
A Boosting Method for Process Fault Detection with
Detection Delay Reduction and Label Denoising

Mihajlo Grbovic, Slobodan Vucetic
Department of Computer and

Information Sciences, Temple University
Philadelphia, PA 19122, USA

{mihajlo.grbovic, slobodan.vucetic}
@temple.edu

Weichang Li, Peng Xu, Adam K. Usadi
Corporate Strategic Research, ExxonMobil

Research and Engineering Company,
Annandale, NJ 08801, US

{weichang.li, peng.xu, adam.k.usadi}
@exxonmobil.com

ABSTRACT
In this paper we propose a novel fault detection algorithm for
process control and maintenance that builds an ensemble of
classifiers based on the modified AdaBoost technique. While
seeking for the best fault detection accuracy, our algorithm also
concentrates on reducing detection delay, which ensures safety
and timely equipment service. In addition, the new algorithm can
simultaneously detect and remove class-label noise in process
data. Training is performed via iteratively optimizing an
exponential cost function. The cost function also adaptively
changes at each iteration, such that (1) the importance of the fault
transition periods is increased to reduce the detection delay and
(2) noisy samples are removed from training data. The algorithm
was tested on a well known benchmark problem, the Tennessee
Eastman Process (TEP), and compared to the baseline AdaBoost
ensemble fault detector that does not pay specific attention to
minimization of the detection delay and noise removal.

Categories and Subject Descriptors

H.2.8 [Database applications]: Database Applications Data Mining

General Terms
Algorithms, Performance, Experimentation

Keywords
Fault Detection; Ensemble Learning; Boosting; Optimization

1. INTRODUCTION
Control and maintenance of complex manufacturing systems is an
essential task in order to support quality control and to ensure
safety. Timely detection of abnormal events and service
requirement symptoms is critical to effective and safe operation of
plant equipment. In general, fault detection algorithms can be
categorized into unsupervised and supervised ones. In
unsupervised algorithms such as principal component analysis [1]
and independent component analysis [4], normal operation is
modeled and faults are detected as deviations from the normal
behavior. In supervised algorithms such as support vector

machines and neural networks, a classifier is trained on historical
data containing both normal and faulty conditions. In this paper
we will concentrate on supervised methods that treat fault
detection as a binary classification problem.

The desirable characteristics of a fault detection algorithm include
low detection delay time, low false positive rate, and high
detection probability. Early detection provides invaluable warning
about emerging problems to avoid catastrophic consequences.
Low false positive rate ensures the usability of the detection
system. High detection accuracy is an essential requirement for
successful detection and tracking of fault events. These
performance metrics define an overall quality of any fault
detection system, although tradeoff between detection speed and
accuracy highly depends on specific applications.

Supervised classification algorithms in general minimize the
overall classification error only, without explicitly considering
detection delay. However, error minimization does not necessarily
ensure small detection delay. As the transition periods between
normal and faulty conditions are typically covered by a relatively
small fraction of training data, their error contribution could be
neglected at the expense of achieving high accuracy during the
steady-state periods of normal or faulty behavior. Simultaneous
minimization of detection error and detection delay is an
important open problem to be addressed in this paper.

Another issue common to supervised fault detection is related to
the quality of historical data annotation and the detectability of
various types of faults. In reality, labeling of process data can
often be inaccurate. In addition, certain types of faults might be
hard to detect or even completely unobservable by the installed
sensors. Similar could be said of the transition period between
normal and faulty condition, which could be undetectable at first,
due to slow fault propagation through the system. Labeling
undetectable faults and such transition periods as faults is similar
to mislabeling and can have an adverse effect on the accuracy.

In this paper, we propose a learning algorithm based on AdaBoost
which simultaneously minimizes detection delay, maximizes
accuracy, and is robust to inaccurate annotations. The idea is to
pose the fault detection problem as minimizing an adaptive loss
function which penalizes misclassification such that the
contribution from samples occurring during fault transition
periods is emphasized. It also removes samples estimated to be
noisy or undetectable. The model obtained as a result of
minimizing of such a loss function favors low detection delay and
is also robust to noisy labeling. Our experimental results show the
propose algorithm reduces detection delay while retaining high
accuracy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD4Service’11, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0842-7 …$10.00.

