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Abstract— A typical assumption in supervised fault detection is 

that abundant historical data are available prior to model 

learning, where all types of faults have already been observed at 

least once. This assumption is likely to be violated in practical 

settings as new fault types can emerge over time. In this paper we 

study this often overlooked cold start learning problem in 

data-driven fault detection, where in the beginning only normal 

operation data are available and faulty operation data become 

available as the faults occur. We explored how to leverage 

strengths of unsupervised and supervised approaches to build a 

model capable of detecting faults even if none are still observed, 

and of improving over time, as new fault types are observed. The 

proposed framework was evaluated on the benchmark Tennessee 

Eastman Process data. The proposed fusion model performed 

better on both unseen and seen faults than the stand-alone 

unsupervised and supervised models. 

 
Index Terms— cold start learning, fault detection, process 

monitoring, semi-supervised learning.  

 

I. INTRODUCTION 

ATA-Driven Fault Detection has been extensively studied 

during the past few decades [1-20]. Timely discovery of 

faulty events in complex systems is critical to ensure safety and 

support effective operation. The objective of fault detection is to 

achieve high fault detection accuracy with low detection delay. 

Early detection provides an invaluable warning on emerging 

problems that can be, relatively speaking, easily managed to 

avoid catastrophic consequences. High accuracy ensures that 

the human operator is rarely interrupted by false alarms and 

guarantees successful detection and tracking of fault events.  

There are two major approaches for data driven fault 

detection. In the unsupervised approach, normal operation is 

modeled and faults are detected as deviations from the normal 

behavior. Some of the most popular unsupervised fault 

detection methods are Principal Component Analysis (PCA) [6, 

 
Copyright (c) 2011 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 

obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

Mihajlo Grbovic and Slobodan Vucetic are with the Department of 

Computer and Information Sciences, Temple University, 1805 N Broad Street 

304 Wachman Hall Philadelphia, PA, USA 19122 (phone: 215-204-5535; fax: 

215-204-5082; e-mail: mihajlo.grbovic@temple.edu). 

Weichang Li, Niranjan A Subrahmanya, Adam K Usadi are with the 

ExxonMobil Research and Engineering Company, Corporate Strategic 

Research, Annandale, NJ, USA 08801. 

7], Independent Component Analysis (ICA) [9] and Partial 

Least Squares [6]. In the supervised approach, a classifier is 

trained on annotated historical data containing both normal and 

faulty conditions, and it is used to predict faults. Representatives 

of this approach are Support Vector Machines (SVM) [11] and 

Neural Networks [1]. Due to annotation expenses, historical 

data may consist of only a small amount of labeled data and a 

large amount of unlabeled data. In such cases, a semi-supervised 

learning approach can be used [21], which is class of machine 

learning techniques that makes use of both labeled and 

unlabeled data for training. 

The unsupervised models are practical because they can be 

constructed using small amounts of normal
 
condition data, 

whereas supervised models can achieve increased sensitivity to 

faults and provide better accuracy, but assume that annotated 

data containing all fault types are available for training. This 

assumption is likely to be violated in real-world applications.   

In this paper we study an important problem of cold start 

learning, where only limited amounts of normal operation data 

are initially available for fault detection model training. As 

knowledge about different fault types becomes available, in 

form of new partially or fully annotated data, the goal is to 

incrementally update the model to improve detection accuracy. 

To illustrate, let us assume that a manufacturer of certain type 

of gas turbines tests each turbine under close human supervision 

to ensure safe operation before the turbines are sold and used. In 

this process, the manufacturer can collect a large amount of 

normal operation data, sufficient to build a single unsupervised 

fault detection model. After the turbines are sold and put to use, 

the manufacturer continues monitoring each turbine to collect 

data of unforeseen faulty operation that can be useful for 

improving the current fault detection model through supervised 

learning. Training and updating of a supervised fault detection 

model using faulty operation data from any monitored turbine 

can help in timely detection and avoidance of the same fault 

types on the remaining turbines.  

Leveraging strengths of unsupervised and (semi-)supervised 

fault detection models in the cold start scenario has not been 

extensively studied in the literature. There are several recent 

publications in which the supervised and unsupervised models 

are combined to improve fault detection accuracy. However, in 

most cases [13-17], the unsupervised model is used only as a 

preprocessing tool to extract better features for the supervised 

model. In some publications, the supervised model is used to 
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provide fault localization once the fault is detected by the 

unsupervised model [19, 14]. In addition, there exist 

decentralized approaches [22] where, for various reasons, 

groups of features, e.g. sensors, are monitored separately, some 

using unsupervised model and some using supervised model. 

