
D
a

M
a

b

a

A
R
R
A
A

K
F
F
D
D

1

c
T
l
t
p
r
t
a
o
b
a
b
p
[
m
t
V
(
b

d
o

0
d

Journal of Process Control 22 (2012) 738– 750

Contents lists available at SciVerse ScienceDirect

Journal  of  Process  Control

j ourna l ho me pag e: www.elsev ier .com/ locate / jprocont

ecentralized  fault  detection  and  diagnosis  via  sparse  PCA  based  decomposition
nd  Maximum  Entropy  decision  fusion

ihajlo  Grbovica,∗,  Weichang  Lib, Peng  Xub,  Adam  K.  Usadib,  Limin  Songb, Slobodan  Vucetica

Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 2 April 2011
eceived in revised form 6 February 2012
ccepted 7 February 2012

a  b  s  t  r  a  c  t

This  paper  proposes  an approach  for  decentralized  fault  detection  and  diagnosis  in process  monitor-
ing sensor  networks.  The  sensor  network  is decomposed  into  multiple,  potentially  overlapping,  blocks
using  the  Sparse  Principal  Component  Analysis  algorithm.  Local  predictions  are  generated  at  each  block
using Support  Vector  Machine  classifiers.  The  local  predictions  are  then  fused  via a  Maximum  Entropy
vailable online 16 March 2012

eywords:
ault detection
ault diagnosis
ecentralized process monitoring

algorithm.  Empirical  studies  on the  benchmark  Tennessee  Eastman  Process  data  demonstrated  that  the
proposed  decentralized  approach  achieves  accuracy  comparable  to  that  of  the  fully  centralized  approach,
while offering  benefits  in  terms  of  fault  tolerance,  reusability,  and  scalability.

© 2012 Elsevier Ltd. All rights reserved.
ecision fusion

. Introduction

Timely fault detection in complex manufacturing systems is
ritical to ensure safe and effective operation of plant equipment.
he quantifiable objectives of fault detection include achieving
ow detection delay time, low false positive rate, and high detec-
ion rate. Early detection provides invaluable warning on emerging
roblems to avoid catastrophic consequences. Low false positive
ate ensures the usability of the detection system. High detec-
ion probability is an essential requirement for successful detection
nd tracking of fault events. These performance metrics define an
verall quality of any fault detection system, although tradeoff
etween detection speed and accuracy highly depends on specific
pplications. In general, data-driven fault detection algorithms can
e categorized into unsupervised and supervised ones. In unsu-
ervised algorithms, such as Principal Component Analysis (PCA)
4,11,14] and Independent Component Analysis (ICA) [13,15], nor-

al  operation is modeled and faults are detected as deviations from
he normal behavior. In supervised algorithms, such as Support
ector Machines (SVMs) [12], AdaBoost [48] and Neural Networks

NN) [11], a binary classifier is trained on historical data containing
oth normal and faulty conditions and then used to predict faults.
Once a fault has been detected, diagnosis of its type is con-
ucted for the purpose of fault mitigation and returning to normal
peration. Fault diagnosis is effectively a multi-class classification

∗ Corresponding author.
E-mail address: mihajlo.grbovic@temple.edu (M.  Grbovic).

959-1524/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2012.02.003
problem of predicting a specific fault type given a pool of known
alternatives. Various machine learning algorithms, such as Fisher
Discriminant Analysis [3,18],  PCA [30,31],  SVM [18,17],  Learning
Vector Quantization (LVQ) [21] and Neural Networks [16] have
been used for this purpose. In this paper, the term fault classifica-
tion is used to describe supervised methods for joint fault detection
and diagnosis.

An alternative to the data-driven fault detection and diagnosis
approach is the model-driven approach [33] that requires accurate
process modeling by semi-quantitative or qualitative models.

For small-scale sensor networks, it is reasonable to assume that
all sensor measurements are sent to some central location where
fault predictions are made. This is known as a centralized fault
detection and diagnosis approach. For large scale networks, due to
various constraints, such as communication bandwidth, the decen-
tralized approach is often used [28], where network is decomposed
into potentially overlapping blocks and each block provides local
decisions that are fused at the central location. The appealing
properties of the decentralized approach include fault tolerance,
reusability and scalability. For example, when one or more blocks
go offline due to maintenance of their sensors, the predictions can
still be made using remaining sensors. In addition, when the phys-
ical facility is reconfigured, either by changing its components or
sensors, it can be easier to modify part of the decentralized system
impacted by the changes than to overhaul the whole centralized

system. Finally, the scalability comes from reduced costs of system
setup and update, communication, and decision making.

Decentralized process monitoring has been subject of active
research in recent years [19,47,49].  Main challenges include correct

dx.doi.org/10.1016/j.jprocont.2012.02.003
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:mihajlo.grbovic@temple.edu
dx.doi.org/10.1016/j.jprocont.2012.02.003


M. Grbovic et al. / Journal of Proces

Nomenclature

N number of samples in data set
K number of sensors in the system
B number of blocks
xi input row vector of all K sensors data at time i,

xk
i
∈ R1×d

X input data matrix X ∈ RN×d

xb
i

b-th block input row vector at time i, xk
i
∈ R1×db

Xb b-th block data matrix Xb =
[(xb

1)
T
, (xb

2)
T
, . . . , (xb

N)
T
]
T

xk
i

k-th sensor input data row vector at time i, xk
i
∈ R1×dk

l number of lagged variables
yi output (system state) at time i
ŷi prediction of system state at time i
ŷi vector of B local predictions at time i, ŷi =

[ŷ1
i
, ŷ2

i
, . . . , ŷB

i
]

ŷb b-th block prediction at time i (hard, e.g. ŷb = 4 or
soft)

ŷb
i(c) b-th block soft prediction for fault c

C number of process faults
C set of all known faults C = {1, . . .,  C}
Cb set of faults detectable by the b-th block
S covariance matrix of X
V eigenvectors of S, V = [v1, v2, . . .,  vd]
� eigenvalues of S corresponding to V
a number of most dominant eigenvectors
Vb b-th block eigenvectors from local data matrix Xb
�b local eigenvalues corresponding to Vb

U sparse eigenvector matrix U = vvT

r allowed number of non-zero eigenvector elements
(Sparse PCA)

fm m-th feature function (rule)
ω m-th feature function weight (confidence)

p
d
i
d
i
d
b
p

I
l
I
t
c
u
f
i
a
f
i
t
t
D

d
S
s

m

� parameter controlling the strength of regularization

rocess decomposition and decision fusion. Two  types of process
ecomposition have been considered: (1) a completely decentral-

zed decomposition [37,39,41],  in which each sensor is a separate
ecision maker, and (2) a multi-block decentralized decomposition,

n which sensors are grouped into meaningful overlapping [35] or
isjoint [19] blocks. For example, in several recent papers on multi-
lock decentralized models, the decomposition was  based on the
rocess topology [19,25,27–29,40,42] or prior knowledge [26,35].

Various local decision fusion strategies have been investigated.
n some cases the system declares a fault if it is observed at any
ocation [19,27,29,42], without requiring explicit decision fusion.
n most cases of decentralized detection and diagnosis, however,
his is done by combining the received binary [6,37,39,45], multi-
lass [43] or continuous [38,44,46] messages from local detectors
sing different fusion strategies. Most popular multi-class decision
usion strategies are described in a survey paper [36]. For instance,
n voting-based fusion, the winner is the class with the sufficient
nd highest number of expert votes. In weighted voting-based
usion, each expert receives a class-specific weight proportional to
ts classification accuracy on the training set or a separate valida-
ion set and the class with the maximum total weight is considered
he winner. The survey [36] also covers Bayesian-based fusion and
empster–Shafer decision fusion.
In this paper, we propose a decentralized fault detection and
iagnosis model based on Sparse PCA process decomposition, local
VM classifiers and Maximum Entropy (MaxEnt) [23,24] deci-
ion fusion. The sensors are partitioned into small and potential
s Control 22 (2012) 738– 750 739

overlapping blocks based on the Sparse PCA [32] algorithm which
preserves strong correlations among sensors. Given user generated
rules for decision making, the MaxEnt algorithm allows efficient
learning of their importance from data, which leads to more con-
sistent fusion. The proposed model was  compared to several other
process decomposition and decision fusion strategies. The evalu-
ation was performed using data from the benchmark Tennessee
Eastman Process [2].

2. Preliminaries

2.1. Problem setup

We  consider a plant monitored by a network of K sensors provid-
ing measurements synchronously in regular time intervals. At time
i, state of the k-th sensor is represented by a row vector of variables
xk

i
. There are many ways to construct this vector. For example, one

can use only the raw measurement at time i, the set of raw measure-
ments at the most recent l time steps, or derive variables from the
current and recent raw measurements. Combining all K sensors, we
have row vector xi = [x1

i
, x2

i
, . . . , xk

i
]. We  denote with d the length

of the resulting vector. The process condition at time i is denoted
with class label yi ∈ {0, 1, . . .,  C}, where 0 represents normal con-
dition, and values 1 to C present one of the C potential faults. We
assume that N historical observations are collected in form of a data
set D = {(xi, yi), i = 1, . . .,  N}.

