
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 1

Abstract— A typical assumption in supervised fault detection is

that abundant historical data are available prior to model

learning, where all types of faults have already been observed at

least once. This assumption is likely to be violated in practical

settings as new fault types can emerge over time. In this paper we

study this often overlooked cold start learning problem in

data-driven fault detection, where in the beginning only normal

operation data are available and faulty operation data become

available as the faults occur. We explored how to leverage

strengths of unsupervised and supervised approaches to build a

model capable of detecting faults even if none are still observed,

and of improving over time, as new fault types are observed. The

proposed framework was evaluated on the benchmark Tennessee

Eastman Process data. The proposed fusion model performed

better on both unseen and seen faults than the stand-alone

unsupervised and supervised models.

Index Terms— cold start learning, fault detection, process

monitoring, semi-supervised learning.

I. INTRODUCTION

ATA-Driven Fault Detection has been extensively studied

during the past few decades [1-20]. Timely discovery of

faulty events in complex systems is critical to ensure safety and

support effective operation. The objective of fault detection is to

achieve high fault detection accuracy with low detection delay.

Early detection provides an invaluable warning on emerging

problems that can be, relatively speaking, easily managed to

avoid catastrophic consequences. High accuracy ensures that

the human operator is rarely interrupted by false alarms and

guarantees successful detection and tracking of fault events.

There are two major approaches for data driven fault

detection. In the unsupervised approach, normal operation is

modeled and faults are detected as deviations from the normal

behavior. Some of the most popular unsupervised fault

detection methods are Principal Component Analysis (PCA) [6,

Copyright (c) 2011 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Mihajlo Grbovic and Slobodan Vucetic are with the Department of

Computer and Information Sciences, Temple University, 1805 N Broad Street

304 Wachman Hall Philadelphia, PA, USA 19122 (phone: 215-204-5535; fax:

215-204-5082; e-mail: mihajlo.grbovic@temple.edu).

Weichang Li, Niranjan A Subrahmanya, Adam K Usadi are with the

ExxonMobil Research and Engineering Company, Corporate Strategic

Research, Annandale, NJ, USA 08801.

7], Independent Component Analysis (ICA) [9] and Partial

Least Squares [6]. In the supervised approach, a classifier is

trained on annotated historical data containing both normal and

faulty conditions, and it is used to predict faults. Representatives

of this approach are Support Vector Machines (SVM) [11] and

Neural Networks [1]. Due to annotation expenses, historical

data may consist of only a small amount of labeled data and a

large amount of unlabeled data. In such cases, a semi-supervised

learning approach can be used [21], which is class of machine

learning techniques that makes use of both labeled and

unlabeled data for training.

The unsupervised models are practical because they can be

constructed using small amounts of normal

condition data,

whereas supervised models can achieve increased sensitivity to

faults and provide better accuracy, but assume that annotated

data containing all fault types are available for training. This

assumption is likely to be violated in real-world applications.

In this paper we study an important problem of cold start

learning, where only limited amounts of normal operation data

are initially available for fault detection model training. As

knowledge about different fault types becomes available, in

form of new partially or fully annotated data, the goal is to

incrementally update the model to improve detection accuracy.

To illustrate, let us assume that a manufacturer of certain type

of gas turbines tests each turbine under close human supervision

to ensure safe operation before the turbines are sold and used. In

this process, the manufacturer can collect a large amount of

normal operation data, sufficient to build a single unsupervised

fault detection model. After the turbines are sold and put to use,

the manufacturer continues monitoring each turbine to collect

data of unforeseen faulty operation that can be useful for

improving the current fault detection model through supervised

learning. Training and updating of a supervised fault detection

model using faulty operation data from any monitored turbine

can help in timely detection and avoidance of the same fault

types on the remaining turbines.

Leveraging strengths of unsupervised and (semi-)supervised

fault detection models in the cold start scenario has not been

extensively studied in the literature. There are several recent

publications in which the supervised and unsupervised models

are combined to improve fault detection accuracy. However, in

most cases [13-17], the unsupervised model is used only as a

preprocessing tool to extract better features for the supervised

model. In some publications, the supervised model is used to

Cold Start Approach for Data-Driven Fault

Detection

Mihajlo Grbovic, Weichang Li, Niranjan A Subrahmanya, Adam K Usadi, Slobodan Vucetic

D

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 2

provide fault localization once the fault is detected by the

unsupervised model [19, 14]. In addition, there exist

decentralized approaches [22] where, for various reasons,

groups of features, e.g. sensors, are monitored separately, some

using unsupervised model and some using supervised model.

In this study we propose an approach that integrates decisions

from the initial unsupervised model and an incrementally

updated supervised model, which leads to overall improvement

in fault detection accuracy. We propose several strategies for

combining the detectors. In addition, to deal with partially

annotated data, we propose a semi-supervised framework that

facilitates learning from partially annotated data via

minimization of the disagreement between detectors in

predicting the fault class

II. PRELIMINARIES

A. Problem Setup

We consider M identical plants or pieces of equipment, each

monitored separately by a network of K sensors providing

measurements synchronously at regular time intervals. For m-th

plant at time t, the state of its k-th sensor is represented by a row

vector of variables xtk
m
. There are many ways to construct this

vector. For example, one can use only raw measurements at time

t, the set of raw measurements at the most recent tlag time steps,

or derive variables from the current and recent measurements.

Combining all K sensors, we have a row vector xt
m

 = [xt1
m
,

xt2
m
,…, xtK

m
].

We denote with d the length of the resulting

vector. The process condition at m-th plant at time t is denoted

with class label ct
m ∈ {–1, +1}, where –1 represents normal

condition, and +1 represents a fault. Combining all monitored

plants, we have a collection Dtr = {(xi, ci), i = 1…N}.