In this study we propose an approach that integrates decisions 

from the initial unsupervised model and an incrementally 

updated supervised model, which leads to overall improvement 

in fault detection accuracy. We propose several strategies for 

combining the detectors. In addition, to deal with partially 

annotated data, we propose a semi-supervised framework that 

facilitates learning from partially annotated data via 

minimization of the disagreement between detectors in 

predicting the fault class  

 

II. PRELIMINARIES 

A. Problem Setup 

We consider M identical plants or pieces of equipment, each 

monitored separately by a network of K sensors providing 

measurements synchronously at regular time intervals. For m-th 

plant at time t, the state of its k-th sensor is represented by a row 

vector of variables xtk
m
. There are many ways to construct this 

vector. For example, one can use only raw measurements at time 

t, the set of raw measurements at the most recent tlag time steps, 

or derive variables from the current and recent measurements. 

Combining all K sensors, we have a row vector xt
m

 = [xt1
m
, 

xt2
m
,…, xtK

m
].

 
We denote with d the length of the resulting 

vector. The process condition at m-th plant at time t is denoted 

with class label ct
m ∈ {–1, +1}, where –1 represents normal 

condition, and +1 represents a fault. Combining all monitored 

plants, we have a collection Dtr = {(xi, ci), i = 1…N}. 

Given the data Dtr, the objective is to train a classification 

function f : xi → ĉi, where ĉ is the hard prediction output 

ĉi∈{–1, +1}. In some cases, function g : xi → ŷi that outputs a 

value ŷi∈R is used for soft prediction. In that case, ĉi can be 

obtained by thresholding, ĉi =
 
sign(ŷi – θ), where θ is the 

specified threshold. 

In the cold start scenario, we assume that Nint normal 

condition observations, Dint = {(xi, –1), i = 1…Nint}, are 

available for development of an unsupervised detector.  

By continuous monitoring of all processes, the faulty 

operation data become available as the faults occur. Whenever a 

new fault type is observed at any plant, data directly before and 

after the fault occurrence are collected. Figure 1 shows an 

example of such a data batch Bj from one of the plants, which 

contains Lj observations. Assuming the fault occurred at time tj
0
, 

the first tj
0
–1 examples are considered as normal operation data, 

while the remaining Lj–tj
0
+1 examples are considered as faulty 

operation data. Depending on the particular application, all or 

parts of data Bj are labeled with +1 or −1. Specifically, Bj can be 

divided into the labeled part {(xi, ci), i = 1…l} and the unlabeled 

part {xi, i = l+1…l + u}, l + u = Lj. 

 

At any time t, the objective is to train a classifier using the 

available data, Dtr = Dint ∪ Bj ∪ … ∪ BJ. 

B. Performance Measures 

To evaluate performance of fault detection models, we will 

use a set of labeled observations, disjoint from the training set, 

consisting of both normal and faulty conditions.  

The true positive rate, TPR, is defined as 

,100⋅=
+

+

N

n
TPR  (1) 

where n
+
 is the number of correctly classified faulty operation 

examples and N 
+
 is the total number of faulty operation 

examples in test data.  

The false positive rate, FPR, is given as 

,100⋅=
−

−

N

n
FPR  (2) 

where n
–
 is the number of misclassified normal operation data 

examples and N 
–
 is the total number of normal operation data 

examples in test data 

Let us assume test data contain J time series in which normal 

and faulty conditions interchange, as in Figure 1. The flat line is 

the true label and the dotted line is an example fault detector 

prediction. We define the detection delay DDj for the j-th time 

series from test data as the delay between tj
0
, the introduction 

time of the fault, and tj
1
, the model detection time,  

.01

jjj ttDD −=  (3) 

The average detection delay for all time series in test data is  

.
1

∑
=

=
J

j

j

J

DD
DD  (4) 

 

III. DRIVEN FAULT DETECTION 

In this section, we describe the unsupervised, supervised and 

semi-supervised methods that we used as components of the 

fusion model proposed later in this paper. 

A. Unsupervised Fault Detection 

In the unsupervised approach, faults are detected as 

observations that deviate from the modeled normal behavior. 

Among the most popular unsupervised fault detection methods 

are PCA and ICA-based approaches. They are threshold-based 

approaches that input the observation vector and output a single 

number representing deviation from the normal behavior. The 
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Fig. 1.  Batch Bj containing a faulty event: true vs. predicted 
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threshold is typically set such that FPR is small (in the range 

between 1% and 5%).  