In fault detection, all faulty classes are treated as a single class
and the resulting problem is analogous to binary classification. In
fault diagnosis, the problem is multi-class, with C + 1 classes. There-
fore, fault detection can be considered as a special case of fault
diagnosis. We  denote by ŷi the prediction of the process state at
time i.

Centralized approach: All observations xi = [x1
i
, x2

i
, . . . , xk

i
] are

available at the central location where fault classification is per-
formed. In this case, the objective is to train a single classification
function h: xi → yi from data set D = {(xi, yi), i = 1, . . .,  N}.

Decentralized approach: The sensor network is partitioned into
B potentially overlapping blocks, with the b-th block containing Kb
sensors. Let us denote xb

i
as the input vector for the b-th block at

time i. For example, in the completely decentralized scenario there
are K blocks, each containing variables from a single sensor (Kb = 1).
Let us denote by ŷb

i
the local classification for the b-th block at

time i. Local fault classifier for the b-th block, hb: xb
i

→ yi, is trained
using local data set Db = {(xb

i
, yi), i = 1, . . .,  Nb} that is a subset of D.

The local decisions at time i ŷb
i
, b = 1, . . .,  B, are transmitted to the

fusion center where they are combined into a single, final decision
ŷi. The decision fusion model is trained using historical data of the
form F = {(ŷi, yi), i = 1, . . .,  N}, where yi is a true class label at time i
and ŷi is a vector containing B local decisions, ŷi = [ŷ1

i
, ŷ2

i
, . . . , ŷB

i
],

at time i.

2.2. Performance measures

To evaluate performance of fault classification models trained
using D, we assume that a set of labeled observations Dtest, disjoint
from D, is available consisting of both normal and faulty conditions.
The data set Dtest is assumed to contain J fault occurrences. Fig. 1
summarizes the measures used to evaluate performance of a fault
classification model. The true positive rate, TPR, is defined as

n1
TPR =
N1

· 100, (1)

where n1 is the number of correctly classified faulty samples and
N1 is the total number of faulty samples in Dtest.



740 M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750

1

y

0 1

DD
false

positive

wron g
classification

True
Predicte d

3
CD

2

2

F

w
D

f

a

D

T
d

D

b
c
d

t

C

T
i

C

I
u
m
a

a
a
i
w

3

f
w
n
i
b
i
o

1

2

K

23

24

.

.

.

.

.

.

xi
1

xi
2

xi
23

xi
24

xi
d

central
location i

Centralized Fault  Detecti on
and  Diagno sis Model
tt t0 Lt

Fig. 1. Subsample of Dtest that contains a faulty event j: true vs. predicted.

The false positive rate, FPR, is given as

PR = n0

N0
· 100, (2)

here n0 is the number of misclassified normal data samples from
test and N0 is the total number of normal samples in Dtest.

We define the detection delay DDj for the j-th faulty occurrence
rom Dtest as the delay between t0

j
, the introduction time of the fault,

nd its detection time t1
j

, i.e.

Dj = t1
j − t0

j . (3)

he average detection delay DD for all fault occurrences in Dtest is
efined as

D =
J∑

j=1

DDj

J
.  (4)

In addition to fault detection delay, we also consider the delay
etween fault detection and correct classification. We  define the
lassification delay CDj for the j-th faulty occurrence from D as the
elay between its detection time t1

j
and its correct classification

ime t2
j

,

Dj = t2
j − t1

j . (5)

he average classification delay CD for all fault occurrences in Dtest

s

D =
J∑

j=1

CDj

J
.  (6)

n general, CDj /= 0, as it takes a certain time for a fault to develop its
nique pattern differentiable from those of other faults. These four
etrics are all critical performance indicators of a fault detection

nd diagnosis model.
In Fig. 1, a subset of the training data set Dtest used to evaluate the

bove performance metrics is shown. The flat line is the true label,
nd the dotted line is an example fault classification. The figure
llustrates the detection delay and classification delay intervals, as

ell as examples of false positive and false negative predictions.

. Centralized fault detection and diagnosis

This section reviews several typical approaches for centralized
ault detection and diagnosis. They will be used for comparison
ith the proposed decentralized solutions. In addition, the tech-

iques reviewed here will be used to construct the local classifiers

n our decentralized model. A good review of the related work can
e found in [1].  Fig. 2 shows a typical block diagram for a central-

zed fault detection and diagnosis model. In the following, we  will
verview both unsupervised and supervised centralized methods.
Fig. 2. Centralized fault classification approach.

3.1. Unsupervised fault detection methods

In the unsupervised approach, faults are detected as observa-
tions that deviate from the modeled normal behavior. Some of
the popular unsupervised fault detection methods include PCA and
ICA-based approaches. They are threshold-based approaches that
input the observation vector and output a single number represent-
ing deviation from the normal behavior. The threshold is typically
set such that the false positive rate is small (in the range between
1% and 5%).

The PCA-based approach [5] has been extensively studied and
employed for fault detection. PCA projects the observation to a
lower dimensional subspace, which describes most of the variance
of the normal data. Given training data consisting of N normal con-
dition observations, let us define N × d matrix X = [xT

1, xT
2, . . . , xT

N]
T
,

where xi is the i-th observation d-dimensional row vector. Then, the
principal components are found using eigenvalue decomposition of
the covariance matrix S,

S = 1
N − 1

XT X = V�VT , (7)

where the columns of V = [v1, v2, . . .,  vd] are the eigenvectors of S
and the diagonal elements of � are its eigenvalues. Two  types of
statistics were traditionally used in PCA-based process monitoring;
namely, Hotelling’s T2 statistic [5] and the squared prediction error
(SPE) statistic [5].  The T2 statistic measures size of vector xi in the
subspace of typical behavior. More specifically,

T2(i) = xi
T Va�−1

a VT
a xi, (8)

where Va is a set of the a (a < d) most dominant eigenvectors of S and
�a is the diagonal matrix of the corresponding eigenvalues. Param-
eter a is directly related to the percentage of variance retained in
the normal condition data.

The SPE statistics is a measure of the amount of variation in the
residual subspace, spanned by the d − a smallest principal compo-
nents, and is defined as

SPE(i) = xT
i Vd−aVT

d−axi. (9)

In PCA-based fault detection, fault is reported if the value of T2

statistic exceeds its threshold or the value of SPE statistic exceeds
its threshold, both determined by desired FPR.

3.2. Supervised fault detection and diagnosis methods

Supervised methods, such as SVM, Neural Networks and LVQ

that use historical normal and faulty conditions to train a classifier
are appropriate for both fault detection [4,11,18] and fault diag-
nosis [12,16,17,21]. The advantage of the supervised methods is in
their ability to explicitly utilize historical information about faulty



rocess Control 22 (2012) 738– 750 741

c
f
d
w
a
c

.
a
t
fi
t
d
t
r
l

w
f
t
P

w
s

u

g

w
m

i
c
[
o
e
i
a
c
c
c
b
fi

o
a
e

4

m
s
i
o

1

2

K

22

23

24

.

.

.

.

.

.

xi
1

xi
2

xi
22

xi
23

xi
24

xi
d

i

i
1

i
2

i
22

i
23

i
24

i
B

decisio n
fus ion

Sensor 22 Mode l

Sensor 23 Mode l

Sensor 24 Mode l

Sensor 2 Mode l

Sensor 1 Mode l

A

M. Grbovic et al. / Journal of P

onditions, which increases their sensitivity to faults. Assuming C
ault types, observed in training data D together with normal con-
ition examples, the problem at hand is multi-class classification
ith C + 1 classes. As our supervised model of choice, we describe

 binary SVM classifier, followed by its extension to multi-class
lassification.

SVM (Support Vector Machine). Given a data set D = {(xi, yi), i = 1,
 . .,  N}, where x is d dimensional and y is binary, SVM classifier
ttempts to find the maximum-margin hyperplane that divides
he examples of the opposite classes. SVM seeks the best classi-
er of type g(x) = wT˚(x) + ˇ, where ˚:  �d → H is a mapping from
he original d-dimensional attribute space to a potentially high-
imensional attribute space H. It can be shown that maximizing
he margin is equivalent to minimizing ||w||. Thus, the problem is
educed to solving the following constrained optimization prob-
em,

min
w,b

· 1
2

||w||2 + �

N∑
i=1

�i

s.t. yi(w · ˚(xi) + ˇ) ≥ 1 − �i, �i ≥ 0, ∀i

, (10)

here �i are the so-called slack variables, introduced to account
or noise and non-separable data, and � > 0 is a penalty parameter
hat trades-off model complexity and accuracy on training data.
roblem (10) can be converted to dual form,

min
0≤˛i≤S

:
∑

i

˛i − 1
2

∑
i

∑
j

˛i˛jyiyj˚(xi)
T ˚(xj)

s.t.
∑

i

˛iyi = 0, 0 ≤ ˛i ≤ �∀i
(11)

here ˛i are the Lagrange multipliers associated with the con-
traints of the primal problem.