Given the data Dtr, the objective is to train a classification

function f : xi → ĉi, where ĉ is the hard prediction output

ĉi∈{–1, +1}. In some cases, function g : xi → ŷi that outputs a

value ŷi∈R is used for soft prediction. In that case, ĉi can be

obtained by thresholding, ĉi =

sign(ŷi – θ), where θ is the

specified threshold.

In the cold start scenario, we assume that Nint normal

condition observations, Dint = {(xi, –1), i = 1…Nint}, are

available for development of an unsupervised detector.

By continuous monitoring of all processes, the faulty

operation data become available as the faults occur. Whenever a

new fault type is observed at any plant, data directly before and

after the fault occurrence are collected. Figure 1 shows an

example of such a data batch Bj from one of the plants, which

contains Lj observations. Assuming the fault occurred at time tj
0
,

the first tj
0
–1 examples are considered as normal operation data,

while the remaining Lj–tj
0
+1 examples are considered as faulty

operation data. Depending on the particular application, all or

parts of data Bj are labeled with +1 or −1. Specifically, Bj can be

divided into the labeled part {(xi, ci), i = 1…l} and the unlabeled

part {xi, i = l+1…l + u}, l + u = Lj.

At any time t, the objective is to train a classifier using the

available data, Dtr = Dint ∪ Bj ∪ … ∪ BJ.

B. Performance Measures

To evaluate performance of fault detection models, we will

use a set of labeled observations, disjoint from the training set,

consisting of both normal and faulty conditions.

The true positive rate, TPR, is defined as

,100⋅=
+

+

N

n
TPR (1)

where n
+
 is the number of correctly classified faulty operation

examples and N
+
 is the total number of faulty operation

examples in test data.

The false positive rate, FPR, is given as

,100⋅=
−

−

N

n
FPR (2)

where n
–
 is the number of misclassified normal operation data

examples and N
–
 is the total number of normal operation data

examples in test data

Let us assume test data contain J time series in which normal

and faulty conditions interchange, as in Figure 1. The flat line is

the true label and the dotted line is an example fault detector

prediction. We define the detection delay DDj for the j-th time

series from test data as the delay between tj
0
, the introduction

time of the fault, and tj
1
, the model detection time,

.01

jjj ttDD −= (3)

The average detection delay for all time series in test data is

.
1

∑
=

=
J

j

j

J

DD
DD (4)

III. DRIVEN FAULT DETECTION

In this section, we describe the unsupervised, supervised and

semi-supervised methods that we used as components of the

fusion model proposed later in this paper.

A. Unsupervised Fault Detection

In the unsupervised approach, faults are detected as

observations that deviate from the modeled normal behavior.

Among the most popular unsupervised fault detection methods

are PCA and ICA-based approaches. They are threshold-based

approaches that input the observation vector and output a single

number representing deviation from the normal behavior. The

–1

1

y

t

DDj

false

positive

false

negative

True

Predicted

0 Ljtj
0 tj

1

Fig. 1. Batch Bj containing a faulty event: true vs. predicted

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 3

threshold is typically set such that FPR is small (in the range

between 1% and 5%).

The PCA-based approach [6] has been extensively studied

and employed for fault detection. PCA projects the observation

to a lower dimensional subspace, which describes most of the

variance in the normal data. Given training data consisting of N

centered normal condition observations, let us define N×d

matrix X = [x1
T
, x2

T
, …, xN

T
]

T
, where xi is a d-dimensional row

vector of the i-th observation. Then, the principal components

are found using eigenvalue decomposition of the covariance

matrix S,

,
1

1 TT

N
V VΛXXS =

−
= (5)

where the columns of V = [v1, v2,…,vd] are the eigenvectors of S

and the diagonal elements of Λ are its eigenvalues. Two types of

statistics are typically used in PCA–based process monitoring;

namely, Hotelling’s T
2
 statistic and the squared prediction error

(SPE) statistic [7].

The SPE statistics, which are used in our experiments, is a

measure of variation in the residual subspace, defined as

,)(i

T

adad

T

iiSPE xVVx −−= (6)

where Vd-a is a set of the d – a smallest eigenvectors of S.

Reduction order a (a < d) is directly related to the percentage of

variance retained in the normal condition data.

The fault is reported if the value of SPE statistic exceeds the

threshold level θu which is determined by the desired FPR.

The unsupervised models are practical and quickly

operational, as they can construct a fault detector using small

amounts of normal operation data. However, there are known

performance issues, as these models inherently assume

Gaussian distribution of normal operation data. Figure 2.a

shows an idealized case where, after mapping to SPE statistic

space, normal operation data are within a circle, due to Gaussian

distribution in the input space. In this case, data can be

adequately described using PCA SPE statistic threshold.

However, mapping of more complex normal operation

distributions to SPE statistic space can have results such as in

Figure 2.b. Using PCA SPE statistic threshold in this case can

lead to a large fraction of false positives and false negatives.

B. Supervised Fault Detection

Supervised methods, such as Support Vector Machine

(SVM) need both normal and faulty conditions data to train a

fault detector. The advantage of the supervised methods is that

they explicitly utilize historical information of the faulty

conditions, which increases their sensitivity to faults. Given

faulty data, better performance over the unsupervised models

can be achieved because more involved decision rules that

maximize TPR are possible, as illustrated in Figure 3. Normal

conditions and two fault types (F1 and F2) are shown. As can be

observed, the unsupervised model (Figure 3.a) has a large

number of false negatives and false positives, whereas the

supervised model (Figure 3.b) achieves much higher accuracy.

SVM. Given a data set Dtr = {(xi, ci), i = 1…N}, SVM

classifier [23, 24] attempts to find the maximum-margin

hyperplane that divides the examples of the opposite classes.

SVM seeks the best classifier of type g(x) = w
TΦ(x) + β, where

Φ: ℜd
 → Η is a mapping from the original d-dimensional

attribute space to a potentially high-dimensional space H.