The PCA-based approach [6] has been extensively studied 

and employed for fault detection. PCA projects the observation 

to a lower dimensional subspace, which describes most of the 

variance in the normal data. Given training data consisting of N 

centered normal condition observations, let us define N×d 

matrix X = [x1
T
, x2

T
, …, xN

T
]

T
, where xi is a d-dimensional row 

vector of the i-th observation. Then, the principal components 

are found using eigenvalue decomposition of the covariance 

matrix S, 

,
1

1 TT

N
V VΛXXS =

−
=  (5) 

where the columns of V = [v1, v2,…,vd]  are the eigenvectors of S 

and the diagonal elements of Λ are its eigenvalues. Two types of 

statistics are typically used in PCA–based process monitoring; 

namely, Hotelling’s T
2
 statistic and the squared prediction error 

(SPE) statistic [7]. 

The SPE statistics, which are used in our experiments, is a 

measure of variation in the residual subspace, defined as 
 

,)( i

T

adad

T

iiSPE xVVx −−=  (6) 

where Vd-a is a set of the d – a smallest eigenvectors of S. 

Reduction order a (a < d) is directly related to the percentage of 

variance retained in the normal condition data.  

The fault is reported if the value of SPE statistic exceeds the 

threshold level θu which is determined by the desired FPR. 

The unsupervised models are practical and quickly 

operational, as they can construct a fault detector using small 

amounts of normal operation data. However, there are known 

performance issues, as these models inherently assume 

Gaussian distribution of normal operation data. Figure 2.a 

shows an idealized case where, after mapping to SPE statistic 

space, normal operation data are within a circle, due to Gaussian 

distribution in the input space. In this case, data can be 

adequately described using PCA SPE statistic threshold. 

However, mapping of more complex normal operation 

distributions to SPE statistic space can have results such as in 

Figure 2.b. Using PCA SPE statistic threshold in this case can 

lead to a large fraction of false positives and false negatives.  

B. Supervised Fault Detection 

Supervised methods, such as Support Vector Machine 

(SVM) need both normal and faulty conditions data to train a 

fault detector. The advantage of the supervised methods is that 

they explicitly utilize historical information of the faulty 

conditions, which increases their sensitivity to faults. Given 

faulty data, better performance over the unsupervised models 

can be achieved because more involved decision rules that 

maximize TPR are possible, as illustrated in Figure 3. Normal 

conditions and two fault types (F1 and F2) are shown. As can be 

observed, the unsupervised model (Figure 3.a) has a large 

number of false negatives and false positives, whereas the 

supervised model (Figure 3.b) achieves much higher accuracy.  

SVM. Given a data set Dtr = {( xi, ci), i = 1…N}, SVM 

classifier [23, 24] attempts to find the maximum-margin 

hyperplane that divides the examples of the opposite classes. 

SVM seeks the best classifier of type g(x) = w
TΦ(x) + β, where 

Φ: ℜd
 → Η is a mapping from the original d-dimensional 

attribute space to a potentially high-dimensional space H. 

Maximizing the margin is equivalent to minimizing ||w||, and the 

problem can be formulated as 

ibwyts

Cw

iiii

N

i

i
bw

∀≥−≥+Φ⋅

+ ∑
=

,0,1))((..

||||
2

1
.min

1

2

,

ξξ

ξ

x ,
 

(7) 

where ξi are the slack variables, introduced to account for noise 

and non-separable data, and C > 0 is a penalty parameter that 

trades-off model complexity and accuracy on training data. 

Problem (7) can be converted to dual form, 

iCyts
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1
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0
xx

,

 

(8) 

where αi are the Lagrange multipliers associated with the 

constraints of the primal problem. 

 The resulting SVM classifier can be conveniently represented 

using the dual problem solution as 

,),()()()(
11

∑∑
==

=ΦΦ=
N

i

iii

N

i

T

iii yyg xxKxxx αα  (9) 

where K(⋅,⋅) is the kernel function induced by Φ and αi are the 

Lagrange multipliers associated with the training examples. 

 Given soft SVM outputs ŷi = g(xi), the final fault detection 

predictions are made as ĉi= f(xi) = sign(ŷi – θs), where threshold 

θs is set to desired FPR. 