The resulting SVM classifier can be conveniently represented
sing the dual problem solution as

(x) =
N∑

i=1

yi˛i˚(xi)
T ˚(x) =

N∑
i=1

yi˛iK(xi, x), (12)

here K(·,·) is the kernel function induced by certain classes of
apping functions ˚.
The conventional way to extend SVM to multi-class scenario

s to decompose the C + 1 class problem into a series of two-
lass problems, for which one-against-one [10] and one-versus-all
20] are the most widely used implementations. In one-versus-
ne approach, C(C + 1)/2 binary SVM models are trained, one for
ach pair of classes, using data examples representing the oppos-
ng classes. In one-versus-all approach C + 1 binary SVM models
re trained using entire data, where the first SVM model interprets
lass 1 as the positive class and the remaining classes as the negative
lass. The process is repeated C + 1 times, each time using different
lass as the positive class. In both cases, binary decisions are com-
ined according to certain voting schema [10,20] to produce the
nal multi-class prediction ŷ.

An appealing feature of SVM is that it can provide different types
f prediction outputs: soft values g(x), hard decisions sign(g(x)), or,
fter an appropriate output transformation [8],  class probability
stimates.

. Decentralized fault detection and diagnosis

Unlike the centralized approach, in which all sensor measure-

ents are sent to some central location and processed to train a

ingle fault classification model, the idea behind the decentral-
zed approach is that each sensor or a group of sensors has its
wn classifier. Instead of communicating the actual observations
Sensor  B Mod el

Fig. 3. Completely decentralized fault classification model.

xb
i
, local predictions ŷb

i
are sent to the fusion center. Final predic-

tions ŷi are made by decision fusion of local classifier predictions
(ŷ1

i
, ŷ2

i
, . . . , ŷB

i
).

The objective of our study is to build a decentralized sys-
tem whose performance is as close as possible to the centralized
approach. Building a decentralized fault detection and diagnosis
algorithm typically entails three phases:

1) Process decomposition
2) Building local classifiers
3) Fusion of local predictions

In the following, we  describe each of the phases in more detail.

4.1. Process decomposition

We consider different process decomposition approaches,
including completely decentralized strategy and two  multi-block
strategies as follows

. Completely decentralized process decomposition (CDD).  Each sen-
sor is considered as a separate block xb, b = 1, . . .,  K (Fig. 3). A
model of this type is not likely to result in accurate fault clas-
sification because it makes it difficult to exploit correlations
between sensors.

B. Multi-block process decomposition.  In multi-block approach, sen-
sors are grouped into B possibly overlapping blocks and a local
model is trained at each block. Fig. 4 shows an example of a
multi-block decentralized scheme.
B.1. Multi-block Process decomposition using domain knowl-

edge (MB1).  Decomposition is typically based on domain
knowledge, physical constraints, or process topology
[19,25,27–29,40,42].

B.2. Multi-block Process decomposition using Sparse PCA (MB2).
We propose an alternative approach that partitions the pro-
cess such that the strongest correlations among sensors are
preserved. To accomplish this we  use Sparse PCA [32] tool.
Unlike regular PCA, that transforms the input space into a
new space whose principal components are linear combi-
nations of all variables, Sparse PCA produces components
that are linear combinations of small number of variables.
There are several different formulations of Sparse PCA [9,32].
A Direct Sparse PCA (DSPCA) [32] algorithm that exploits convex
optimization tools to solve a convex relaxation of the sparse PCA
problem guarantees global convergence and has been shown to



742 M. Grbovic et al. / Journal of Process

1

2

K-1

22

23

24

.

.

.

.

.

.

xi
1

xi
2

xi
22

xi
23

xi
24

xi
d-1

Block 1
locatio n

i
1

Block 7
locatio n

i
7

Block 8
locatio n

i
8

Block  B
locatio n

i
B

x d

3
xi

3

i
decisio n
fusion

Block B Mod el

Block 7 Model

Block 8 Model

Block 1 Model

xi
23

p
v
a

a
c
n
i
d

D
s
s
p

w

n
p

S

a
t
d

o
a
c
a

4

d
b
B
4

K i

Fig. 4. Multi-block decentralized fault classification model.

rovide better results than other algorithms, i.e. producing sparser
ectors while explaining the same amount of variance. The DSPCA
lgorithm implementation in C and MATLAB is available online [22].

Given a data matrix X = [(xT
1), (xT

2), . . . , (xT
N)]

T
and its covari-

nce matrix S from (7),  the objective is to decompose S into sparse
omponents [v1, v2, . . .,  vd], while constraining the number of
on-zero elements (cardinality) of each v to r. The problem of max-

mizing the variance of v ∈ �d with the constraint on cardinality is
efined as

maximize vT Sv
subject to ||v||2 = 1

Card(v) ≤ r
. (13)

ue to the cardinality constraint, this problem is NP-hard. Using
emidefinite relaxation and replacement of the nonconvex con-
traints by weaker but convex ones DSPCA forms an optimization
roblem that is equivalent to (13),

maximize Tr(SU)
subject to Tr(U)  = 1

1T |U|1 ≤ r
U < 0

, (14)

here U = vvT is a positive semidefinite matrix of size d × d.
Let us denote the solution to (14) as U1. The first sparse compo-

ent v1 is obtained as the most dominant eigenvector of U1. This
rocess iterates by updating the covariance matrix

2 = S1 − (vT
1S1v1)v1vT

1, (15)

nd solving (14) to obtain the second component, where S1 = S is
he original covariance matrix. The procedure is repeated until all

 sparse components are obtained.
In general, only the first B components that explain majority

f variance in data are needed. In summary, DSPCA procedure is
pplied to X to obtain sparse components V = [v1, v2, . . .,  vB]. Each
omponent defines a block, and non-zero indices of vb define vari-
bles of b-th block.

.2. Training local models

For each block, a separate classifier is trained using available

ata. As introduced in Section 3.1,  a data set for training of b-th
lock local classifier can be expressed as Db = {(xb

i
, yi), i = 1, . . .,  Nb}.

oth unsupervised and supervised approaches explained in Section
 can be used to train a local classifier. After training, at any time i,
 Control 22 (2012) 738– 750

all B local models send their predictions ŷb
i
, b = 1, . . .,  B, to a central

location where the final prediction ŷi is made based on a specific
decision fusion rule.

There is an important property that distinguishes local classi-
fiers from a centralized classifier. Since each local classifier has
access to only a subset of all process measurements, it is likely that
it would be able to detect only a subset of possible faults. Conse-
quently, local classifiers should not be trained to recognize all faults.
To address this issue, we  propose to first analyze a given block to
discover which faults can be recognized and then to proceed with
training of the local classifier on the selected subset of faults.

To analyze local data, we developed a PCA-based method. Based
on the assumption that not all sensor blocks are able to detect
all faults, given a set C = {1, . . .,  C} of known faults detectable at
the centralized level, the goal is to discover subsets Cb of faults
detectable by the b-th block at the local level. The local eigenvec-
tors Vb and eigenvalues �b are found from the local data matrix

Xb = [(xb
1)

T
, (xb

2)
T
, . . . , (xb

N)
T
]
T

representing normal conditions at
the b-th block. Each fault C from C is tested at each block by cal-
culating local T2 and SPE statistics for fault C data sequences and
comparing to the block’s local threshold, chosen such that FPR = 2%.
Both statistics are used as they can detect different types of faults.
Fault C is considered detectable at the b-th block, and added to Cb, if
its T2 or SPE statistics exceed the corresponding b-th block thresh-
olds more than 20% of the time. Finally, only sequences of faults
from Cb and normal conditions are used in the b-th block training
data set Db.

4.3. Decision fusion using Maximum Entropy

Let us assume that a set of historical decision data F = {(ŷi, yi),
i = 1, . . .,  N}, defined in Section 3.1,  is available for training the deci-
sion fusion model. Depending on specific setup, the b-th component
of the prediction vector ŷi = [ŷ1

i
, ŷ2

i
, . . . , ŷB

i
] can be a scalar ŷb

i
repre-

senting hard predictions (e.g. ŷb
i

= 14 if b-th block classifier predicts

fault 14) or a vector ŷb
i of soft predictions, ŷb = [ŷb

i(0), ŷb
i(1), . . . , ŷb

i(C)],

where ŷb
i(0) represents the b-th block soft prediction for normal con-

dition and ŷb
i(C) represents the b-th block soft prediction for fault c.

If necessary, soft predictions can be converted to approximate the
posterior class probability.

Maximum Entropy (MaxEnt) model.  We propose a decision fusion
algorithm based on the discriminative probabilistic model called
the Maximum Entropy (MaxEnt) model [23,24]. MaxEnt represents
the conditional probability p(yi|ŷ1

i
, ŷ2

i
, . . . , ŷB

i
) as

P(yi|ŷ1
i , ŷ2

i , . . . , ŷB
i )

= exp(
∑M

m=1ωmfm(ŷ1
i
, ŷ2

i
, . . . , ŷB

i
, yi))∑C

c=0 exp(
∑M

m=1ωmfm(ŷ1
i
, ŷ2

i
, . . . , ŷB

i
, yi = c))

. (16)

where fm(ŷ1
i
, ŷ2

i
, . . . , ŷB

i
, y) is the m-th feature function and ωm is

the parameter of the m-th feature function. A large modeling flexi-
bility is allowed in design of feature functions. For the purposes of
illustration, we  give the following example of feature function f1,

f1(ŷ1
i , ŷ2

i , . . . , ŷB
i , yi) =

{
1, ŷ10 exists ∧ ŷ10

i
= 2 ∧ yi = 2

0, otherwise
.  (17)

This feature function equals 1 when the 10th block local predic-
tion is available (ŷ10 exists) and it equals ŷ10

i
= 2 and the true label
is yi = 2, and equals 0 otherwise. The term ŷ10 exists is a fault tol-
erance term which ensures a fast and valid f1 output even when
local prediction ŷ10 is not available. Note that f1 is evaluated using
prediction from the 10th block only, which can change over time i.