Maximizing the margin is equivalent to minimizing ||w||, and the

problem can be formulated as

ibwyts

Cw

iiii

N

i

i
bw

∀≥−≥+Φ⋅

+ ∑
=

,0,1))((..

||||
2

1
.min

1

2

,

ξξ

ξ

x ,

(7)

where ξi are the slack variables, introduced to account for noise

and non-separable data, and C > 0 is a penalty parameter that

trades-off model complexity and accuracy on training data.

Problem (7) can be converted to dual form,

iCyts

yy

ii

i

i

i j

j

T

ijiji

i

i
Si

∀≤≤=

ΦΦ−

∑

∑∑∑≤≤

αα

ααα
α

0,0..

)()(
2

1
:min

0
xx

,

(8)

where αi are the Lagrange multipliers associated with the

constraints of the primal problem.

 The resulting SVM classifier can be conveniently represented

using the dual problem solution as

,),()()()(
11

∑∑
==

=ΦΦ=
N

i

iii

N

i

T

iii yyg xxKxxx αα (9)

where K(⋅,⋅) is the kernel function induced by Φ and αi are the

Lagrange multipliers associated with the training examples.

 Given soft SVM outputs ŷi = g(xi), the final fault detection

predictions are made as ĉi= f(xi) = sign(ŷi – θs), where threshold

θs is set to desired FPR.

C. Semi-supervised Fault Detection

Semi-supervised methods are typically used when majority of

the training data Dt is unlabeled. Such methods aim at

simultaneously achieving high accuracy on the labeled portion

of data and ensuring some geometric dependence on unlabeled

examples. A number of graph-based semi-supervised learning

algorithms [25, 26, 27] can be placed under the framework of

PCA threshold

false positives

normal

(b)(a)

normal

Fig. 2. Unsupervised model: (a) simple (b) complicated distribution

PCA threshold

false positives

(b)(a)

normal

F1

F2

false negatives

normal

F1

F2

SVM threshold

Fig. 3. Complicated distribution a) unsupervised model b) supervised model

PCA threshold

false positives

normal

(b)(a)

normal

Fig. 2. Unsupervised model: (a) simple (b) complicated distribution

PCA threshold

false positives

(b)(a)

normal

F1

F2

false negatives

normal

F1

F2

SVM threshold

Fig. 3. Complicated distribution a) unsupervised model b) supervised model

PCA threshold

false positives

normal

(b)(a)

normal

Fig. 2. Unsupervised model: (a) simple (b) complicated distribution

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 4

minimizing a loss function that involves both labeled and

unlabeled examples,

,)),((min 2

2

1

1

ssssKss

l

i

iiss
g

CgCcgLoss
ss

Lggx
T++∑

=

(10)

where gss :

xi → ŷi, gss ∈ R

n×1
 are semi-supervised model soft

predictions for all samples, with the labeled part g
l
ss∈R

l×1
 and

the unlabeled part g
u

ss ∈ R
u×1

, K ∈ R
n×n

 is a kernel matrix

describing the similarity between examples in the feature space,

D = diag(K 1n) is the degree matrix, and L is the regularization

Laplacian matrix, L = D – K.

The first term enforces that predictions gss should be

consistent with the known class labels. The second term is a

regularization term, where ||gss||K is the Reproducing Kernel

Hilbert Space (RKHS) norm of prediction function gss, and C1 is

the associated regularization parameter. The third term enforces

a geometric constraint that the predictions should be sufficiently

consistent with the structure of the data in the space defined by

kernel K. It is known as the Laplacian regularization term [28]

and can also be written as

.),()
)(

)(

)(

)(
(

1,

∑
+

=

−=
ul

ji

ji

jssiss
ssss

j,j

g

i,i

g
L xxK

D

x

D

x
gg

T
(11)

The minimizer of the problem (10) admits the expansion over

all the labeled and unlabeled examples in the form of

,),()(
1

∑
+

=

=
ul

i

iissg xxKx α
(12)

where αi are the kernel expansion coefficients.

Prototype Vector Machine (PVM). Recent advances [26]

allow for fast optimization of (10), by low-rank approximation

of K, and fast decision making, by forcing the decision function

to span over a small set of basis vectors.

The resulting PVM algorithm uses a squared loss for
computationally efficient learning and ease of implementation.

Using the representer theorem [28], gss = Kα, and assuming

squared loss, Loss(·) = || · ||
2
, objective (10) can be rewritten as

,min 21

2

1
ααααα

α
LKKKK-Y

TTT

ll
R

CC
n

++
×∈

 (13)

where Yl∈R
l×1

 are the class label assignments for the labeled

examples and Kl ∈ R
l×n

 are the rows in the kernel matrix

corresponding to the labeled samples.

PVM for Fault Detection. In our specific setup, additional

information is available in form of unsupervised model fu

predictions. This allows us to impose an extra constraint to

better utilize the unlabeled examples. Our main assumption is

that unlabeled samples in fu view and fss view should agree in

labels, fu(xi) =

fss(xi), where fss(x) = sign(gss(x)).

However, as fss(x) is expected to outperform fu in accuracy of

+1 predictions as more fault types are observed, the requirement

of equal labels might be harmful for fss. To illustrate, let us

consider the example in Figure 4. Figure 4.a can be interpreted

as fu detecting a fault type that fss has not previously observed.

Figure 4.b depicts a scenario in which fss is simply

outperforming fu on a familiar fault type. For this reason,

utilizing fu is advantageous only on fault types not yet observed

by fss. Therefore, we add the following regularization term into

the optimization problem (13), weighted by C3,

,))()((
2

1)(
(min

1

2∑
+

=

−
+ul

i

iuiss
iu

g
fg

f

ss

xx
x

(14)

where fu(xi)∈ {–1,+1} predictions are known and gss(xi)∈ R.

The regularization is active only when fu(x) = +1. To preserve

efficient optimization of PVM, a squared norm was used.