C. Semi-supervised Fault Detection 

Semi-supervised methods are typically used when majority of 

the training data Dt is unlabeled. Such methods aim at 

simultaneously achieving high accuracy on the labeled portion 

of data and ensuring some geometric dependence on unlabeled 

examples. A number of graph-based semi-supervised learning 

algorithms [25, 26, 27] can be placed under the framework of 
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minimizing a loss function that involves both labeled and 

unlabeled examples, 

,)),((min 2

2

1

1

ssssKss

l

i

iiss
g

CgCcgLoss
ss

Lggx
T++∑

=

 
(10) 

where gss :
 
xi → ŷi, gss ∈ R

n×1
 are semi-supervised model soft 

predictions for all samples, with the labeled part g
l
ss∈R

l×1
 and 

the unlabeled part g
u

ss ∈ R
u×1

, K ∈ R
n×n

 is a kernel matrix 

describing the similarity between examples in the feature space, 

D = diag(K 1n) is the degree matrix, and L is the regularization 

Laplacian matrix, L = D – K. 

The first term enforces that predictions gss should be 

consistent with the known class labels. The second term is a 

regularization term, where ||gss||K is the Reproducing Kernel 

Hilbert Space (RKHS) norm of prediction function gss, and C1 is 

the associated regularization parameter. The third term enforces 

a geometric constraint that the predictions should be sufficiently 

consistent with the structure of the data in the space defined by 

kernel K. It is known as the Laplacian regularization term [28] 

and can also be written as 

.),()
)(

)(

)(

)(
(

1,

∑
+

=

−=
ul

ji

ji

jssiss
ssss

j,j

g

i,i

g
L xxK

D

x

D

x
gg

T  
(11) 

The minimizer of the problem (10) admits the expansion over 

all the labeled and unlabeled examples in the form of  

,),()(
1

∑
+

=

=
ul

i

iissg xxKx α  
(12) 

where αi are the kernel expansion coefficients.  

Prototype Vector Machine (PVM). Recent advances [26] 

allow for fast optimization of (10), by low-rank approximation 

of K, and fast decision making, by forcing the decision function 

to span over a small set of basis vectors. 

The resulting PVM algorithm uses a squared loss for 
computationally efficient learning and ease of implementation. 

Using the representer theorem [28], gss = Kα, and assuming 

squared loss, Loss(·) = || · ||
2
, objective (10) can be rewritten as 

,min 21

2

1
ααααα

α
LKKKK-Y

TTT

ll
R

CC
n

++
×∈

 (13) 

where Yl∈R
l×1

 are the class label assignments for the labeled 

examples and Kl ∈ R
l×n

 are the rows in the kernel matrix 

corresponding to the labeled samples. 

PVM for Fault Detection. In our specific setup, additional 

information is available in form of unsupervised model fu 

predictions. This allows us to impose an extra constraint to 

better utilize the unlabeled examples. Our main assumption is 

that unlabeled samples in fu view and fss view should agree in 

labels, fu(xi) =
 
fss(xi), where fss(x) = sign(gss(x)).  

However, as fss(x) is expected to outperform fu in accuracy of 

+1 predictions as more fault types are observed, the requirement 

of equal labels might be harmful for fss. To illustrate, let us 

consider the example in Figure 4. Figure 4.a can be interpreted 

as fu detecting a fault type that fss has not previously observed. 

Figure 4.b depicts a scenario in which fss is simply 

outperforming fu on a familiar fault type. For this reason, 

utilizing fu is advantageous only on fault types not yet observed 

by fss. Therefore, we add the following regularization term into 

the optimization problem (13), weighted by C3, 

,))()((
2

1)(
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1

2∑
+
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iuiss
iu

g
fg

f

ss

xx
x

 
(14) 

where fu(xi)∈ {–1,+1}  predictions are known and gss(xi)∈ R. 

The regularization is active only when fu(x) = +1. To preserve 

efficient optimization of PVM, a squared norm was used. 

It should be noted that this framework can be used with any 

unsupervised model and any semi-supervised model capable of 

minimizing the resulting loss function, 

),2(

2min

3

211
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TTT

TTT
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n

−+

++−
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(15) 

where A is the n×n diagonal matrix with (fu(xi) + 1)/2 on the 

diagonal and fu is a binary vector of unsupervised model 

predictions fu(xi)∈{–1,+1} for both labeled and unlabeled data. 

 

IV. FUSION MODEL FOR COLD START LEARNING 

A realistic scenario in process monitoring is that at the time of 

fault detector training, we did not observe all types of faults. In 

the cold start case, we might only have access to the normal 

operation data. Using the initial data, unsupervised model can 

be trained. Upon occurrence of the first fault type it becomes 

possible to learn a supervised or a semi-supervised model, 

depending on the application at hand. As the process is 

experiencing new fault types, it should be possible to 

incrementally improve the (semi-)supervised model.  

While the updated model could have reduced FPR on seen 

fault types, it could actually increase FPR on the unseen faults.  