M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750 743

Given: B number of  sensor bloc ks, B sets Cb of  faults recog nizable at the b-th  block  with  hard pred ictions i
b, j = 1

FOR b = 1 TO B // for  each sensor bloc k b
    FOR c {0, Cb} // for normal conditions and Cb fault s

otherwise
existsycycy

yyyyf
b
i

b
ici

i
B
iiij

,0

ˆˆ,1
),ˆ,...,ˆ,ˆ( 21  , j = j +1

    END

ction 

i
t
d

L

D
t
a
l

L

w
t
s
a
i

ω

G
t
d
t

y

l
f
t
m

e
g

f

END

Fig. 5. Hard feature fun

The issue of construction of feature functions will be addressed
n the following subsection. Once the feature functions are known,
he remaining issue is how to learn parameters ωm from decision
ata F. MaxEnt achieves this by maximizing likelihood defined as

 =
N∑

i=1

log P(yi|ŷ1
i , ŷ2

i , . . . , ŷB
i ), (18)

epending on the process at hand and number of faults to diagnose,
here might be a need for large number of feature functions. This
dds a risk of overfitting that can be avoided by weighted l2 regu-
arization. Instead of (18) the regularized likelihood is maximized,

∗ = L − �

M∑
m=1

ω2
m, (19)

here � is a hyperparameter controlling the strength of regulariza-
ion. Since L* is a concave function, there exists a global optimum
olution that can be found using standard convex optimization
lgorithms. In this paper, we use the gradient ascent method that
s an iterative procedure for updating current ωold

m estimates as

new
m = ωold

m + �
∂L∗

∂ωm
. (20)

radient ascent iterations are performed until L* converges. When
he optimal parameters �m, m = 1, . . .,  M,  are learned the final pre-
iction ŷ is made from the local predictions ŷ1, ŷ2, . . ., ŷB as the one
hat maximizes the conditional probability,

ˆ i = argmaxyP(y|ŷ1
i , ŷ2

i , . . . , ŷB
i ). (21)

In summary, the Maximum Entropy approach allows using a
arge number of feature functions that are thought to be useful
or fault classification. The procedure starts by proposing M fea-
ure functions fm. Then, parameters ωm are initially set to ωm = 1/M,

 = 1, . . .,  M and updated using data F to find the optimal values.
Note that the structure of the feature functions fm has no influ-
nce on the optimization procedure. A feature function can be any
iven rule and even rules of different type (structure) can be used.

Parameters ωm reveal two important properties of feature
unctions and MaxEnt model. First, feature functions with larger

Given: nu mber  of  sensor bloc ks B, and B sets Cb of  fault s reco 
FOR b = 1 TO B //  for  each sensor bloc k b
    FOR c {0, Cb} //  for n ormal  condit ions and Cb faul

FOR p = 0.1 TO 0.9 // in  steps  of 0.1

otherwise
existpycy

yf
b
i

b
cii

i
B
iiij

,0

ˆˆ,1
),ˆ,...,ˆ,ˆ(

)(21
y

yyy

       END

    END

END

Fig. 6. Soft feature function c
construction algorithm.

parameters are more influential in final prediction. Second, Max-
Ent models with large parameters also reveal large confidence in
prediction. Therefore, ωm could also be treated as prediction uncer-
tainty parameters. Weights of unimportant rules will be near zero
and ωm could even become negative during training if fm is a poor
decision maker. To speed-up learning, we remove a feature function
from the ensemble once its parameter becomes negative.

Constructing Feature Functions. Importance of feature functions
in MaxEnt is similar to importance of input attributes in classifi-
cation. The more informative the feature functions are, the higher
accuracy of decision fusion. There are several ways to construct fea-
ture functions. One is to do it manually using domain knowledge.
However, this can be very labor intensive. In this paper, we propose
an automatic feature generator that uses predictions from a single
block for any given feature function. The functional feature’s form
is the same as (17). Fig. 5 summarizes feature generator using hard
local classifier predictions.

The algorithm produces a total of B·sumb (Cb + 1) feature func-
tions when the PCA approach explained in Section 4.2 is used. If
the PCA fault selection procedure is not used, a total of 9·B·(C + 1)
feature functions are constructed, resulting in increased computa-
tional cost and increased risk of overfiting.

Following a similar strategy, an algorithm for feature function
construction based on soft local predictions is shown in Fig. 6. A
prototype soft feature function is of the form

f2(ŷ1
i , ŷ2

i , . . . , ŷB
i , yi) =

{
1, ŷ10 exists ∧ ŷ10

i(2) > 0.5 ∧ yi = 2
0, otherwise

, (22)

where f2 is activated if the true label is yi = 2 and the 10th block soft
prediction for fault 2, ŷ10

i(2), is greater than 0.5. This algorithm results
in 9·B·sumb (Cb + 1) feature functions, which is 9 times more than
the result of algorithm from Fig. 5.
Note that this decision fusion strategy can be applied in case
of a single fault type (C = 1) as well. The number of hard feature
functions is then at most B·2 and soft feature functions at most
9·B·2.

gnizable at  the b-th  block  with  soft  predicti ons i(c)
b, j = 1

ts

s
 , j = j +1

onstruction algorithm.



744 M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750

astma

5

w
d
c
l
w
l

l
y
d
m
m
t
T
t
i

m
O
s
c
t

F
e
s
r
1
p
a
T
s
3

5

p

Fig. 7. Tennessee E

. Experiments

The proposed decentralized fault detection and diagnosis model
as evaluated on the benchmark Tennessee Eastman Process (TEP)
ata set [2].  This section presents results from using different pro-
ess decomposition methods, including complete decomposition,
ocation based block partition and sparse PCA based partition, as

ell as two different decision fusion strategies, including the base-
ine voting scheme and the proposed MaxEnt algorithm.

The Tennessee Eastman Process data set is a well-known simu-
ated industrial problem for process monitoring and control. Over
ears, it has become a benchmark data for a large number of fault
etection [11–14] and fault diagnosis [16–18] approaches. The
odel and the simulator were described in detail in [2].  The TEP
odel is a chemical process with five major operation units: a reac-

or, a condenser, a compressor, a stripper, and a separator (Fig. 7).
he plant represents an open-loop unstable plant that produces
wo liquid products G and H from gaseous feeds A, C, D, E, and the
nert component B.

The process has 53 variables, including 22 process measure-
ents, 19 analyzer measurements, and 12 manipulated variables.
ur evaluation results presented here focus on all the process mea-

urements and 11 manipulated variables, where the remaining
onstant manipulated variable was ignored. We  did not consider
he analyzer measurements.

The modified closed-loop version [50] of the original open-loop
ortran TEP implementation [2] was used to simulate data for our
xperiments. The source code uses a discrete control algorithm to
tabilize the process. A total of 20 types of faults can be simulated,
anging from faults that are easy to detect with no delay (e.g., faults

 and 4), to faults that are detectable only after a certain amount of
ropagating time (e.g., faults 17 and 18), to very subtle faults that
re hard to detect (faults 3, 9, 15) even with centralized methods.
hese properties of the TEP faults have been observed by previous
tudies [10–18].  As a result, our evaluation did not consider faults
, 9 and 15.
.1. Experimental setup

Here we describe the details involving data generation process,
reprocessing and parameter selection.
n Process scheme.

5.1.1. Data sets, preprocessing and parameter selection
To create input attributes xi, we  used the dynamic approach

from [12,13].  Observations from all K sensors at time i were aug-
mented with observations from the previous l time moments and
stacked into a variable vector xi with (l + 1)·K variables. We  exper-
imented with different values of l. Cross-validation was used to
select the value of l that resulted in the best trade-off between all
performance measures. Larger values of l resulted in improved per-
formance with respect to FPR and TPR but increase in the Detection
Delay. As low Detection Delay was  preferred, we did not find l > 5 a
good choice for this application.

The training data for the centralized approach Dtr = {(xi, yi), i = 1,
. . .,  N, yi ∈ {0, 1, . . .,  C}} consists of N = 68,000 examples, 34,000
examples describing normal process operation and 34,000 exam-
ples that describe process faults. To make evaluation in terms of
Detection Delay (DD) and Classification Delay (CD) possible, data
Dtr represents a collection of time-series in which normal and faulty
conditions interchange. Each time-series contains L = 1000 exam-
ples, where first 500 examples represent normal conditions and
the remaining examples represent fault behavior. For each of the
17 considered faults (faults 3, 9 and 15 were excluded) four such
time-series were simulated.

In the decentralized approach, the plant was first decomposed
into B blocks, which yields B training data sets Db

tr = {(xb
i
, yi), i =

1, . . . , N}, b = 1, . . .,  B. After applying the PCA fault selection
procedure (Section 4.2), each local training set was reduced to
Db

tr = {(xb
i
, yi), yi ∈ {0, Cb}, i = 1, . . .,  Nb}, where Cb represent faults

detectable by b-th local classifier and Nb are training samples rep-
resenting normal conditions and detectable faults. Parameter a was
set using parallel analysis technique proposed in [14].