It should be noted that this framework can be used with any

unsupervised model and any semi-supervised model capable of

minimizing the resulting loss function,

),2(

2min

3

211

ααα

ααααααα
α

AKAfAKAK

LKKKKYKK

TT

u

TTT

TTT

l

T

ll

T

l

T

R

C

CC
n

−+

++−
×∈

(15)

where A is the n×n diagonal matrix with (fu(xi) + 1)/2 on the

diagonal and fu is a binary vector of unsupervised model

predictions fu(xi)∈{–1,+1} for both labeled and unlabeled data.

IV. FUSION MODEL FOR COLD START LEARNING

A realistic scenario in process monitoring is that at the time of

fault detector training, we did not observe all types of faults. In

the cold start case, we might only have access to the normal

operation data. Using the initial data, unsupervised model can

be trained. Upon occurrence of the first fault type it becomes

possible to learn a supervised or a semi-supervised model,

depending on the application at hand. As the process is

experiencing new fault types, it should be possible to

incrementally improve the (semi-)supervised model.

While the updated model could have reduced FPR on seen

fault types, it could actually increase FPR on the unseen faults.

Figure 5 illustrates this potential problem. Supervised model

decision rule obtained from training data that includes faults F1

and F2 is shown. A new, previously unobserved fault type, fault

F3, remains undetectable by this model.

As the example from Figure 6 suggests, it might be better to

consult both unsupervised and supervised models. The

unsupervised model can detect the three faults with higher

overall accuracy, although the supervised model has higher TPR

on F1 and F2. We can achieve higher overall TPR on the three

faults by combining decisions of the supervised and

unsupervised models using the “or” rule (if one of them detects

the fault the fault is predicted).

Based on this intuitive observation, in the following we

describe different strategies for combining predictions of

unsupervised and supervised models into a single prediction.

The unsupervised model can be combined with a

fu +1 +1 +1 +1 +1 +1

fss –1 –1 –1 –1 –1 –1

fu –1 –1 –1 –1 –1 –1

fss +1 +1 +1 +1 +1 +1

a) b)

Fig. 4. Unsupervised and semi-supervised model predictions

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 5

semi-supervised model in the same manner. We also describe

strategies for updating the fusion model in cases of completely

and partially labeled data.

A. Combining Unsupervised and Supervised Models

1. “Or” rule. The fault is reported if either unsupervised

model fu or supervised model fs detects the fault, ĉi =

sign(fu(xi) +fs(xi)+1), where fu(xi), fs(xi)∈{–1, +1}. Due to the

voting mechanism (even one +1 vote wins), the “or” rule could

potentially increase the overall FPR as compared to FPR of the

individual models. Essentially, the fusion model will inherit all

of unsupervised and supervised models false alarms. However,

the “or” rule will assure the effective detection of faults

previously unseen by the supervised model, and increase the

overall TPR, due to the supervised model superior TPR on the

fraction of faults it has observed.

2. Performance-based Weighted Voting [29]. This

approach assigns different weights to supervised and

unsupervised classifiers based on their estimated true positive

and false positive rates, TPRs and FPRs for the supervised model

and TPRu and FPRu for the unsupervised model. Those rates are

estimated using the available training data. Then, it calculates

the prediction-dependent model weights as

,
)()())(1(

)(
)(

ssisis

ss
is

TPRFPRff

FPRTPR
w

+⋅+−
−

=
xx

x

.
)()())(1(

)(
)(

uuiuiu

uu
iu

TPRFPRff

FPRTPR
w

+⋅+−
−

=
xx

x

(16)

Finally, it calculates the final prediction as

ĉi = sign(wu(xi) ·fu(xi) + ws(xi) ·fs(xi)). When both models agree,

the final prediction is obtained by consensus. When the models

disagree, the model with the larger weight decides.

3. Distance-based Weighted Voting. Considering soft

predictions from supervised and unsupervised models, ŷu, ŷs

∈ R, and their distances from the corresponding thresholds,

ŷu–θu and ŷs–θs, a heuristic weighted voting schema can be

derived as ĉi = sign((gu(xi)–θu) + (gs(xi)–θs)). Interpreting

distance from the threshold as an estimate of uncertainty, this

voting schema always trusts the model that is more certain in its

prediction.

4. Maximum Entropy Voting. Discriminative probabilistic

Maximum Entropy (MaxEnt) model [30] can be used for

combining local model predictions into a global prediction [31]

by introducing pre-defined decision making rules.

In our setting, we propose to use rules that involve both

models and the predicted class, i.e. r(fu, fs, c). For example, the

following rule describes an outcome in which the unsupervised

model predicts faulty operation, fu(xi) = +1, the supervised

model predicts normal operation fs(xi) = –1 and the ground truth

is ci = +1.

.
,0

11)(1)(,1
)),(),((1



 +=∧−=∧+=

=
otherwise

cff
cffr

iisiu

iisiu

xx
xx

If these conditions are met, this rule is included in prediction

making, r1 = 1, otherwise it is not considered, r1 = 0. A total of

eight rules can be created in this manner (for each possible

outcome). Each rule rj(fu, fs, c) is associated with a certain

weight ωj that characterizes its influence in prediction making,

i.e. the rules with large ω are more influential in the final

prediction. Using rules and their weights, MaxEnt model

calculates conditional probability

,

)),,(exp(

)),,(exp(

),|(

}1,1{ 1

1

∑
−∈ =

=

∑

∑
=

z

J

j
sujj

J

j
isujj

sui

zffr

cffr

ffcP

ω

ω

(17)

where rj(fu, fs, c) is the j-th rule and ωj is the weight of the j-th

rule. Given local predictions fu(xi) and fs(xi), global prediction ĉ

is made as the one that maximizes the conditional probability

)).(),(|(maxargˆ
isiuci ffcPc xx= (18)

Weights ωj are learned by maximizing likelihood,

.))(),(|(log
1

∑
=

=
N

i

isiuiME ffcPL xx (19)

Since LME is a concave function, there exists a global optimum

solution that can be found using standard convex optimization

algorithms. In this paper, we use the gradient ascent iterative

procedure that updates current estimates of ωj as

,
j

IKold

j

new

j

L

ω
ηωω

∂
∂

+= (20)

where ωj are initially set to ωj = 1/J, j = 1…J, J = 8.

