to the cost function change: 
1. Confidence Parameter Update. The first task involves 
updating confidence parameters αk, k = 1…m, in such way that 
they now minimize (17) for fixed fk, k = 1…m. This can be 
achieved by updating the existing αk, k = 1…m, using the gradient 
descent algorithm αk

new 
 = αk

old
  η· Em

new/ αk
old, where  is the 

learning rate. Following this, the confidence parameters for all m 
base classifiers can be updated as 
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2. Example Weight Update. The second task involves calculating 
the example weights for training of fm+1. With addition of the new 
base classifier, Fm+1(x) = Fm(x) + αm+1·fm+1(x), the resulting 
ensemble’s cost function can be expressed as 
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where 
)( imi xFynew

i
m
i egw  (20) 

represent the example weights for training fm+1. Training a new 
base classifier fm+1 is conducted in the same manner as in the 
regular AdaBoost by minimizing the new cost function in a way 
that optimally utilizes the existing boosting ensemble. After 
recalculating the example weights using (20), minimizing (18) 
with respect to fm+1 and αm+1 leads to familiar equations (5) and (7)  
Adapting g(·). Minimization of detection delay is carried out 
using the multiplier function g. As explained in 2.2, data D 
consists of J fault occurrences. In each sequence {( xt, yt), 
t = 1…L}j, j = 1…J, the fault is introduced at sample tj

0 and is 
removed at sample L (Figure 1). We will define function gi, 
i=1…N for each sequence separately. 
Let us consider the j-th fault occurrence sequence from D and 
assume the ensemble Fm built up to m-th iteration detects the fault 
at sample tj

1. We define g(t, tj
1) at iteration m for sequence j as 

,
,1

,1),( 101

1

otherwise

tttettg jj

tt

j
new

j

 

(21) 

where σ is the detection delay punishment level parameter to be 
appropriately selected. Figure 3 illustrates how function g(t, tj

1) is 
formed for a j-th faulty sequence based on Fm predictions. 
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Figure 3. Function g(t, tj1) for a j-th fault occurrence sequence 

As we can observe function g(t, tj
1) additionally increases the 

weights of examples falling within the Fm detection delay region 
(high gi value). Specifically, the examples right before the fault 
detection time tj

1 by the current model Fm will receive the highest 
additional weight increase. The examples outside the region, 
including tj

1, will not receive any additional weight increase 
(default gi value). These actions ensure that the algorithm will 
attempt to further reduce the detection delay in the next iteration. 

Removal of Class-Label Noise. To deal with mislabeled fault 
sequences, we propose a de-noising procedure similar to the 
method proposed in [5] where the authors identify outliers during 
AdaBoost realization as points whose weights become larger than 
a certain threshold T. In [5], the weights of the detected outliers 
are set to zero and the boosting procedure continues to the next 
iteration. However, the weights of the remaining examples are not 
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updated to reflect this change, which could lead to a deteriorated 
performance in further boosting iterations. Also, the cost function 
Em changes with removal of examples. Such change requires 
updating of the confidence parameters, which was not considered. 
In our implementation, the examples are removed when their 
weights exceed the threshold T, which is followed by confidence 
parameter update (18) and example weight recalculation (20). To 
include class-label noise removal procedure, we modified function 
g in such way that it accounts for examples whose weights extend 
over the threshold value T, 
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(22) 

Setting the i-th example cost function multiplier gi to zero has the 
same effect as setting its weight wi to zero (20).  
The summary of Dem-Den Boost algorithm is shown in Figure 4. 

Given: Data set D = {(xi, yi), i = 1…N}, consisting of J fault 
occurrence sequences, initial data weight coefficients wi

0 = 1/N,, 
number of iterations M, threshold T, penalty parameter σ 
FOR m = 0 TO M–1 
(a) Fit a classifier fm+1(x) to training data by minimizing (5) 
(b) Evaluate the quantities εm+1 (6) and αm+1 (7) 
(c) Find tj

1 for each fault sequence using Fm+1 fault detector  
(d) Determine gi

new(t, tj
1, wi), i = 1…N for each fault sequence (22) 

(e) Update αk , k = 1...m using (18) (possibly until convergence) 
(f) Calculate example weights for the next iteration using 

)(1 1 imi xFynew
i

m
i egw , i D 

END 
Make Predictions using (9) 