For purposes of evaluation a test data set Dtest of size
Ntest = 340,000 was used. Similarly to Dtr, test data set Dtest is a
collection of time-series in which normal and faulty conditions
interchange. A total of 10 time-series for each of the 17 faults were
simulated. The time-series were of same length, L = 2000, where the
fault was  introduced after the 1001st example.

The number of allowed non-zero eigenvector elements in Sparse

PCA decomposition algorithm was set to r = 8. It was  selected by
cross-validation as the parameter that results in the best trade-
off between the performance measures. The resulting eigenvectors
were sorted by their eigenvalues, such that the first eigenvector



M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750 745

Table 1
Sensor-by-sensor fault detection ability.

Sensor (b) Sets Cb of faults detectable by sensor b Sensor (b) Sets Cb of faults detectable by sensor b

xmeas1 1, 5, 6, 7, 8, 12, 13, 18 xmeas18 1, 2, 5, 6, 7, 8, 10, 12, 13, 16, 18
xmeas2 2,  6, 7, 12, 13, 18 xmeas19 1, 2, 5, 6, 7, 8, 12, 13, 16, 18, 19
xmeas3 1,  2, 5, 6, 7, 8, 12, 13, 18 xmeas20 1, 5, 6, 7, 8, 12, 13, 18, 19, 20
xmeas4  1, 2, 5, 6, 7, 8, 12, 13, 18 xmeas21 1, 5, 6, 7, 8, 12, 13, 14, 17, 18
xmeas5 19  xmeas22 1, 2, 5, 6, 7, 8, 12, 13, 18, 20
xmeas6  1, 2, 5, 6, 7, 8, 12, 13, 18 xmv1 18
xmeas7  1, 2, 5, 6, 7, 8, 12, 13, 14, 18, 19, 20 xmv2 1, 2, 5, 6, 7, 8, 12, 13, 18
xmeas8  1, 5, 6, 7, 8, 12, 13, 18 xmv3 1, 5, 6, 7, 8, 12, 13, 18
xmeas9 4,  7, 11, 12, 14, 17, 18 xmv4 1, 2, 5, 7, 8, 12, 13, 18
xmeas10  1, 2, 5, 6, 7, 8, 12, 13, 18 xmv5 1, 2, 5, 6, 7, 8, 12, 13, 18, 19, 20
xmeas11 1,  2, 5, 6, 7, 8, 12, 13, 17, 18, 20 xmv6 1, 2, 5, 6, 7, 8, 12, 13, 18
xmeas12  – xmv7 –
xmeas13  1, 2, 5, 6, 7, 8, 12, 13, 18, 19, 20 xmv8 –
xmeas14  18 xmv9 1, 2, 5, 6, 7, 8, 10, 12, 13, 16, 18
xmeas15 –  xmv10 1, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18

r
9
b
w
w
a

y
l
m
a
b

5

s
g
o

xmeas16 1,  2, 5, 6, 7, 8, 12, 13, 18, 19, 20 

xmeas17  12, 18

etains the most variance. The leading B components that explain
5% of variance in normal behavior data are preserved as resulting
locks. Note that r can be selected based on process constraints as
ell. Small values of r result in a large number of smaller blocks,
hich makes the system more decentralized. Larger values of r

llow for, but not necessarily result in, bigger size blocks.
For training of MaxEnt decision fusion model, a data set F = {(ŷi,

i), i = 1, . . .,  N} was formed from local model predictions. Regu-
arization parameter � was chosen by cross-validation (� = 0.5) to

aximize the decision fusion generalization power. The gradient
scent procedure was terminated when likelihood did not improve
y more than 10−4.

.1.2. Plant decomposition

Completely decentralized process decomposition (CDD).  Each sen-

or was considered separately, with Kb = 1 and B = K = 33. Table 1
ives a detailed TEP sensor-by-sensor fault detection ability,
btained using PCA fault selection procedure from Section 4.2.  We

Fig. 8. Tennessee Eastman Process
xmv11 5, 6, 12, 18

can observe that some faults affect the entire process and are visible
by almost all sensors (e.g. fault 18 can be detected by 28 out of 33
sensors) or majority of sensors (faults 1, 2, 6, 8, 12, 13 and 20). Other
faults are more “local” and can be detected by only a few sensors
(faults 4, 10, 11, 14, 16, 17 and 19). It is interesting to observe that
sensors xmeas12, xmeas15, xmv7 and xmv8 alone could not detect
any fault.

Plant decomposition based on location (MB1).  Grouping the TEP
sensors into blocks around various equipment and streams in the
plant resulted in 9 blocks. Sensor distribution is depicted in Fig. 8
and listed in the second column of Table 2. The first block groups
separate input feed sensors, the second block represents the total
input feed, blocks 3–8 consist of sensors concentrated around
the Reactor, Condenser, Compressor, Purge, Separator and Striper,

respectively, and block 9 groups product stream sensors.

The resulting abilities of blocks to detect faults, as obtained by
PCA fault selection procedure from Section 4.2 are reported in the
third column of Table 2. We  can observe that faults 12 and 18 are

 decomposition by location.



746 M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750

Table  2
MB1  sensor distribution among blocks and block-by-block fault detection ability.

Block b Sensors Sets Cb of faults detectable by block b

1 xmeas1, xmv1, xmeas2, xmv2, xmeas3, xmv3 1, 2, 5, 6, 7, 8, 12, 13, 18
2  xmeas4, xmv4 1, 2, 5, 6, 7, 8, 12, 13, 18
3 xmeas6, xmeas7, xmeas8, xmeas9, xmeas21, xmv10 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20
4  xmeas22, xmv11 1, 2, 5, 6, 7, 8, 12, 13, 18, 20
5 xmeas5,  xmeas20, xmv5 1, 2, 5, 6, 7, 8, 12, 13, 18, 19, 20
6  xmeas10, xmv6 1, 2, 5, 6, 7, 8, 12, 13, 18
7  xmeas11, xmeas12, xmeas13, xmeas14, xmv7 1, 2, 5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20
8  xmeas15, xmeas16, xmeas18, xmeas19, xmv9 1, 2, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20
9 xmeas17,  xmv8 12, 18

Table 3
MB2  sensor distribution among blocks and block-by-block fault detection ability.

Block Sensors Sets Cb of faults detectable by block b

1 xmeas7, xmeas11, xmeas13, xmeas16, xmeas20, xmv5 1, 2, 5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20
2 xmeas18,  xmeas19, xmv9 1, 2, 5, 6, 7, 8, 10, 12, 13, 16, 17,  18, 19, 20
3  xmeas12, xmv7 –
4 xmeas15,  xmv8 –
5  xmeas17, xmv11 1, 2, 5, 6, 7, 8, 12, 13, 18, 20
6  xmeas1, xmv3 1, 5, 6, 7, 8, 12, 13, 18
7  xmeas10, xmv6 1, 2, 5, 6, 7, 8, 12, 13, 18
8  xmeas9, xmv10 1, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18
9 xmeas2,  xmeas21 1, 5, 6, 7, 8, 12, 13, 14, 17, 18, 20

10  xmeas3, xmeas4, xmv2 1, 2, 5, 6, 7, 8, 12, 13, 18
11 xmv1,  xmv4 1, 2, 5, 6, 7, 8, 12, 13, 18
12  xmeas5, xmeas6  1, 2, 5, 6, 7, 8, 12, 13, 18, 19
13  xmeas8, xmeas22 1, 2, 5, 6, 7, 8, 12, 13, 18, 20
14 xmeas14 12,  18
15  xmeas8, xmv1 1, 5, 6, 7, 8, 12, 13, 18
16  xmv2 1, 2, 5, 6, 7, 8, 12, 13, 18
17  xmeas3  1, 2, 5, 6, 7, 8, 12, 13, 18

v
a
a

e
S

18  xmeas6  

19  xmv4 

20  xmeas11 

isible by each block, while faults 1, 2, 5, 6, 7, 8, and 13 are visible by
lmost all blocks. Faults 4, 11, 16 are visible by only a single block
nd 10 and 14 by only two blocks.
Plant decomposition using Sparse PCA (MB2).  A total of 33 sparse
igenvectors were obtained by decomposition of TEP sensors using
parse PCA with r = 8 (Section 4.1). First B = 20 components are

Fig. 9. Sensors which form block
1, 2, 5, 6, 7, 8, 12, 13, 18
1, 2, 5, 6, 7, 8, 12, 13, 18
1, 2, 5, 6, 7, 8, 12, 13, 17, 18, 20

retained as they explained over 95% of variance in normal behavior
data. The non-zero indices in each retained eigenvector define the
block structure. The second column of Table 3 shows the resulting

sensor distribution among blocks. As it can be observed, the first
block (corresponding to the largest eigenvector) contains 6 sen-
sors, while the remaining ones are rather small, typically containing

 1: obtained with DSPCA.



M. Grbovic et al. / Journal of Proces

Table  4
Centralized SVM fault classification results.