B. Incremental update of the Fusion Model

Following the setup in II.A, the procedure starts by using the

initial normal-type data Dint, when the unsupervised model is

developed. Upon arrival of the first fault data batch B1, a

supervised model is trained, which is followed by selection of an

appropriate fusion rule. The process is repeated upon receipt of

any subsequent data batch when the supervised model is

normal

F1

F2

F3

false negatives

SVM threshold

Fig. 5. Supervised model trained on F1, F2. Newly observed F3 is undetectable

normal

F1

F2

F3

PCA threshold

false positives

SVM threshold

Fusion threshold

“or” rule

Fig. 6. Unsupervised and supervised models combined using “or” rule

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 6

retrained and the fusion rule updated. Our approach allows for

both supervised scenario where new data batches are completely

annotated, and semi-supervised scenario, where the new batches

are only partially annotated.

V. EMPIRICAL STUDIES

The proposed cold start fault detection framework with

different decision fusion strategies was evaluated on the

benchmark Tennessee Eastman Process (TEP) data set [4].

Two scenarios were considered. In the first scenario

incoming data batches are completely annotated. PCA (using

SPE statistic) and SVM were used as representatives of the

unsupervised and supervised models, respectively. The

resulting fusion model is denoted as PCA-SVM.

In the second scenario, the batches are partially labeled. PCA

was used as the unsupervised model. Learning from partially

labeled data was guided by optimization of the proposed

objective (15), via PVM algorithm.

A. Tennessee Eastman Process

The Tennessee Eastman Process data set is a well-known

simulated industrial problem for process monitoring and

control. Over years, it has become a benchmark data for a large

number of fault detection approaches [3, 5, 6, 7, 9, 11, 12]. The

model is described in detail in [4]. The TEP model is a chemical

process with five major operation units: a reactor, a condenser, a

compressor, a stripper, and a separator (Figure 7). The plant

represents an open-loop unstable plant that produces two liquid

products G and H from gaseous feeds A, C, D, E, and the inert

component B.

The process has 53 variables, including 22 process

measurements, 19 analyzer measurements, and 12 manipulated

variables. Our evaluation results presented here focus on all the

process measurements and 11 manipulated variables, where the

remaining constant manipulated variable was ignored. We did

not consider the analyzer measurements.

The modified closed-loop version [3] of the original Fortran

TEP implementation [4] was used to simulate data. The source

code uses a discrete control algorithm to stabilize the process. A

total of 20 types of faults (Table 1) can be simulated ranging

from faults that are easy to detect with no delay (e.g., fault 1 and

4), to faults that are detectable only after a certain delay

fault Description type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C feed ratio constant (stream 4) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (str. 4) Step
8 A, B, C feed composition (stream 4) Random

10 C feed temperature (stream 4) Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow Drift
14 Reactor cooling water valve Sticking

16-20 Unknown

Table 1. Tennessee Eastman Process faults

(e.g., fault 17 and 18), to very subtle faults that are hard to detect

(faults 3, 9, 15) even with the best supervised methods. These

properties of the TEP faults have been observed by previous

studies [5-9, 11, 12]. As a result, our evaluation did not consider

faults 3, 9 and 15.

B. Experimental Setup

We considered M =10 identical TEP plants at different

locations. The goal was to train a single fault detection model

for monitoring of all plants, through fusion of unsupervised and

supervised learning. It was assumed that limited amounts of

normal operation data from each plant Dint were initially

available for unsupervised model training. Next, the plants were

monitored for potential faulty behavior. Whenever a new fault

type was observed at any location, data directly before and after

the fault occurrence were collected in form of data batch Bm.

Different fault types were randomly generated at different plants

at different times, and data batches containing different fault

types were observed as they occurred.

To create input attributes xi, we used the dynamic approach

from [7, 9]. At each plant, observations from all K sensors at

time t were augmented with observations from previous tlag

moments and stacked into a variable vector xt
m
 with (tlag +1)·K

variables. Larger values of tlag lead to improved performance

with respect to FPR and TPR but increase the Detection Delay.

As low Detection Delay was preferred, we used tlag

= 2.

Training Data for Unsupervised Model. Initial Data

consisted of N = 2,000 labeled normal process operation

examples,

Dinit = {(xi, ci), ci = –1, i = 1…N}.

Training Data for Supervised Model. We generated 17

fault types in a random order at different locations, such that it

resulted in M = 17 labeled data batches Bj = {(xi, ci), i = 1…L},

one for each fault type. Each batch was a time-series that

contained L = 4,000 examples where the first 2,000 examples

represented normal operation and the remaining ones

represented faulty operation. The batches were used to update

the supervised model, and to update the performance-based

voting weights and MaxEnt weights.

Training Data for Semi-supervised Model. In the partially

labeled data scenario, only 2.5% of randomly selected samples

from each data batch were labeled.

Test Data. The performance was evaluated on test data

consisting of 10 time-series for each of the 17 fault types were

Fig. 7. Tennessee Eastman Process scheme

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 7

simulated. Each time-series contained L = 1,000 examples,

where first 500 examples represented normal operation and the

remaining examples represented faulty operation.

Parameter Selection. Parameters for different algorithms

were selected as follows. We assumed that no faulty data were

available for parameter tuning.

a) PCA. SPE values for data Dint were calculated, i.e. the

amount of variation in the residual subspace spanned by d – a

smallest principal components, where a is the number of

principal components that explain 95% variance in data.