Figure 5 illustrates this potential problem. Supervised model 

decision rule obtained from training data that includes faults F1 

and F2 is shown. A new, previously unobserved fault type, fault 

F3, remains undetectable by this model.  

As the example from Figure 6 suggests, it might be better to 

consult both unsupervised and supervised models. The 

unsupervised model can detect the three faults with higher 

overall accuracy, although the supervised model has higher TPR 

on F1 and F2. We can achieve higher overall TPR on the three 

faults by combining decisions of the supervised and 

unsupervised models using the “or” rule (if one of them detects 

the fault the fault is predicted). 

Based on this intuitive observation, in the following we 

describe different strategies for combining predictions of 

unsupervised and supervised models into a single prediction. 

The unsupervised model can be combined with a 

fu +1  +1  +1  +1  +1  +1

fss –1  –1 –1 –1  –1 –1

fu  –1  –1 –1 –1  –1 –1

fss +1  +1  +1  +1  +1  +1

a) b)
 

Fig. 4.  Unsupervised and semi-supervised model predictions  
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semi-supervised model in the same manner. We also describe 

strategies for updating the fusion model in cases of completely 

and partially labeled data. 

A. Combining Unsupervised and Supervised Models 

1. “Or” rule. The fault is reported if either unsupervised 

model fu or supervised model fs detects the fault, ĉi = 

sign(fu(xi) +fs(xi)+1), where fu(xi), fs(xi)∈{–1, +1}. Due to the 

voting mechanism (even one +1 vote wins), the “or” rule could 

potentially increase the overall FPR as compared to FPR of the 

individual models. Essentially, the fusion model will inherit all 

of unsupervised and supervised models false alarms. However, 

the “or” rule will assure the effective detection of faults 

previously unseen by the supervised model, and increase the 

overall TPR, due to the supervised model superior TPR on the 

fraction of faults it has observed. 

2. Performance-based Weighted Voting [29]. This 

approach assigns different weights to supervised and 

unsupervised classifiers based on their estimated true positive 

and false positive rates, TPRs and FPRs for the supervised model 

and TPRu and FPRu for the unsupervised model. Those rates are 

estimated using the available training data. Then, it calculates 

the prediction-dependent model weights as 

,
)()())(1(
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)(
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ss
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=
xx
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(16) 

Finally, it calculates the final prediction as 

ĉi = sign(wu(xi) ·fu(xi) + ws(xi) ·fs(xi) ). When both models agree, 

the final prediction is obtained by consensus. When the models 

disagree, the model with the larger weight decides.  

3. Distance-based Weighted Voting. Considering soft 

predictions from supervised and unsupervised models, ŷu, ŷs 

∈ R, and their distances from the corresponding thresholds, 

ŷu–θu and ŷs–θs, a heuristic weighted voting schema can be 

derived as ĉi = sign((gu(xi)–θu) + (gs(xi)–θs)). Interpreting 

distance from the threshold as an estimate of uncertainty, this 

voting schema always trusts the model that is more certain in its 

prediction. 

4. Maximum Entropy Voting. Discriminative probabilistic 

Maximum Entropy (MaxEnt) model [30] can be used for 

combining local model predictions into a global prediction [31] 

by introducing pre-defined decision making rules. 

In our setting, we propose to use rules that involve both 

models and the predicted class, i.e. r(fu, fs, c). For example, the 

following rule describes an outcome in which the unsupervised 

model predicts faulty operation, fu(xi) = +1, the supervised 

model predicts normal operation fs(xi) = –1 and the ground truth 

is ci = +1. 

.
,0

11)(1)(,1
)),(),((1



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=
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cff
cffr

iisiu

iisiu

xx
xx  

If these conditions are met, this rule is included in prediction 

making, r1 = 1, otherwise it is not considered, r1 = 0. A total of 

eight rules can be created in this manner (for each possible 

outcome). Each rule rj(fu, fs, c) is associated with a certain 

weight ωj that characterizes its influence in prediction making, 

i.e. the rules with large ω are more influential in the final 

prediction. Using rules and their weights, MaxEnt model 

calculates conditional probability 

,

)),,(exp(
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(17) 

where rj(fu, fs, c) is the j-th rule and ωj is the weight of the j-th 

rule. Given local predictions fu(xi)  and fs(xi), global prediction ĉ 

is made as the one that maximizes the conditional probability 

)).(),(|(maxargˆ
isiuci ffcPc xx=  (18) 

Weights ωj are learned by maximizing likelihood, 

.))(),(|(log
1

∑
=

=
N

i

isiuiME ffcPL xx  (19) 

Since LME is a concave function, there exists a global optimum 

solution that can be found using standard convex optimization 

algorithms. In this paper, we use the gradient ascent iterative 

procedure that updates current estimates of ωj as 

,
j

IKold

j

new

j

L

ω
ηωω

∂
∂

+=  (20) 

where ωj are initially set to ωj = 1/J, j = 1…J, J = 8.  