Fault TPR (%) DD CD

1 99.7 1.8 1.1
2 98.7  11.5 0.6
4 99.4  0 3.6
5  99.5 0 0.2
6  100 0 0
7  100 0 0
8  84.8 18.1 14.6
10 65.5 20.3 0.1
11 88.7 5.1 0
12 82.6 6.8 6
13  82.9 51.4 18.5
14  99.8 0 1.2
16  77.4 13.4 0
17 97.4 24.1 0.1
18  88.5 46.1 1.3
19 90.5 3.1 0.1
20  86.5 39.9 0

Avg  90.7 14.2 2.78

o
m
f
p
a
t

o
i
i
t
T
a
c

5

l
a
s
v
d
a
f
t

E
j
h
a
r
a
c
f
P

s
b
a
p
o
f
i

FPR 1.02%

nly one or two sensors. In this sense, the MB2 decomposition is
ore similar to CDD than to MB1. Fig. 9 shows locations of sensors

orming the 1st block, which appears to be consistent with the
rocess flow leading to the compressor and separator, indicating

 certain degree of process correlation captured by this partition
echnique even though it is entirely data driven.

Table 3 also reports fault detection abilities of MB2  blocks as
btained by the PCA fault selection procedure. Blocks 3 and 4 appear
nsensitive to all faults. It can be noticed that the 2nd block consist-
ng of sensors xmeas18, xmeas19 and xmv9 can detect fault 17 even
hough sensors xmeas18, xmeas19 and xmv9 alone cannot (Table 1).
his is also the case with the 9th block which can detect faults 17
nd 20 (bold in Table 3) while its two sensors xmeas2  and xmeas21
annot.

.1.3. Decision fusion
Majority vote decision fusion technique.  The majority vote of the

ocal classifiers was used as the baseline approach. In this approach,
ll sensor blocks have the same importance when voting. Because
ome faults are observable by only a subset of blocks, the majority
ote rule was  modified such that the only time normal condition
ecision is declared is when it is predicted by all blocks. In case of

 tie, the final prediction was made by randomly picking one of the
aults with the largest number of votes. This voting strategy reduces
o a simple “or” rule in case of a single fault type (C = 1).

MaxEnt decision fusion.  For conciseness, only results using Max-
nt soft feature functions (Fig. 6) are shown and discussed. We
ust note that our experiments (not shown here) indicate that
ard feature functions (Fig. 5) result in slightly decreased accuracy
s compared to soft feature functions. The algorithm from Fig. 6
esulted in 2390 CDD feature functions, 837 MB1 feature functions
nd 1548 MB2  feature functions. For comparison, if the PCA pro-
edure for selection of fault sets Cb were not used, the algorithm
rom Fig. 6 would produce 6237 CDD feature functions. Thus, the
CA procedure results in significant computational savings.

A large number of feature functions are necessary for two rea-
ons: (1) a large number of fault types and blocks, (2) different
locks are good at classifying different faults and poor or marginal
t classifying other faults. As large number of parameters can lead to

oor generalization, a regularization term was added to the original
ptimization (19) to avoid over-fitting. The evaluation was per-
ormed using a large test set to ensure there were no generalization
ssues.
s Control 22 (2012) 738– 750 747

5.2. Experimental results

Both centralized and decentralized fault classification models
were multi-class SVM classifiers trained using data sets described
in VI.A. LibSVM software [7] one-versus-one multi-class implemen-
tation with probability outputs [8] was  used. SVM classifiers used
a Gaussian RBF kernel, where the kernel width � was set to inverse

median of squared distances
∥∥xi − xj

∥∥ 2
between normal condition

data points in D (or Db in case of local models) and slack parameter
was  set to � = 10. The dynamic variable approach with l = 2 lagged
variables resulted in the best performance. Only these results are
shown.

Table 4 shows centralized SVM method fault-by-fault perfor-
mance on the test set Dtest based on the multi-criterion.

It can be seen that faults are detected with detection delay (DD)
which ranges from zero (faults 4, 5, 6, 7 and 14), very low (faults 1,
11, 12 and 19), to relatively high (faults 8, 10, 13, 16, 17, 18 and 20).
Classification delay (CD) ranged from none (faults 6, 7, 11 and 16),
very low (faults 1, 2, 4, 5, 10, 14, 17, 18 and 19) to relatively high
(faults 8, 12 and 13). Interestingly, faults in different DD and CD
delay categories overlap. The achieved FPR of 1.02% is satisfactory.
The true positive rates (TPR) show that some faults are classified
almost perfectly (faults 1, 2, 4, 5, 6, 7, 14, and 17), while some
achieve fair TPR (faults 8, 11, 12, 13, 18–20). The only two faults
with TPR lower than 80% are faults 10 and 16.

Table 5 shows the completely decentralized (CDD) model
performance. Notable performance changes, when compared to
centralized model, are shown in bold. Symbol ∞ is used if a fault
cannot be detected or classified correctly. Its delay is counted as 500
in the average value calculation in the last row. It can be observed
that the overall TPR for the completely decentralized approach
using majority vote and MaxEnt compared poorly to 90.7% TPR in
the centralized approach. The difference in TPR was mostly due
to faults 10, 16 and 18 (large drops in accuracy) and 5, 13 and
20 (moderate drops in accuracy). Faults 1, 2, 4 and 14 were clas-
sified with about the same accuracy by both the centralized and
CDD decentralized model. DD increased only slightly, while CD
increased largely for faults 5, 7, 10 and 18 and moderately for
faults 1, 2, 6 and 13. The proposed MaxEnt algorithm outperformed
majority vote in all performance measures.

In the next set of experiments we evaluated the performance
of location-based (MB1) and correlation-based (MB2) multi-block
decentralized models. MB1  fault-by-fault test set performance is
shown in Table 6. The results confirm that MB1 model was much
closer to the centralized model than the CDD model. The overall
TPR improved over the CDD approach by approximately 15%, while
the overall CD was considerably reduced. The FPR improved as well.
The biggest overall improvement can be observed on faults 10 and
16 (bold in Table 6). The proposed MaxEnt algorithm outperformed
majority vote on all faults.

Table 7 summarizes the performance of MB2  model. MB2 was
more successful than MB1  even though MB2  decomposition was
more decentralized, as it contained 20 blocks compared to the 9
MB1  blocks. The overall TPR improved over the completely decen-
tralized approach by approximately 20%, and by approximately 5%
over the MB1  approach. In addition, the overall DD and CD were
noticeably improved. The biggest improvement was achieved on
faults 5, 8, 10, 11, 16 and 20 (bold in Table 7). MaxEnt fusion was
superior to majority vote fusion as it achieved much lower FPR and
higher TPR. It can be concluded that the MB2 model with MaxEnt
decision fusion came quite close to the centralized model, consid-
ering both accuracy and delay measures.
While intuitively, the accuracy is expected to grow with the
size of blocks, a comparison of Tables 6 and 7 reveals that smaller
MB2  blocks result in higher accuracy than larger MB1  blocks. This



748 M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750

Table  5
Results of the CDD model: majority vote vs. MaxEntr.

Fault TPR (%) DD CD

Majority MaxEnt Majority MaxEnt Majority MaxEnt

1 84.9 93.3 3.3 2.1 31.3 20.8
2  95.5 97.2 15.8 13.7 28.1 21
4 97.7  98.2 0 0 4.1 4.1
5 43.8  51.7 0 0 183.6 161.2
6 56.4  63.2 0 0 16.1 14.2
7  69.8 75.2 0 0 260.1 211.2
8  68.6 71.8 18.2 18.2 16.5 15.2
10  0.79 19.7 49.4 32.5 ∞ 50.1
11 66.1  75.1 6.8 5.7 4.9 2.7
12 60.6  66.2 7.6 6.8 9.1 7.1
13 45.5  52.1 54.8 51.7 58.3 42.6
14  99.3 99.3 0.5 0.3 1.2 1.4
16 19.3  31.2 36.6 34.2 9.3 9.3
17  75.3 82.6 25.2 24.8 5.3 5.7
18  11 23.6 46.7 46.7 78.9 73.6
19  82.6 86.8 3.5 2.6 1.5 2.4
20  44.5 48.1 46.6 46.8 3.7 3.5

Avg 60.1  66.4 18.53 16.83 71.3 38
FPR  2.18% 1.68%

Table 6
Performance of the MB1  model: majority vote vs. MaxEntr.

Fault TPR (%) DD CD

Majority MaxEnt Majority MaxEnt Majority MaxEnt

1 95.9 97.8 2.7 2.4 13.8 8.7
2 96.3  97.5 14.3 13.1 19.8 12.8
4  99.4 98.9 0 0 4.9 4.2
5 44.9  75.8 0 0 18.5 15.5
6  82.5 90.1 0 0 6 5.5
7  89.1 94.1 0 0 3.4 2
8 72.2  78.4 19.7 18.9 14.9 14.3
10  57.5 58.8 20.3 20.7 0.6 0.2
11 88.5  88.5 5.6 5.6 1.3 1.3
12  76.3 78.2 7.2 7 6 5.6
13  57.3 69.5 54.3 52.1 29.7 28.6
14  97.8 99.4 0.5 0.5 5.1 2.1
16  69.7 72.4 18.6 15.2 0.9 1.3
17 90.1  94 25.1 25.1 2.5 2
18  22.6 60.1 46.7 46.5 33.1 16.2
19 90.2  90.2 1.4 1.4 2.3 2.3
20  47.2 65.8 46.9 44.3 4.3 4

Avg  75.1 82.9 15.48 14.88 9.83 7.44
FPR  1.65% 1.38%

Table 7
Performance of the MB2  model: majority vote vs. MaxEntr.