7

2. PRELIMINARIES
2.1 Problem Setup
We consider a plant monitored by a network of K sensors
providing measurements synchronously in regular time intervals.
At time i, the measurement at the k-th sensor is represented by a
row vector variable xi

k of length dk. Combining all K sensors
forms a single row vector xi = [xi

1, xi
2,…, xi

K] whose length is
K
k kdd 1 . The true plant state at time i is denoted as yi {–

1, +1}. Here –1 represents normal process condition; +1 presents
a faulty state. We assume N samples of historical data are
collected in a data set D = {(xi, yi), i =1…N} for developing the
fault detection model.
The classification of the system state at time i is denoted by ŷi.
The goal is to build a single classification function h: xi → yi from
the data set D that accurately and timely detects faults in real time.

2.2 Fault Detection Performance Measures
Several metrics are typically used to evaluate the performance of
fault detection algorithms. Assume that a labeled sequence of
observations Dtest is available for performance evaluation which
consists of both normal and faulty conditions and is disjoint from
the training data set. Assume Dtest contains J fault occurrences.

The true positive rate (TPR) is defined as
,100)/(11 NnTPR (1)

where n1 is the number of correctly detected faulty samples and N1
is the total number of faulty samples in Dtest.
The false positive rate (FPR) is given by,

,100)/(00 NnFPR (2)
where n0 is the number of misclassified normal condition samples
and N0 is the total number of normal condition samples in Dtest.
The detection delay DDj for the j-th faulty occurrence from Dtest is
defined as the delay between tj

0, the introduction time of the fault
and its detection time tj

1
, i.e.,

.01
jjj ttDD (3)

The average detection delay DD for all fault occurrences in Dtest is

./
1

J

j
j JDDDD

(4)

In Figure 1 a subset of the training data set Dtest is shown, where
the flat line is the true label and the dotted line is outcome from
the fault detection model. It illustrates the detection delay region
as well as examples of false positive and false negative predictions.

–1

1

y

t

DDfalse
positive

false
negative

True
Predicted

0 Ltj
0 tj

1

Figure 1. Illustration of detector performance during a fault

2.3 The AdaBoost Algorithm
The AdaBoost algorithm is formulated in [6] as an ensemble of
base classifiers trained in a sequence using weighted versions of
the training data set. At each iteration, it increases the weights of
examples which were misclassified by the previously trained base
classifiers. Final classifier is defined as a linear combination of all
base classifiers. While AdaBoost has been developed using
arguments from the statistical learning theory, it has been shown

[7] that it can be interpreted as fitting an additive model through
an iterative optimization of an exponential cost function.

Given: Data set D = {(xi , yi), i = 1…N}, initial data weight
coefficients wi

0 = 1/N, number of iterations M

FOR m = 0 TO M 1
(a) Fit a classifier fm+1(x) to training data by minimizing

))((
1

11

N

i
imi

m
im xfyIwJ (5)

 (b) Evaluate the quantities:
N

i

m
i

N

i
imi

m
im wxfyIw

11
11 /))((

(6)

 and then use these to evaluate

1

1
1

1ln
m

m
m

(7)

(c) Update the example weights
))((1 11 imim xFyIm

i
m
i eww (8)

END
Make predictions for new point xtest using:

))((ˆ
1

M

m
testmm xfsigny

(9)

Figure 2. AdaBoost algorithm

For a two-class classification setup, let us consider the
exponential cost function defined as

,
1

)(
N

i

xFy
m

imieE (10)

where Fm (x) is the current additive model defined as a linear
combination of m base classifiers produced so far,

,)()(
1

m

j
jjm xfxF

(11)

the base classifier fj(x) can be any classification model with output
values +1 or –1 and αj are constant multipliers called the
confidence parameters.

Given the additive model Fm(x) at iteration m – 1 the objective is
to find an improved one, Fm+1(x) = Fm(x) + αm+1·fm+1(x), at iteration
m. The cost function can be expressed as

,
1

)(

1

))()((
1

1111
N

i

xfym
i

N

i

xfxFy
m

immiimmimi eweE
(12)

where
,)(imi xFym

i ew (13)

are called the example weights. By rearranging Em+1, we can
obtain an expression that leads to the familiar AdaBoost
algorithm,

.))(()(
11

11
111

N

i

m
i

N

i
imi

m
im wexfyIweeE mmm

(14)

where I(yi ≠ fm+1(xi)) is an indicator function which equals 1 if i-th
example is misclassified by fm+1 and 0 otherwise. For fixed αm+1,
classifier fm+1(x) can be trained by minimizing (14). Since αm+1 is
fixed, the second term is constant and the multiplication factor in
front of the sum in the first term does not affect the location of
minimum, the base classifier can be found as
fm+1(x) = arg minf(x) Jm+1, where Jm+1 is defined as the weighted
error function (5). Once the training of the new base classifier
fm+1(x) is finished, αm+1 can be determined by minimizing (14)