Figure 4. Dem-Den Boost Algorithm 

4. EXPERIMENTS 
4.1 Tennessee Eastman Process (TEP) 
The proposed boosting method was evaluated on a well-known 
benchmark problem, the Tennessee Eastman Industrial Challenge 
Problem [2], which was created to provide a realistic simulator of 
an industrial process in order to evaluate process control methods.  
A large number of fault detection approaches [1, 4] were tested on 
TEP. The process has 53 variables including 22 process, 19 
analyzer and 12 manipulated variables. In our research, all 19 
analyzer measurements are excluded as well as the manipulated 
variable representing agitator speed, which is constant in all 
simulation runs. For details about variables see [1]. 
TEP has 20 identified faults. They range from faults that are 
relatively easy to detect without any delay (e.g., fault 1 and 4) due 
to significant and clear deviation from normal conditions with fast 
transition, to faults that are relatively easy to detect but require a 
certain amount of time to propagate through the plant before they 
become detectable (e.g., fault 17 and 18), to faults that are 
extremely hard to detect due to their subtleness (faults 3, 9, 15).  

4.2 Experimental Setup 
The training data set Dtr = {(xi, yi), i = 1…N, yi {−1, +1}} 
consists of sequences in which normal and faulty data 
interchange. Specifically, four separate data sequences, each of 
length L = 1,000 samples, were generated for each of the 20 TEP 

faults, where the fault was introduced at time t0 = 501. In this way, 
a total of N = 80,000 samples were generated for the training data. 
For the purposes of evaluation, we generated test data set Dtest 
consisting of ten sequences of length L = 2,000 for each of the 20 
faults, where the fault was introduced at the 1001st sample point. 
The TEP data annotation simulates the human annotation by 
providing imperfect, noisy data labeling. The following situations 
in TEP data sequences can cause problems for supervised training.  
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Figure 5. Faults introduced by TEP at sample 501 (flat line) 

1. Subtle faults are faults of such small intensity that it is very 
hard, or impossible, to distinguish them from normal operating 
conditions. Labeling these conditions as faults and using them for 
training corresponds to introducing class label noise and will 
reflect in reduced overall accuracy. Figure 5-a shows TEP sensor 
xmeas1 sequence of length 1,000 in which fault 3 is introduced at 
501th sample. As it can be observed, deviation from normal 
conditions is absent. This behavior is consistent in all sensors. 
2. Propagation periods can occur when there is a delay between 
introduction of a fault by the TEP simulator and its visible effects 
in the process. Some faults have especially long propagation 
periods. Labeling these long propagation periods as faults can 
have similar adverse effects as the undetectable faults. In Figure 5, 
fault introduction and annotation by the simulator is marked with 
the flat line, while the actual occurrence of the fault is marked 
with the dotted line. The period between them is referred to as the 
propagation period. For faults 2 and 20 it can be observed. 
However, this is not the case with fault 4.  
3. Transition periods are defined as a periods between the 
occurrence of fault and its settling to the faulty steady state. This 
period is usually not long and some faults can even have 
transition period of length 0 (Figure 5-b). Accuracy during the 
transition period is critical for achieving low detection delay. 
Figure 5-d shows fault 2 as observed by sensor xmv6. The period 
between the occurrence of the fault (dotted line) and the steady 
fault state start (marker) is referred to as the transition period. 
Dem-Den Boosting parameters were selected as follows. Value of 
threshold T for sample removal was chosen using the same 
procedure used in [5]. We ran the algorithm for several values for 
T, and the best threshold value was chosen to be the one that gives 
the lowest classification error on the hold-out validation set (30% 
of Dtr). Choice of parameter σ is an important yet nontrivial task. 
Different fault dynamics may require different optimal σ values 
hence the choice of σ ideally should be data dependent. One 
solution is to develop adaptive method within a robustness 
constraint, such that the adaptive procedure does not over 
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emphasize short delays by sacrificing too much accuracy and also 
the maximum delay is also upper bounded by the minimum 
latency requirements. Developing such an adaptive scheme for 
choosing and updating σ is a part of our ongoing work. In this 
paper we use the following procedure for choosing σ. Several 
values of parameter σ were tested using the validation set such 
that the sum of g(t, tj

1) between tj
0 and tj

1 equals 5, 10, 50 or 100.  
The CART decision trees were used as base classifiers. A total of 
M = 20 boosting iterations were performed, where the maximum 
number of decision tree splits was set to 30. For easier evaluation 
we compared the methods on a fixed FPR. To set the FPR value, 
the committee prediction was regularized with a threshold π 