Fault TPR (%) DD CD

Majority MaxEnt Majority MaxEnt Majority MaxEnt

1 95.9 99.1 2.1 2.1 11.8 1.6
2  96.8 97.9 14.2 12.4 14.6 10.1
4  98.9 99.2 0 0 4.2 3.9
5  86.5 98.2 0 0 18.3 2.5
6  84.2 95.3 0 0 7.6 5.1
7  91.3 96.2 0 0 3.1 1.4
8  72.8 81.3 18.7 18.4 14.2 14.3
10  57.2 61.9 24.3 21.8 0.3 0.1
11 88  88.2 7.1 6.3 5.9 1.4
12  77.1 79.2 6.9 6.9 4.3 5.1
13  57.3 76.3 51.7 51.7 31.9 21.5
14  98.9 99.7 0.3 0 1.4 1.4
16  76.1 77 13.4 13.4 2.1 0.8
17 90.1  95.7 24.5 24.1 3.2 1.7
18  21.2 73.3 46.4 46.1 36.1 3.5
19  89.4 90.2 1.3 1.4 1.4 0.8
20  73.2 81.7 40.1 40 0 0

Avg  79.7 87.6 14.78 14.39 9.4 4.42
FPR  1.57% 1.02%



M. Grbovic et al. / Journal of Process Control 22 (2012) 738– 750 749

Table  8
MB2  model robustness to irrelevant feature functions.

Fault TPR (%) DD CD

MB2 MB2* MB2 MB2* MB2 MB2*

1 99.1 99 2.1 2.1 1.6 1.6
2  97.9 97.9 12.4 12.4 10.1 10.1
4 99.2  99 0 0 3.9 3.9
5 98.2  98.2 0 0 2.5 2.5
6 95.3  95.2 0 0 5.1 5.1
7  96.2 96.2 0 0 1.4 1.4
8  81.3 79.9 18.4 18.5 14.3 14.2
10  61.9 60.8 21.8 22 0.1 0.6
11 88.2  88 6.3 6.3 1.4 1.4
12 79.2  79.2 6.9 6.9 5.1 5.1
13 76.3  76.3 51.7 51.7 21.5 21.5
14  99.7 99.7 0 0 1.4 1.4
16 77  76.2 13.4 13.4 0.8 0.8
17  95.7 95.4 24.1 24.1 1.7 1.7
18  73.3 70.8 46.1 48 3.5 4.2
19  90.2 89.9 1.4 1.4 0.8 0.8
20  81.7 79.6 40 41 0 0

i
i
c
M
M
f
a

s
i
p

w
a
A

f

w
1
t
f

w
t
p
f
t

s
T
s
s
f
p

a
h
o
a
o
c
o

Table 9
Results of the MB2  model: block failure scenario.

Fault TPR (%) DD CD

Centralized MB2 Centralized MB2 Centralized MB2

1 99.7 99.1 1.8 2.1 1.4 1.6
2  98.5 98.2 11.5 12.6 1.1 9.8
4 98.4  99.2 0 0 3.6 3.9
5 18.3  18.2 0 0 3.9 2.5
6 99.2  94.9 0 0 0 5.8
7  99.9 96.1 0 0 0 1.4
8  82.5 80.2 18.1 19 14.7 13.8
10  6.9 0 145 ∞ 247 ∞
11 89.5  88.7 5.8 6.3 1.3 1.4
12 81.1  69.8 7.4 6.9 6 5.1
13 74.3 70.1 52.1 52.1 18.5 21
14 99.8 99.7 0 0 1.3 1.4
16 0  0 ∞ ∞ ∞ ∞
17  97.4 96.2 24.1 24.1 0.8 0.8
18  76.9 68.7 46.1 46.1 4.2 4.2
19 92.2 91.4 3.1 1.4 0.4 0.8
20  84.8 80.5 39.9 38.5 0 0

Avg 76.3 73.6 50.3 71.1 47.3 63.1

This assumption is likely to be violated in practical settings because
Avg 87.6  87.2 14.39 14.57 4.42 4.48
FPR  1.02% 1.12%

ndicates that the strategy of grouping sensors into blocks is more
mportant than the actual number of sensors per block. The results
onfirm that Sparse PCA variance-maximization approach used in
B2  is more reasonable than distance-based partitioning used in
B1. To gain insight into the differences, we can observe that MB1

ails to capture strong correlations between 20 sensor pairs which
re recognized by MB2, but belong to different blocks in MB1.

To evaluate MaxEnt algorithm sensitivity to feature function
election and fault tolerance capabilities of the proposed decentral-
zed model (MB2 with MaxEnt), two additional experiments were
erformed.

MaxEnt decision fusion sensitivity to feature function selection
as tested by constructing 200 irrelevant feature functions (23) and

dding them to the existing ones (used in the previous experiment).
n example of an irrelevant feature function is

 (ŷ1
i , ŷ2

i , . . . , ŷB
i , yi) =

{
1, ŷ5

i exists ∧ ŷ5
i(19) > 0.8 ∧ yi = 2

0, otherwise
,  (23)

hich is activated when yi = 2 and the 5th block detected fault
9 with probability higher than 80%. Robustness to irrelevant fea-
ure functions is a useful property, since the constructor of feature
unctions, human or machine, is prone to mistakes.

Table 8 compares MB2 MaxEnt from Table 7 and MB2* MaxEnt
ith the additional irrelevant feature functions. The results show

hat MaxEnt fusion is robust to irrelevant feature functions as the
erformance degraded only slightly. During training, the irrelevant
eature functions received negative or very low weights and were
hus removed or insignificantly participated in decision making.

To test the MB2 MaxEnt fusion robustness to sensor failures, a
cenario in which blocks 2, 5 and 10 were offline was  simulated.
able 9 compares MB2 MaxEnt fusion model in the block failure
cenario with the centralized model which was  retrained without
ensor variables from blocks 2, 5 and 10. Symbol ∞ is used if a
ault cannot be detected or classifier correctly, and it accounted for
enalty 500 in the average value calculation in the last row.

The results show that MB2 model with MaxEnt decision fusion
chieved similar results to the retrained centralized model, without
aving to be retrained. For example, MaxEnt performance degraded
nly on faults 5, 10, and 16 (bold in Table 9). This is understand-

ble because the disabled 2nd block was the only one that could
bserve faults 10 and 16. We  note that the performance also slightly
hanged for faults 13 and 18 (underlined in Table 9) and that the
verall increase of 0.5% in FPR was observed.
FPR  1.52% 1.67%

These results are promising as they indicate that it could be
possible to prune sensors and blocks (e.g., in order to minimize
the communication costs), without significantly degrading the fault
classification performance.

6. Conclusion

In this paper we proposed a Sparse PCA method for process
decomposition and a Maximum Entropy method for decision fusion
to be used in decentralized fault detection and diagnosis. We  com-
pared the Sparse PCA decomposition method with two baseline
decomposition approaches and the Maximum Entropy decision
fusion method to the baseline majority vote decision fusion in
several different decentralized fault detection and diagnosis sce-
narios. The results of our study are quite promising as they show
that Maximum Entropy is much more effective in decision fusion
than the baseline method and that Sparse PCA-based process
decomposition leads to better fault classification results than the
topology-based approach. Our results also indicate that Sparse PCA
process decomposition with Maximum Entropy decision fusion
lead to decentralized model whose performance approaches that of
a centralized model, while providing increased flexibility and fault
tolerance.

There are several open questions that are worth addressing.
One is focusing on explicit process decomposition algorithms that
would create blocks that are robust (by grouping the sensors such
that the probability of block failure is minimized), maintenance
friendly (by grouping the sensors with similar maintenance needs),
and cost effective (by grouping the sensors such that the over-
all communication cost is minimized). To achieve this goal, we
are studying ways to impose additional constraints to the origi-
nal Sparse PCA optimization problem. Another question is how to
reduce a need to have abundant training data for model develop-
ment. The typical scenario for most of the related work in fault
diagnosis is that we have abundant historical data prior to train-
ing where all types of faults have already happened at least once.
new fault types can emerge over time. To address this issue, we are
exploring ways of combining the strengths of unsupervised and
supervised methods to build a model capable of doing well on both
previously seen and new types of faults.



7 rocess

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[49] J. Zhou, A. Lazarevic, K.-W. Hsu, J. Srivastava, Y. Fu, Y. Wu,  Unsupervised learn-
50 M. Grbovic et al. / Journal of P

eferences

[1] L.H. Chiang, E. Russell, R.D. Braatz, Fault Detection and Diagnosis in Industrial
Systems, Springer, 2001.

[2] D.D. Downs, E.F. Vogel, A plant-wide industrial process control problem, Com-
puters & Chemical Engineering 17 (3) (1993) 245–255.

[3] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, New York, 1973.