B. Incremental update of the Fusion Model 

Following the setup in II.A, the procedure starts by using the 

initial normal-type data Dint, when the unsupervised model is 

developed. Upon arrival of the first fault data batch B1, a 

supervised model is trained, which is followed by selection of an 

appropriate fusion rule. The process is repeated upon receipt of 

any subsequent data batch  when the supervised model is 

normal

F1

F2

F3

false negatives

SVM threshold

 
Fig. 5.  Supervised model trained on F1, F2. Newly observed F3 is undetectable 
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F1

F2

F3

PCA threshold

false positives

SVM threshold

Fusion threshold

“or” rule

 
Fig. 6.  Unsupervised and supervised models combined using “or” rule 
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retrained and the fusion rule updated. Our approach allows for 

both supervised scenario where new data batches are completely 

annotated, and semi-supervised scenario, where the new batches 

are only partially annotated. 

  

V. EMPIRICAL STUDIES 

The proposed cold start fault detection framework with 

different decision fusion strategies was evaluated on the 

benchmark Tennessee Eastman Process (TEP) data set [4].  

Two scenarios were considered. In the first scenario 

incoming data batches are completely annotated. PCA (using 

SPE statistic) and SVM were used as representatives of the 

unsupervised and supervised models, respectively. The 

resulting fusion model is denoted as PCA-SVM. 

In the second scenario, the batches are partially labeled. PCA 

was used as the unsupervised model. Learning from partially 

labeled data was guided by optimization of the proposed 

objective (15), via PVM algorithm. 

A. Tennessee Eastman Process 

The Tennessee Eastman Process data set is a well-known 

simulated industrial problem for process monitoring and 

control. Over years, it has become a benchmark data for a large 

number of fault detection approaches [3, 5, 6, 7, 9, 11, 12]. The 

model is described in detail in [4]. The TEP model is a chemical 

process with five major operation units: a reactor, a condenser, a 

compressor, a stripper, and a separator (Figure 7). The plant 

represents an open-loop unstable plant that produces two liquid 

products G and H from gaseous feeds A, C, D, E, and the inert 

component B.  

The process has 53 variables, including 22 process 

measurements, 19 analyzer measurements, and 12 manipulated 

variables. Our evaluation results presented here focus on all the 

process measurements and 11 manipulated variables, where the 

remaining constant manipulated variable was ignored. We did 

not consider the analyzer measurements. 

The modified closed-loop version [3] of the original Fortran 

TEP implementation [4] was used to simulate data. The source 

code uses a discrete control algorithm to stabilize the process. A 

total of 20 types of faults (Table 1) can be simulated ranging 

from faults that are easy to detect with no delay (e.g., fault 1 and 

4), to faults that are detectable  only  after  a  certain  delay  

 

fault Description type 

1 A/C feed ratio, B composition constant (stream 4) Step 
2 B composition, A/C feed ratio constant (stream 4) Step 
4 Reactor cooling water inlet temperature Step 
5 Condenser cooling water inlet temperature Step 
6 A feed loss (stream 1) Step 
7 C header pressure loss-reduced availability (str. 4) Step 
8 A, B, C feed composition (stream 4) Random 

10 C feed temperature (stream 4) Random 
11 Reactor cooling water inlet temperature Random 
12 Condenser cooling water inlet temperature Random 
13 Reaction kinetics Slow Drift 
14 Reactor cooling water valve Sticking 

16-20 Unknown  

Table 1.  Tennessee Eastman Process faults 

(e.g., fault 17 and 18), to very subtle faults that are hard to detect 

(faults 3, 9, 15) even with the best supervised methods.  These 

properties of the TEP faults have been observed by previous 

studies [5-9, 11, 12]. As a result, our evaluation did not consider 

faults 3, 9 and 15. 

B. Experimental Setup 

We considered M =10 identical TEP plants at different 

locations. The goal was to train a single fault detection model 

for monitoring of all plants, through fusion of unsupervised and 

supervised learning. It was assumed that limited amounts of 

normal operation data from each plant Dint were initially 

available for unsupervised model training. Next, the plants were 

monitored for potential faulty behavior. Whenever a new fault 

type was observed at any location, data directly before and after 

the fault occurrence were collected in form of data batch Bm. 