Decision threshold θu was set such that FPR = 1%.

b) SVM used Gaussian RBF kernel K(xi,xj) = exp(–γ||xi

–xj||
2
), where the kernel width γ was set to inverse median of

squared distances ||xi –xj||
2
 between data points in Dint, and slack

parameter to C = 10. LibSVM software package [32] was used.

Decision threshold θs was set such that FPR = 1%.

c) MaxEnt. Gradient ascent learning rate was set to η = 0.001

and the learning of rule weights ω was terminated when (20)

stopped improving by more than 10
–5

.

d) PVM used a Gaussian Kernel K(xi,xj) = exp(–γ||xi –xj||
2
).

The kernel parameter γ was set to inverse median of squared

distances ||xi –xj||
2
 between data points in Dint. The number of

PVM prototypes was set to 200. Regularization parameters in

loss function (15) were set as follows, C1 = 10, C2 = 0.1 and

C3 = 10. Decision threshold θss was set such that FPR = 1%.

The fusion model used individual models whose FPR was set

in advance to 1%. Depending on the fusion rule the resulting

FPR could possibly increase or decrease. For example, the “or”

rule FPR can only be in the 1%-2% range, depending on how

much the individual false alarms of SVM and PCA overlap,

while the distance-weighted voting strategy could potentially

achieve FPR that is less than 1%, since it uses soft predictions

and prediction uncertainties.

C. Experimental Results

In the first experiment we compared accuracies of

stand-alone PCA and SVM to joint PCA-SVM model with

different fusion strategies, when all training data were labeled.

The procedure started with training the PCA model on Dint.

Then, batches of faulty data were introduced at different plants

in this

order: 5, 20, 4, 11, 13, 8, 6, 14, 19, 10,

2, 1, 16, 12, 17,18,

7.

The

SVM and the fusion rule parameters were updated after each

fault occurrence. The order in which the faults were introduced

was randomly selected. To avoid over-fitting, after each new

batch was observed the voting weights were updated before the

new supervised model was trained.

Figure 8 shows fault-specific TPR of SVM on test set. It

tracks the TPR of each fault type (y-axis) as new fault types

were observed (x-axis). Each pie represents TPR (full pie has

TPR =

100%, empty pie has TPR = 0%). It can be concluded

that some fault types were accurately detected even before they

were observed (e.g. SVM trained only on fault 5 had high TPR

on faults 1, 2, 4, 6, 7, 8, 12, 13, 14), while for other fault types,

the satisfactory FPR was achieved only after they were observed

(e.g. faults 10, 11, 16, 19).

Figure 9 reports changes of average TPR, DD and FPR values

on test set (y-axis) as new faults were introduced (x-axis). The

performance of PCA was the same throughout the procedure, as

expected. On the other hand, SVM fault detection performance

improved as new fault types were observed. SVM was initially

inferior to PCA, but it overtook it after the 10
th

 fault type was

observed.

It is interesting to observe that while accuracy of SVM after

observing only the first fault type (fault 5) was acceptable, it

deteriorated dramatically after the second and third fault types

(faults 20 and 4) were introduced, and then it recovered after

fault types 11 and 13 were observed. The drop in accuracy

nicely illustrates the drawbacks of purely supervised fault

detectors when only a small fraction of possible fault types are

available for training. It can be seen from Figure 8, and it is

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7

5

20
4

11
13

8
6

14
19

10
2

1
16

12
17

18
7

FAULT OBSERVED

F
A
U
L
T

T
E
S
T
E
D

Fig. 8. Fault-by-fault TPR (y-axis) as new faults were observed (x-axis)

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7
40

50

60

70

80

90

100

FAULTS

T
P
R

(
%
)

PCA

PCA-SVM "or" rule

PCA-SVM performance weighted

PCA-SVM distance weighted

PCA-SVM MaxEnt

SVM

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7
10

12

14

16

18

20

22

FAULTS

PCA

PCA-SVM "or" rule

PCA-SVM performance weighted

PCA-SVM distance weighted

PCA-SVM MaxEnt

SVM

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7
0

0.5

1

1.5

2

2.5

3

FAULTS

PCA

PCA-SVM "or" rule

PCA-SVM performance weighted

PCA-SVM distance weighted

PCA-SVM MaxEnt

SVM

 (a) y-axis: TPR (%) (b) y-axis: Detection Delay (DD) (c) y-axis: FPR (%)

Fig. 9. Fault detection performance evaluation for PCA, SVM and PCA-SVM models trained using labeled data in terms of: a) TPR b) DD c) FPR

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 8

consistent with the illustrative example in Figure 5, that while

the SVM trained on the first 3 faults achieves high accuracy on

these faults, its decision boundary changes in such a way that its

accuracy on yet unseen fault types 1, 6, 7, 8, 12, 13, 14, 17, and

18 is low. It is interesting to observe that the corresponding

decrease in accuracy of the PCA-SVM models after fault types

5, 20, and 4 were observed was markedly smaller,

demonstrating the appeal of the proposed fusion approach for

cold start fault detection.

 By analyzing Figure 9 further, it can be concluded that

PCA-SVM model using different voting strategies achieved

better TPR and DD than either PCA or SVM model alone,

especially during the cold start period of the experiment (when

less than 13 fault types were observed). After the 13
th

 fault type

was observed, SVM achieved similar accuracy and the detection

delay as the fusion model.

We can make several conclusions regarding the FPR. Since

the observed “or” rule fusion model FPR was ~1.7%, we can

conclude that there was not much overlap between PCA and

SVM false alarms. Consequently, distance-weighted voting

strategy was able to achieve better FPR performance than

individual SVM or PCA, by efficiently solving the disagreement

of SVM and PCA via prediction uncertainties.

Judging by the results, the choice of the voting strategy could

depend on the specific application at hand. Out of all the

strategies discussed in Section IV.A, the “or” rule achieved the

highest TPR. The “or” rule also led to the lowest detection

delay. However, it fell behind other voting strategies in FPR,

where distance-weighted rule was the best overall. In fact, after

the 5
th

 fault was observed, the distance-weighted PCA-SVM

achieved almost the same TPR and DD as the “or” rule

PCA-SVM, while having lower FPR. MaxEnt PCA-SVM also

fell behind “or” rule in the cold start period, with respect to TPR

and DD, but had better TPR.