8

assuming fm+1(x) is fixed. By setting ∂Em+1/∂αm+1 = 0 the closed
form solution can be derived as (7), where εm+1 is defined as in
(6). After we obtain fm+1(x) and αm+1, before continuing to round
m + 1 of the boosting procedure and training of fm+2, the example
weights wi

m have to be updated. By making use of (13), weights
for the next iteration can be calculated as (8). Thus, weight wi

m+1
depends on the performance of all previous base classifiers on i-th
example. The procedure of training an additive model by stage-
wise optimization of the exponential function is executed in
iterations, each time adding a new base classifier. The resulting
learning algorithm is identical to the familiar AdaBoost algorithm
summarized in Figure 2.

In the next section, we introduce a new algorithm for joint
detection delay and classification error minimization, which is
also able to detect class-label noise. The algorithm naturally
extends AdaBoost by changing the cost function at each iteration
based on detection delay performance during the previous iteration

3. DEM-DEN BOOST
(De)lay (m)inimization and (De)-(n)oising Boosting algorithm is
derived by introducing an additional multiplier into the original
AdaBoost cost function,

.)(

Di

xFy
im

imiegE (15)

Function gi allows us to increase the penalty of wrong predictions
for each sample separately. A default value of gi = 1, for all
i = 1…N corresponds to the original AdaBoost cost function.
Minimizing the detection delay is achieved by increasing the
penalty of wrong predictions (achieved by assigning high gi value)
for examples within the fault transition region. Our algorithm
modifies gi values after each iteration, which creates a need to
optimize slightly different cost function Em after each iteration.
AdaBoost is very appropriate for this setup, because we can
utilize the existing ensemble when constructing a new fault
detection classifier on the modified cost function.

Let us assume that up to iteration m an AdaBoost committee with
m base classifiers Fm(x) has been trained by minimizing

.)(

Di

xFyold
i

old
m

imiegE (16)

Upon the change of g in iteration m, the cost function changes to
.)(

Di

xFynew
i

new
m

imiegE (17)

Before proceeding to finding a new base classifier fm+1 and its
confidence parameter αm+1 there are two changes one should make
to adapt to the cost function change:
1. Confidence Parameter Update. The first task involves
updating confidence parameters αk, k = 1…m, in such way that
they now minimize (17) for fixed fk, k = 1…m. This can be
achieved by updating the existing αk, k = 1…m, using the gradient
descent algorithm αk

new
 = αk

old
 η· Em

new/ αk
old, where is the

learning rate. Following this, the confidence parameters for all m
base classifiers can be updated as

.)(1
)(

Di

xfy

iki
new
i

old
k

new
k

m

j
ij

old
ji

exfyg

(18)

2. Example Weight Update. The second task involves calculating
the example weights for training of fm+1. With addition of the new
base classifier, Fm+1(x) = Fm(x) + αm+1·fm+1(x), the resulting
ensemble’s cost function can be expressed as

,
1

)(

1

))()((
1

1111
N

i

xfym
i

N

i

xfxFynew
im

immiimmimi ewegE (19)

where
)(imi xFynew

i
m
i egw (20)

represent the example weights for training fm+1. Training a new
base classifier fm+1 is conducted in the same manner as in the
regular AdaBoost by minimizing the new cost function in a way
that optimally utilizes the existing boosting ensemble. After
recalculating the example weights using (20), minimizing (18)
with respect to fm+1 and αm+1 leads to familiar equations (5) and (7)
Adapting g(·). Minimization of detection delay is carried out
using the multiplier function g. As explained in 2.2, data D
consists of J fault occurrences. In each sequence {(xt, yt),
t = 1…L}j, j = 1…J, the fault is introduced at sample tj

0 and is
removed at sample L (Figure 1). We will define function gi,
i=1…N for each sequence separately.
Let us consider the j-th fault occurrence sequence from D and
assume the ensemble Fm built up to m-th iteration detects the fault
at sample tj

1. We define g(t, tj
1) at iteration m for sequence j as

,
,1

,1),(101

1

otherwise

tttettg jj

tt

j
new

j

(21)

where σ is the detection delay punishment level parameter to be
appropriately selected. Figure 3 illustrates how function g(t, tj

1) is
formed for a j-th faulty sequence based on Fm predictions.