[4] J.F. MacGregor, Statistical process control of multivariate process, in: IFAC Int.
Symp. on Advanced Control of Chemical Processes, 1994, pp. 427–435.

[5] I.T. Jolliffe, Principal Component Analysis, Springer, 2002.
[6] J.-F. Chamberland, V.V. Veeravalli, Decentralized detection in sensor networks,

IEEE Transactions on Signal Processing 51 (2003) 407–416.
[7] C.C. Chang, C. Lin, LIBSVM: A Library for Support Vector Machines (Version 2.3),

2001.
[8] J. Platt, Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods, in: Advances in Large Margin Classifiers, 1999.
[9]  H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis, Journal of

Computational and Graphical Statistics 15 (2) (1996) 265–286.
10] R. Debnath, N. Takahide, H. Takahashi, A decision based one-against-one

method for multi-class support vector machine, Pattern Analysis & Applications
7  (2004) 164–175.

11] J. Chen, C.M. Liao, Dynamic process fault monitoring based on neural network
and PCA, Journal of Process Control 27 (2002) 277–289.

12] A. Kulkarni, V.K. Jayaraman, B.D. Kulkarni, Knowledge incorporated support
vector machines to detect faults in Tennessee Eastman Process, Computers and
Chemical Engineering 29 (2005) 2128–2133.

13] J.M. Leea, C.K. Yoob, I.-B. Leea, Statistical monitoring of dynamic processes
based on dynamic independent component analysis, Chemical Engineering
Science 59 (2004) 2995–3006.

14] W.  Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic
principal component analysis, Chemometrics and Intelligent Laboratory Sys-
tems 30 (1995) 179–196.

15] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, John Wiley
&  Sons, 2001.

16] B.S. Yang, T. Han, J.L. An, ART-KOHONEN neural network for fault diagnosis of
rotating machinery, Mechanical Systems and Signal Processing 18 (3) (2004)
645–657.

17] M.  Ge, R. Du, G. Zhang, Fault diagnosis using support vector machine with an
application in sheet metal stamping operations, Mechanical Systems and Signal
Processing 18 (1) (2004) 143–159.

18] L.H. Chiang, M.E. Kotanchek, A.K. Kordon, Fault diagnosis based on Fisher dis-
criminant analysis and support vector machines, Computers and Chemical
Engineering 28 (8) (2003) 1389–1401.

19] Y. Zhang, H. Zhou, S.J. Qin, T. Chai, Decentralized fault diagnosis of large-scale
processes using multiblock kernel partial least squares, IEEE Transactions on
Industrial Informatics 6 (1) (2010) 3–10.

20] Y. Liu, Y.F. Zheng, One-against-all multi-class SVM classification using reliabil-
ity  measures, in: International Joint Conference on Neural Networks, 2005.

21] H. Marzi, S.F. Xavier, Real-time fault detection and isolation in industrial
machines using learning vector quantization, Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture 218 (2004)
949–959.

22] DSPCA MATLAB package [Online]. Available: http://www.princeton.edu/∼
aspremon//DSPCA.htm.

23] A. Ratnaparkhi, A maximum entropy model for part-of-speech tagging, in: Proc.
EMNLP, Association for Computational Linguistics, New Brunswick, NJ, 1996.

24] A.L. Berger, S.A. Della Pietra, V.J. Della Pietra, A maximum entropy approach to
natural language processing, Computational Linguistics 22 (1996).

25] S.J. Qin, S. Valle, M.J. Piovoso, On unifying multiblock analysis with applica-
tion to decentralized process monitoring, Journal of Chemometrics 15 (2001)
715–742.
26]  J.T. Spooner, K.M. Passino, Decentralized adaptive control of nonlinear systems
using radial basis neural networks, IEEE Transactions on Automatic Control 44
(1999) 2050–2057.

27] A. Smilde, J. Westerhuis, R. Boque, Multiway multiblock component and covari-
ates regression models, Journal of Chemometrics 14 (2000) 301–331.

[

 Control 22 (2012) 738– 750

28] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to
Fault Tolerance, Springer, Berlin, 2006.

29] G.A. Cherry, S.J. Qin, Multiblock principal component analysis based on a com-
bined index for semiconductor fault detection and diagnosis, IEEE Transactions
on  Semiconductor Manufacturing 19 (2006) 159–172.

30] B.M. Wise, N.L. Ricker, D.F. Veltkamp, Upset and sensor failure detection in
multivariate process, Technical Report, Eigenvector Research, Manson, WA,
1989.

31] A.C. Raich, A. Cinar, Multivariate statistical methods for monitoring continuous
process: Assessment of discriminatory power disturbance models and diagno-
sis of multiple disturbances, Chemometrics and Intelligent Laboratory Systems
30 (1995) 37–48.

32] A. D’Aspremont, L.E. Ghaoui, M.I. Jordan, G.R.G. Lanckriet, A direct formulation
for  sparse PCA using semidefinite programming, Advances in Neural Informa-
tion Processing Systems 17 (2004) 41–48.

33] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of pro-
cess fault detection and diagnosis. Part I: quantitative model-based methods,
Computers and Chemical Engineering 27 (2003) 293–311.

35] R. Ferrari, T. Parisini, M.M.  Polycarpou, Distributed fault diagnosis with overlap-
ping decompositions: an adaptive approximation approach, IEEE Transactions
on  Automatic Control 54 (2009) 794–799.

36] K. Ghosh, Y.S. Ng, R. Srinivasan, Evaluation of decision fusion strategies for effec-
tive collaboration among heterogeneous fault diagnostic methods, Computers
and Chemical Engineering 35 (2) (2011) 342–355.

37] Q. Cheng, P.K. Varshney, J.H. Michels, C.M. Belcastro, Distributed fault detec-
tion with correlated decision fusion, Transactions on Aerospace and Electronic
Systems 45 (2009).

38] T. Clouqueur, P. Ramanathan, K.K. Saluja, K.-C. Wang, Value-fusion versus
decision-fusion for fault-tolerance in collaborative target detection in sensor
networks, in: International Conference on Information Fusion, 2001.

39]  Q. Cheng, P.K. Varshney, J. Michels, C.M. Belcastro, Distributed fault detec-
tion via particle filtering and decision fusion, in: International Conference on
Information Fusion, vol. 2, 2005.

40] W.  Li, W.H. Gui, Y.F. Xie, S.X. Ding, Decentralised fault detection of large-scale
systems with limited network communications, IET Control Theory and Appli-
cations 4 (2010) 1867–1876.

41] S.M. Magrabi, P.W. Gibbens, Decentralised fault detection and diagnosis in nav-
igation systems for unmanned aerial vehicles, Position Location and Navigation
Symposium (2000) 363–370.

42] X. Zhang, M.M.  Polycarpou, T. Parisini, Decentralized fault detection in a class
of  large-scale nonlinear uncertain systems, IEEE Conference on Decision and
Control (2009) 6988–6993.

43] B.V. Dasarathy, Decision fusion strategies in multisensor environments, IEEE
Transactions on Systems, Man  and Cybernetics 21 (1991) 1140–1154.

44] A. D’Costa, A.M. Sayeed, Data versus decision fusion for distributed clas-
sification in sensor networks, Military Communications Conference (2003)
585–590.

45] J.-J. Xiao, Z.-Q. Luo, Universal decentralized detection in a bandwidth-
constrained sensor network, IEEE Transactions on Signal Processing 53 (2005)
2617–2624.

46] V. Saligrama, M.  Alanyali, O. Savas, Distributed detection in sensor networks
with packet losses and finite capacity links, IEEE Transactions on Signal Pro-
cessing 54 (2006) 4118–4132.

47] M.  Grbovic, S. Vucetic, Decentralized estimation using learning vector quan-
tization, in: Data Compression Conference (DCC), Snowbird, UT,  2009,
446 pp.

48] M.  Grbovic, M.S. Vucetic, L. Weichang, X. Peng, A.K. Usadi, A boosting method
for  process fault detection with detection delay reduction and label denoising,
in: KDD workshop Data Mining for Service and Maintenance, The 17th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (ACM SIGKDD),
2011.
ing based distributed detection of global anomalies, International Journal of
Information Technology and Decision Making (2011) 935–957.

50] E.L. Russell, L.H. Chiang, R.D. Braatz, Data-driven Techniques for Fault Detection
and Diagnosis in Chemical Processes, Springer-Verlag, London, 2000.

http://www.princeton.edu/~aspremon//DSPCA.htm
http://www.princeton.edu/~aspremon//DSPCA.htm

	Decentralized fault detection and diagnosis via sparse PCA based decomposition and Maximum Entropy decision fusion
	1 Introduction
	2 Preliminaries
	2.1 Problem setup
	2.2 Performance measures

	3 Centralized fault detection and diagnosis
	3.1 Unsupervised fault detection methods
	3.2 Supervised fault detection and diagnosis methods

	4 Decentralized fault detection and diagnosis
	4.1 Process decomposition
	4.2 Training local models
	4.3 Decision fusion using Maximum Entropy

	5 Experiments
	5.1 Experimental setup
	5.1.1 Data sets, preprocessing and parameter selection
	5.1.2 Plant decomposition
	5.1.3 Decision fusion

	5.2 Experimental results

	6 Conclusion
	References