In the second experiment we evaluated performance of

standalone PCA and PVM, and PCA-PVM that used “or” rule,

when data batches were partially labeled. We compared them to

SVM model that used only labeled data for training. Faults were

introduced in the same order as in the previous experiment.

Figure 10 shows the comparison on test set in terms of TPR,

FPR and DD. SVM was inferior to individual PCA and PVM

models, due to small amounts of labeled data available for

training. By comparing PCA-PVM to stand-alone PCA and

PVM, similar conclusions to the ones in the previous

experiment can be drawn. However, the improvement of the

fusion model over the individual models had a smaller margin,

due to scarcity of labeled data. Nevertheless, the experiment

shows that leveraging supervised and unsupervised models'

strengths is beneficial even with limited amounts of label data.

VI. CONCLUSION

In this paper we proposed a cold start fault detection framework

applicable to the scenarios in which historical data are labeled

or partially labeled. The proposed methodology utilizes

advantages of unsupervised and supervised fault detection

models by combining their predictions using rules that range

from simple “or” rule to more involved Maximum

Entropy-based fusion. The supervised model is updated as new

fault types are observed. Depending on whether new data are

partially or completely labeled, the model was updated in the

standard supervised or the proposed semi-supervised manner,

respectively. Experimental results on benchmark data indicate

that combining models is beneficial, as the fusion model

achieves better performance than standalone models during the

cold start stage.

REFERENCES

[1] S. Simani, “Identification and Fault Diagnosis of a Simulated Model of an
Industrial Gas Turbine”, IEEE Transactions on Industrial Informatics,
vol. 1, no. 3, pp. 202-216, 2005.

[2] Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized Fault Diagnosis
of Large-Scale Processes Using Multiblock Kernel Partial Least Squares”,
IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 3-10, 2010.

[3] L. H. Chiang, E. Russell, and R. D. Braatz, “Fault detection and diagnosis
in industrial systems”, Springer, 2001.

[4] D. D. Downs and E. F. Vogel, “A plant-wide industrial process control
problem”, Computers & Chemical Engineering, vol. 17, issue 3, pp.
245-255, 1993.+

[5] D. P. Filev, R. B. Chinnam, F. T., and P. Baruah, “An Industrial Strength
Novelty Detection Framework for Autonomous Equipment Monitoring
and Diagnostics”, IEEE Transactions on Industrial Informatics, vol. 6, no.
4, pp. 767-779, 2010.

[6] J. F. MacGregor, “Statistical process control of multivariate process”,
IFAC Int. Symp. on Advanced Control of Chemical Processes, pp.
427-435, 1994.

[7] W. Ku, R. H. Storer and C. Georgakis, “Disturbance detection and
isolation by dynamic principal component analysis”, Chemometrics and
Intelligent Laboratory Systems, vol. 30, pp. 179-196, 1995.

[8] M.-D. Ma, D. S.-H. Wong, S.-S. Jang, and S.-T. Tseng, “Fault Detection
Based on Statistical Multivariate Analysis and Microarray
Visualization”, IEEE Transactions on Industrial Informatics, vol. 6, no. 1,
pp. 18-24, 2010.

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7
10

20

30

40

50

60

70

80

90

100

FAULTS

PCA

PVM

PCA-PVM "or" rule

SVM

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7
10

15

20

25

30

FAULTS

D
D

PCA

PVM

PCA-PVM "or" rule

SVM

5 20 4 11 13 8 6 14 19 10 2 1 16 12 17 18 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

FAULTS

F
P
R

(
%
)

PCA

PVM

PCA-PVM "or" rule

SVM

 (a) y-axis: TPR (%) (b) y-axis: Detection Delay (DD) (c) y-axis: FPR (%)

Fig. 10. Fault detection performance evaluation for PCA, PVM and PCA-PVM models trained using partially labeled data in terms of: a) TPR b) DD c) FPR

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 9

[9] J. M Leea, C. K. Yoob and I-B. Leea, “Statistical monitoring of dynamic
processes based on dynamic independent component analysis”, Chemical
Engineering Science, vol. 59 pp. 2995-3006, 2004.

[10] A. Hyvärinen, J. Karhunen, and E. Oja, “Independent Component
Analysis”, John Wiley & Sons, 2001.

[11] L. H. Chiang, M. E. Kotanchek and A. K. Kordon, “Fault diagnosis based
on Fisher discriminant analysis and support vector machines”, Computers
and Chemical Engineering, vol. 28(8), pp. 1389-1401, 2003.

[12] A. Kulkarni, V. K. Jayaraman, and B. D. Kulkarni, “Knowledge
incorporated support vector machines to detect faults in Tennessee
Eastman Process”, Computers and Chemical Engineering, vol. 29 pp.
2128–2133, 2005.

[13] A. Widodo, B.S. Yang and T. Han, ”Combination of independent
component analysis and support vector machines for intelligent faults
diagnosis of induction motors”, Expert Systems with Applications, vol.
32, pp. 299-312, 2007.

[14] C. Bo, X. Qiao, G. Zhang, Y. Bai and S. Zhang “An integrated method of
independent component analysis and support vector machines for
industry distillation process monitoring”, Journal of Process Control, 20,
pp. 1133–1140, 2010.

[15] I. Monroya, R. Benitezb, G. Escuderoc and M. Graells, “A
semi-supervised approach to fault diagnosis for chemical processes”,
Computers & Chemical Engineering, vol. 34, pp. 631-642, 2010.

[16] C. C. Hsu, L. S. Chen, “Integrate Independent Component Analysis and
Support Vector Machine for Monitoring Non-Gaussian Multivariate
Process”, 4th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1-6, 2008.