–1

1

y

ttj
0 tj

1

DD

1

g(t, tj
1)

True
Fm(x) Prediction

0

0

L

ttj
0 tj

1 L

Δ

Figure 3. Function g(t, tj1) for a j-th fault occurrence sequence

As we can observe function g(t, tj
1) additionally increases the

weights of examples falling within the Fm detection delay region
(high gi value). Specifically, the examples right before the fault
detection time tj

1 by the current model Fm will receive the highest
additional weight increase. The examples outside the region,
including tj

1, will not receive any additional weight increase
(default gi value). These actions ensure that the algorithm will
attempt to further reduce the detection delay in the next iteration.

Removal of Class-Label Noise. To deal with mislabeled fault
sequences, we propose a de-noising procedure similar to the
method proposed in [5] where the authors identify outliers during
AdaBoost realization as points whose weights become larger than
a certain threshold T. In [5], the weights of the detected outliers
are set to zero and the boosting procedure continues to the next
iteration. However, the weights of the remaining examples are not

9

updated to reflect this change, which could lead to a deteriorated
performance in further boosting iterations. Also, the cost function
Em changes with removal of examples. Such change requires
updating of the confidence parameters, which was not considered.
In our implementation, the examples are removed when their
weights exceed the threshold T, which is followed by confidence
parameter update (18) and example weight recalculation (20). To
include class-label noise removal procedure, we modified function
g in such way that it accounts for examples whose weights extend
over the threshold value T,

.

,1

),,(/,0

,1

),,(1

10

1

1

otherwise

Twttgw

ttte

wttg j
old

jj

tt

j
new

j

(22)

Setting the i-th example cost function multiplier gi to zero has the
same effect as setting its weight wi to zero (20).
The summary of Dem-Den Boost algorithm is shown in Figure 4.

Given: Data set D = {(xi, yi), i = 1…N}, consisting of J fault
occurrence sequences, initial data weight coefficients wi

0 = 1/N,,
number of iterations M, threshold T, penalty parameter σ
FOR m = 0 TO M–1
(a) Fit a classifier fm+1(x) to training data by minimizing (5)
(b) Evaluate the quantities εm+1 (6) and αm+1 (7)
(c) Find tj

1 for each fault sequence using Fm+1 fault detector
(d) Determine gi

new(t, tj
1, wi), i = 1…N for each fault sequence (22)

(e) Update αk , k = 1...m using (18) (possibly until convergence)
(f) Calculate example weights for the next iteration using

)(1 1 imi xFynew
i

m
i egw , i D

END
Make Predictions using (9)

Figure 4. Dem-Den Boost Algorithm

4. EXPERIMENTS
4.1 Tennessee Eastman Process (TEP)
The proposed boosting method was evaluated on a well-known
benchmark problem, the Tennessee Eastman Industrial Challenge
Problem [2], which was created to provide a realistic simulator of
an industrial process in order to evaluate process control methods.
A large number of fault detection approaches [1, 4] were tested on
TEP. The process has 53 variables including 22 process, 19
analyzer and 12 manipulated variables. In our research, all 19
analyzer measurements are excluded as well as the manipulated
variable representing agitator speed, which is constant in all
simulation runs. For details about variables see [1].
TEP has 20 identified faults. They range from faults that are
relatively easy to detect without any delay (e.g., fault 1 and 4) due
to significant and clear deviation from normal conditions with fast
transition, to faults that are relatively easy to detect but require a
certain amount of time to propagate through the plant before they
become detectable (e.g., fault 17 and 18), to faults that are
extremely hard to detect due to their subtleness (faults 3, 9, 15).

4.2 Experimental Setup
The training data set Dtr = {(xi, yi), i = 1…N, yi {−1, +1}}
consists of sequences in which normal and faulty data
interchange. Specifically, four separate data sequences, each of
length L = 1,000 samples, were generated for each of the 20 TEP

faults, where the fault was introduced at time t0 = 501. In this way,
a total of N = 80,000 samples were generated for the training data.
For the purposes of evaluation, we generated test data set Dtest
consisting of ten sequences of length L = 2,000 for each of the 20
faults, where the fault was introduced at the 1001st sample point.
The TEP data annotation simulates the human annotation by
providing imperfect, noisy data labeling. The following situations
in TEP data sequences can cause problems for supervised training.