Different fault types were randomly generated at different plants 

at different times, and data batches containing different fault 

types were observed as they occurred.  

To create input attributes xi, we used the dynamic approach 

from [7, 9]. At each plant, observations from all K sensors at 

time t were augmented with observations from previous tlag 

moments and stacked into a variable vector xt
m
 with (tlag +1)·K 

variables. Larger values of tlag lead to improved performance 

with respect to FPR and TPR but increase the Detection Delay. 

As low Detection Delay was preferred, we used tlag
 
= 2. 

Training Data for Unsupervised Model. Initial Data 

consisted of N = 2,000 labeled normal process operation 

examples,
 
Dinit = {( xi, ci ), ci = –1, i = 1…N}.  

Training Data for Supervised Model. We generated 17 

fault types in a random order at different locations, such that it 

resulted in M = 17 labeled data batches Bj = {(xi, ci), i = 1…L}, 

one for each fault type. Each batch was a time-series that 

contained L = 4,000 examples where the first 2,000 examples 

represented normal operation and the remaining ones 

represented faulty operation. The batches were used to update 

the supervised model, and to update the performance-based 

voting weights and MaxEnt weights. 

Training Data for Semi-supervised Model. In the partially 

labeled data scenario, only 2.5% of randomly selected samples 

from each data batch were labeled. 

Test Data. The performance was evaluated on test data 

consisting of 10 time-series for each of the 17 fault types were 

 
 

Fig. 7.  Tennessee Eastman Process scheme 
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simulated. Each time-series contained L = 1,000 examples, 

where first 500 examples represented normal operation and the 

remaining examples represented faulty operation. 

Parameter Selection. Parameters for different algorithms 

were selected as follows. We assumed that no faulty data were 

available for parameter tuning. 

a) PCA. SPE values for data Dint were calculated, i.e. the 

amount of variation in the residual subspace spanned by d – a 

smallest principal components, where a is the number of 

principal components that explain 95% variance in data. 

Decision threshold θu was set such that FPR = 1%. 

b) SVM used Gaussian RBF kernel K(xi,xj) = exp(–γ||xi 

–xj||
2
), where the kernel width γ was set to inverse median of 

squared distances ||xi –xj||
2
 between data points in Dint, and slack 

parameter to C = 10. LibSVM software package [32] was used. 

Decision threshold θs was set such that FPR = 1%. 

c) MaxEnt. Gradient ascent learning rate was set to η = 0.001 

and the learning of rule weights ω was terminated when (20) 

stopped improving by more than 10
–5

. 

d) PVM used a Gaussian Kernel K(xi,xj) = exp(–γ||xi –xj||
2
). 

The kernel parameter γ was set to inverse median of squared 

distances ||xi –xj||
2
 between data points in Dint. The number of 

PVM prototypes was set to 200. Regularization parameters in 

loss function (15) were set as follows, C1 = 10, C2 = 0.1 and 

C3 = 10. Decision threshold θss was set such that FPR = 1%. 

The fusion model used individual models whose FPR was set 

in advance to 1%. Depending on the fusion rule the resulting 

FPR could possibly increase or decrease. For example, the “or” 

rule FPR can only be in the 1%-2% range, depending on how 

much the individual false alarms of SVM and PCA overlap, 

while the distance-weighted voting strategy could potentially 

achieve FPR that is less than 1%, since it uses soft predictions 

and prediction uncertainties. 

C. Experimental Results 

In the first experiment we compared accuracies of 

stand-alone PCA and SVM to joint PCA-SVM model with 

different fusion strategies, when all training data were labeled. 

The procedure started with training the PCA model on Dint. 

Then, batches of faulty data were introduced at different plants 

in this 

order: 5, 20, 4, 11, 13, 8, 6, 14, 19, 10,
 
2, 1, 16, 12, 17,18,

 
7.

 
The 

SVM and the fusion rule parameters were updated after each 

fault occurrence. The order in which the faults were introduced 

was randomly selected. To avoid over-fitting, after each new 

batch was observed the voting weights were updated before the 

new supervised model was trained. 

Figure 8 shows fault-specific TPR of SVM on test set. It 

tracks the TPR of each fault type (y-axis) as new fault types 

were observed (x-axis). Each pie represents TPR (full pie has 

TPR =
 
100%, empty pie has TPR = 0%). It can be concluded 

that some fault types were accurately detected even before they 

were observed (e.g. SVM trained only on fault 5 had high TPR 

on faults 1, 2, 4, 6, 7, 8, 12, 13, 14), while for other fault types, 

the satisfactory FPR was achieved only after they were observed 

(e.g. faults 10, 11, 16, 19).  