[17] M. Guo, L. Xie, S. Wang and J. Zhang, “Research on an Integrated
ICA-SVM Based Framework for Fault Diagnosis”, IEEE International
Conference on Systems, Man and Cybernetics, pp. 2710–2715, 2003.

[18] R. Gong, S. H. Huang and T. Chen, “Robust and Efficient Rule
Extraction Through Data Summarization and Its Application in Welding
Fault Diagnosis”, IEEE Transactions on Industrial Informatics, vol. 4, no.
3, pp. 198-206, 2008.

[19] B. A. Foss, T. A. Johansen, “An integrated approach to on-line fault
detection and diagnosis -including artificial neural networks with local
basis functions”, IFAC symposium in On-line fault detection and
supervision in the chemical process industries, pp. 207-213, 1993.

[20] J.-H. Zhou, C. K. Pang, F. L. Lewis, and Z.-W. Zhong, “Intelligent
Diagnosis and Prognosis of Tool Wear Using Dominant Feature
Identification”, IEEE Transactions on Industrial Informatics, vol. 5, no. 4,
pp. 454-465, 2009.

[21] G. Blanchard, G. Lee, C. Scott, Semi-Supervised Novelty Detection,
Journal of Machine Learning Research vol. 11, pp. 2973-3009, 2010.

[22] H. Chen, G. Jiang, C. Ungureanu and K. Yoshihira, “Combining
supervised and unsupervised monitoring for fault detection in distributed
computing systems”, ACM symposium on Applied computing, pp.
705–709, 2006.

[23] V.N. Vapnik, Statistical Learning Theory, John Wiley Sons, Inc.,1998.

[24] N. Cristianini, J. S.-Taylor, An introduction to support vector

machines and other kernel-based learning methods, Cambridge

Press 2000.

[25] X. Zhu, Z. Ghahramani, J. Lafferty, “Semisupervised learning using
gaussian fields and harmonic functions”, International Conference on
Machine Learning (ICML), pp. 912–919, 2003.

[26] K. Zhang and J.T. Kwok, “Prototype vector machine for large scale
Semi-supervised Learning”, International Conference on Machine
Learning (ICML), pp. 1233–1240, 2009.

[27] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, B. Scholkopf, “Learning with
local and global consistency”. Neural Information Processing Systems,
pp. 321–328, 2003.

[28] M. Belkin, P. Niyogi, V. Sindhwani, “Manifold regularization: a
geometric framework for learning from labeled and unlabeled examples”
Journal of Machine Learning Research, vol. 7, pp. 2399–2434, 2006.

[29] K. Ghosh, Y. S. Ng, R. Srinivasan, “Evaluation of decision fusion
strategies for effective collaboration among heterogeneous fault
diagnostic methods”, Computers and Chemical Engineering, vol 35. pp.
342–355, 2011.

[30] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging”,
Proc. EMNLP. New Brunswick, New Jersey: Association for
Computational Linguistics, pp. 133-142, 1996.

[31] M Grbovic, W Li, P Xu, AK Usadi, L Song, S Vucetic, " Decentralized
fault detection and diagnosis via sparse PCA based decomposition and
Maximum Entropy decision fusion", Journal of Process Control, vol. 22,
pp. 738–750 2012.

[32] LIBSVM Library, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Mihajlo Grbovic received his B.A. and M.S. degree in

electrical engineering from the Faculty of Technical

Sciences, University of Novi Sad in 2007. He is

currently pursuing a Ph.D. degree in computer and

information sciences at Temple University,

Philadelphia, PA, and is expected to graduate in 2012.

 His research interests include machine learning,

data mining, data-driven fault detection, and

computational advertising

Weichang Li (S’04-M’05) received the B.S. and M.S.
degrees in acoustics and electronic engineering from
Harbin Engineering University in 1993 and 1996, the
dual M.S. degree in electrical engineering and computer
science and ocean engineering from Massachusetts
Institute of Technology, Cambridge, in 2002, and the
Ph.D. degree in electrical and oceanographic
engineering from the Massachusetts Institute of
Technology/Woods Hole Oceanographic Institute Joint
Program in Oceanography in February 2006.

He is currently with the ExxonMobil Research and Engineering Company,

Annandale, NJ. His research interests include statistical signal processing,

machine learning, acoustic communications, and 3D imaging. He is also a

member of SIAM, SEG and ASA.

Niranjan Subrahmanya received his Bachelors and

Masters degrees in Mechanical Engineering from the

Indian Institute of Technology, Mumbai in August,

2003 and a PhD degree from Purdue University, West

Lafayette, Indiana, in May 2009. He is currently

working with the Complex Systems Science group at

Exxon Mobil Research and Engineering Company,

Annandale, NJ. His research interests include

machine learning, signal processing, intelligent

systems, dynamics and control, and data-based

systems modeling, monitoring and diagnostics. He is a member of IEEE and

SIAM.

Adam Usadi received a BS in Physics from

Dartmouth College, a MS in materials science from

Hiroshima University, and a PhD in Space Physics

from Rice University. Adam worked for Goldman

Sachs where he supported precious metals trading.

At ExxonMobil's Upstream Research Company in

Houston he worked on computational math problems

in reservoir modeling and seismic processing. At

ExxonMobil's Corporate Strategic Research

Company in New Jersey he's served as Section Head

of the Complex Systems Science section where he led the groups in data

analytics as well as supply chain optimization. Currently he is Section Head of

the Emerging Energy Science Section.

Slobodan Vucetic received the B.S. and M.S.

degrees in electrical engineering from the University

of Novi Sad, Serbia, and the Ph.D. degree in

electrical engineering from Washington State

University, Pullman, in 1994, 1997, and 2001,

respectively.

 He is currently an Associate Professor in the

Department of Computer and Information Sciences,

Temple University, Philadelphia, PA. His research

interests are data mining and machine learning