0 250 501 750 1,0000.15

0.2

0.25

0.3

0.35

Example

xm
ea

s
1

FAULT 3

0 250 501 750 1,000

40

42

44

46

Example

xm
v1

0

FAULT 4

 (a) (b)

0 250 501 750 1,000
315

320

325

330

335

340

345

Example

xm
ea

s
20

FAULT 20

0 250 501 750 1,00030

40

50

60

70

80

90

Example

xm
v6

FAULT 2

 (c) (d)

Figure 5. Faults introduced by TEP at sample 501 (flat line)

1. Subtle faults are faults of such small intensity that it is very
hard, or impossible, to distinguish them from normal operating
conditions. Labeling these conditions as faults and using them for
training corresponds to introducing class label noise and will
reflect in reduced overall accuracy. Figure 5-a shows TEP sensor
xmeas1 sequence of length 1,000 in which fault 3 is introduced at
501th sample. As it can be observed, deviation from normal
conditions is absent. This behavior is consistent in all sensors.
2. Propagation periods can occur when there is a delay between
introduction of a fault by the TEP simulator and its visible effects
in the process. Some faults have especially long propagation
periods. Labeling these long propagation periods as faults can
have similar adverse effects as the undetectable faults. In Figure 5,
fault introduction and annotation by the simulator is marked with
the flat line, while the actual occurrence of the fault is marked
with the dotted line. The period between them is referred to as the
propagation period. For faults 2 and 20 it can be observed.
However, this is not the case with fault 4.
3. Transition periods are defined as a periods between the
occurrence of fault and its settling to the faulty steady state. This
period is usually not long and some faults can even have
transition period of length 0 (Figure 5-b). Accuracy during the
transition period is critical for achieving low detection delay.
Figure 5-d shows fault 2 as observed by sensor xmv6. The period
between the occurrence of the fault (dotted line) and the steady
fault state start (marker) is referred to as the transition period.
Dem-Den Boosting parameters were selected as follows. Value of
threshold T for sample removal was chosen using the same
procedure used in [5]. We ran the algorithm for several values for
T, and the best threshold value was chosen to be the one that gives
the lowest classification error on the hold-out validation set (30%
of Dtr). Choice of parameter σ is an important yet nontrivial task.
Different fault dynamics may require different optimal σ values
hence the choice of σ ideally should be data dependent. One
solution is to develop adaptive method within a robustness
constraint, such that the adaptive procedure does not over

10

emphasize short delays by sacrificing too much accuracy and also
the maximum delay is also upper bounded by the minimum
latency requirements. Developing such an adaptive scheme for
choosing and updating σ is a part of our ongoing work. In this
paper we use the following procedure for choosing σ. Several
values of parameter σ were tested using the validation set such
that the sum of g(t, tj

1) between tj
0 and tj

1 equals 5, 10, 50 or 100.
The CART decision trees were used as base classifiers. A total of
M = 20 boosting iterations were performed, where the maximum
number of decision tree splits was set to 30. For easier evaluation
we compared the methods on a fixed FPR. To set the FPR value,
the committee prediction was regularized with a threshold π

))((ˆ
1

M

m
testmm xfsigny

(23)

4.3 Experimental Results
In Table 1 the Dem-Den Boost was compared to the baseline
AdaBoost algorithm, as well as to a reduced version called Den
Boost which only removes label noise without delay minimization.
The comparison was carried out based on a test set Dtest consisting
of 400,000 points. The multi-criterion performance was evaluated
for each fault at FPR = 1%. The TPR was calculated using 10,000
points for each fault, corresponding to a t-score of t0.05=1.645.
Symbol ∞ is used if a fault cannot be detected. Average values do
not include fault 3, 9 and 15 results. Bottom column shows
statistical significance of Den and Dem-Den Boost TPR and DD
improvement over AdaBoost in terms of paired t-test p-values.