))((ˆ
1

M

m
testmm xfsigny  

(23) 

4.3 Experimental Results 
In Table 1 the Dem-Den Boost was compared to the baseline 
AdaBoost algorithm, as well as to a reduced version called Den 
Boost which only removes label noise without delay minimization. 
The comparison was carried out based on a test set Dtest consisting 
of 400,000 points. The multi-criterion performance was evaluated 
for each fault at FPR = 1%. The TPR was calculated using 10,000 
points for each fault, corresponding to a t-score of t0.05=1.645. 
Symbol ∞ is used if a fault cannot be detected. Average values do 
not include fault 3, 9 and 15 results. Bottom column shows 
statistical significance of Den and Dem-Den Boost TPR and DD 
improvement over AdaBoost in terms of paired t-test p-values. 

Table 1.  Performance Comparison at FPR = 1% 
 TPR (%) DD 

fault Ada Den Dem-Den Ada Den Dem-Den 
1 99.19 99.77 99.8 2.3 1.9 1.5 
2 97.1 98.35 98.41 16.2 14.5 13 
3 1.51 1.13 1.29 ∞ ∞ ∞ 
4 97.69 99.91 99.82 0.2 0 0 
5 87.07 99.27 98.98 2.4 0.2 0 
6 96.97 98.14 98.99 3.4 1.5 0 
7 97.92 99.75 99.46 0.3 0.2 0 
8 94.02 96.32 96.96 20.2 21 17 
9 1.83 1.35 1.3 ∞ ∞ ∞ 

10 61.48 73.6 74.89 26.4 21 18.2 
11 73.36 81.78 71.16 7.1 7.4 6 
12 97.16 98.55 98.59 7.8 6.1 5.1 
13 92.55 93.34 93.63 56.9 54.7 50.2 
14 96.91 99.55 99.47 0.9 0.6 0 
15 1.73 1.06 1.22 ∞ ∞ ∞ 
16 63.75 77.02 77.38 18.5 15 13.6 
17 91.3 93.51 93.64 23.9 23.1 19.3 
18 81.24 82.63 83.45 54.9 51.4 47.3 
19 43.66 70.36 71.21 10.8 3.9 2 
20 60.26 73.68 74.21 45.7 44.2 39.2 
avr 84.2 90.32 90.00 17.52 15.76 13.7 

p-value - 0.0043 0.0082 - 0.002 0.0001 

We can conclude that the Den Boost outperforms the original 
AdaBoost in both TPR and DD by locating and removing the 
noisy examples. The biggest TPR improvement was achieved on 
faults 5, 10, 11, 16, 19 and 20. These results confirm that the 
class-label noise removal component of our algorithm is 
beneficial. The results also confirm that by emphasizing the 
importance of early detection with cost function modification, 
Dem-Den Boost improves detection delay by approximately 4 
samples on average. The biggest improvement can be seen on 
faults 6, 10, 13, 19, 20. Notice that Dem-Den Boost also achieves 

better TPR than AdaBoost because of successful noise removal 
procedure that runs simultaneously with the detection delay 
minimization. Also, by conventional criteria (p-values), all the 
differences are considered to be very statistically significant. 
To present the results at different FPR levels, the fault detection 
performance metrics were utilized to form two curves – the 
Activity Monitoring Operating Characteristic (AMOC) [3] and the 
Receiver Operating Characteristic (ROC) curve. By sliding the 
threshold π from higher to lower values, the model increases its 
FPR. Figure 6 shows the performance comparison averaged over 
17 faults (faults 3, 9 and 15 are excluded), within the FPR range 
of 1-5%, which is the range of typical practical interest (high FPR 
would drastically reduce the usability of the system)  
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Figure 6. Performance Comparison 

The results suggest that the Dem-Den algorithm has the overall 
best performance in the observed range. Additional numerical 
experiments comparing Dem-Den Boost with SVM is on-going. 
Preliminary results show that at the same FPR level our algorithm 
achieves better DD, and with denoising, improves TPR on most of 
the faults as well. 

5. CONCLUSION 
This paper presented a novel supervised fault detection algorithm 
capable of improving fault detection accuracy and reducing 
detection time over the baseline AdaBoost algorithm. The results 
based on the benchmark Tennessee Eastman data demonstrate that 
the new approach achieves a significant overall improvement in 
detection delay and accuracy over the baseline approach. 
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