Figure 9 reports changes of average TPR, DD and FPR values 

on test set (y-axis) as new faults were introduced (x-axis). The 

performance of PCA was the same throughout the procedure, as 

expected. On the other hand, SVM fault detection performance 

improved as new fault types were observed. SVM was initially 

inferior to PCA, but it overtook it after the 10
th

 fault type was 

observed.  

It is interesting to observe that while accuracy of SVM after 

observing only the first fault type (fault 5) was acceptable, it 

deteriorated dramatically  after the second and third fault types 

(faults 20 and 4) were introduced, and then it recovered after 

fault types 11 and 13 were observed. The drop in accuracy 

nicely illustrates the drawbacks of purely supervised fault 

detectors when only a small fraction of possible fault types are 

available for training. It can be seen from Figure 8, and it is 
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Fig. 8.  Fault-by-fault TPR (y-axis) as new faults were observed (x-axis) 
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Fig. 9.  Fault detection performance evaluation for PCA, SVM and PCA-SVM models trained using labeled data in terms of: a) TPR b) DD c) FPR  

 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 8 

consistent with the illustrative example in Figure 5, that while 

the SVM trained on the first 3 faults achieves high accuracy on 

these faults, its decision boundary changes in such a way that its 

accuracy on yet unseen fault types 1, 6, 7, 8, 12, 13, 14, 17, and 

18 is low. It is interesting to observe that the corresponding 

decrease in accuracy of the PCA-SVM models after fault types 

5, 20, and 4 were observed was markedly smaller, 

demonstrating the appeal of the proposed fusion approach for 

cold start fault detection.  

 By analyzing Figure 9 further, it can be concluded that 

PCA-SVM model using different voting strategies achieved 

better TPR and DD than either PCA or SVM model alone, 

especially during the cold start period of the experiment (when 

less than 13 fault types were observed). After the 13
th

 fault type 

was observed, SVM achieved similar accuracy and the detection 

delay as the fusion model.  

We can make several conclusions regarding the FPR. Since 

the observed “or” rule fusion model FPR was ~1.7%, we can 

conclude that there was not much overlap between PCA and 

SVM false alarms. Consequently, distance-weighted voting 

strategy was able to achieve better FPR performance than 

individual SVM or PCA, by efficiently solving the disagreement 

of SVM and PCA via prediction uncertainties. 

Judging by the results, the choice of the voting strategy could 

depend on the specific application at hand. Out of all the 

strategies discussed in Section IV.A, the “or” rule achieved the 

highest TPR. The “or” rule also led to the lowest detection 

delay. However, it fell behind other voting strategies in FPR, 

where distance-weighted rule was the best overall. In fact, after 

the 5
th

 fault was observed, the distance-weighted PCA-SVM 

achieved almost the same TPR and DD as the “or” rule 

PCA-SVM, while having lower FPR. MaxEnt PCA-SVM also 

fell behind “or” rule in the cold start period, with respect to TPR 

and DD, but had better TPR.  

In the second experiment we evaluated performance of 

standalone PCA and PVM, and PCA-PVM that used “or” rule, 

when data batches were partially labeled. We compared them to 

SVM model that used only labeled data for training. Faults were 

introduced in the same order as in the previous experiment. 

Figure 10 shows the comparison on test set in terms of TPR, 

FPR and DD. SVM was inferior to individual PCA and PVM 

models, due to small amounts of labeled data available for 

training. By comparing PCA-PVM to stand-alone PCA and 

PVM, similar conclusions to the ones in the previous 

experiment can be drawn. However, the improvement of the 

fusion model over the individual models had a smaller margin, 

due to scarcity of labeled data. Nevertheless, the experiment 

shows that leveraging supervised and unsupervised models' 

strengths is beneficial even with limited amounts of label data. 

VI. CONCLUSION 

In this paper we proposed a cold start fault detection framework 

applicable to the scenarios in which historical data are labeled 

or partially labeled. The proposed methodology utilizes 

advantages of unsupervised and supervised fault detection 

models by combining their predictions using rules that range 

from simple “or” rule to more involved Maximum 

Entropy-based fusion. The supervised model is updated as new 

fault types are observed. Depending on whether new data are 

partially or completely labeled, the model was updated in the 

standard supervised or the proposed semi-supervised manner, 

respectively. Experimental results on benchmark data indicate 

that combining models is beneficial, as the fusion model 

achieves better performance than standalone models during the 

cold start stage. 
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