Table 1. Performance Comparison at FPR = 1%
 TPR (%) DD

fault Ada Den Dem-Den Ada Den Dem-Den
1 99.19 99.77 99.8 2.3 1.9 1.5
2 97.1 98.35 98.41 16.2 14.5 13
3 1.51 1.13 1.29 ∞ ∞ ∞
4 97.69 99.91 99.82 0.2 0 0
5 87.07 99.27 98.98 2.4 0.2 0
6 96.97 98.14 98.99 3.4 1.5 0
7 97.92 99.75 99.46 0.3 0.2 0
8 94.02 96.32 96.96 20.2 21 17
9 1.83 1.35 1.3 ∞ ∞ ∞

10 61.48 73.6 74.89 26.4 21 18.2
11 73.36 81.78 71.16 7.1 7.4 6
12 97.16 98.55 98.59 7.8 6.1 5.1
13 92.55 93.34 93.63 56.9 54.7 50.2
14 96.91 99.55 99.47 0.9 0.6 0
15 1.73 1.06 1.22 ∞ ∞ ∞
16 63.75 77.02 77.38 18.5 15 13.6
17 91.3 93.51 93.64 23.9 23.1 19.3
18 81.24 82.63 83.45 54.9 51.4 47.3
19 43.66 70.36 71.21 10.8 3.9 2
20 60.26 73.68 74.21 45.7 44.2 39.2
avr 84.2 90.32 90.00 17.52 15.76 13.7

p-value - 0.0043 0.0082 - 0.002 0.0001

We can conclude that the Den Boost outperforms the original
AdaBoost in both TPR and DD by locating and removing the
noisy examples. The biggest TPR improvement was achieved on
faults 5, 10, 11, 16, 19 and 20. These results confirm that the
class-label noise removal component of our algorithm is
beneficial. The results also confirm that by emphasizing the
importance of early detection with cost function modification,
Dem-Den Boost improves detection delay by approximately 4
samples on average. The biggest improvement can be seen on
faults 6, 10, 13, 19, 20. Notice that Dem-Den Boost also achieves

better TPR than AdaBoost because of successful noise removal
procedure that runs simultaneously with the detection delay
minimization. Also, by conventional criteria (p-values), all the
differences are considered to be very statistically significant.
To present the results at different FPR levels, the fault detection
performance metrics were utilized to form two curves – the
Activity Monitoring Operating Characteristic (AMOC) [3] and the
Receiver Operating Characteristic (ROC) curve. By sliding the
threshold π from higher to lower values, the model increases its
FPR. Figure 6 shows the performance comparison averaged over
17 faults (faults 3, 9 and 15 are excluded), within the FPR range
of 1-5%, which is the range of typical practical interest (high FPR
would drastically reduce the usability of the system)

1 2 3 4 511

12

13

14

15

16

17

18
AMOC

FPR (%)

D
D

1 2 3 4 584

86

88

90

92

94 ROC

FPR (%)

TP
R

 (%
)

AdaBoost
DenBoost
DemDenBoost

AdaBoost
DenBoost
DemDenBoost

Figure 6. Performance Comparison

The results suggest that the Dem-Den algorithm has the overall
best performance in the observed range. Additional numerical
experiments comparing Dem-Den Boost with SVM is on-going.
Preliminary results show that at the same FPR level our algorithm
achieves better DD, and with denoising, improves TPR on most of
the faults as well.

5. CONCLUSION
This paper presented a novel supervised fault detection algorithm
capable of improving fault detection accuracy and reducing
detection time over the baseline AdaBoost algorithm. The results
based on the benchmark Tennessee Eastman data demonstrate that
the new approach achieves a significant overall improvement in
detection delay and accuracy over the baseline approach.

6. REFERENCES
[1] Chiang L. H., Russell E., and Braatz R. D. 2001. Fault

detection and diagnosis in industrial systems, Springer
[2] Downs D.D., Vogel E.F. 1993. A plant-wide industrial

process control problem, Computers & Chemical
Engineering, 17, 3 (March. 1993) 245-255.

[3] Fawcett T., Provost F. 1999. Activity monitoring: noticing
interesting changes in behavior, ACM SIGKDD 53-62.

[4] Leea J. M, Yoob C. K. and Leea I-B. 2004. Statistical
monitoring of dynamic processes based on dynamic
independent component analysis, Chemical Engineering
Science, 59, 14 (July 2004) 2995-3006.

[5] Karmaker A., Kwek S. 2006. A boosting approach to remove
class label noise, International Journal of Hybrid Intelligent
Systems, 3, 3 (August 2006) 169-177.

[6] Freund Y., Schapire R. E. 1996, Experiments with a new
boosting algorithm, International Conference on Machine
Learning, (July 1996) 148-156.

[7] Friedman J., Hastie T., Tibshirani R. 2000, Additive logistic
regression: a statistical view of boosting, The Annals of
Statistics, 28, 2 (April 2000) 337-407.

11

