
Pattern Recognition Letters 34 (2013) 963–969
Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec
Decentralized Estimation using distortion sensitive learning vector quantization

Mihajlo Grbovic ⇑, Slobodan Vucetic
Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 April 2012
Available online 27 February 2013

Communicated by Y. Ma

Keywords:
Quantization
Distributed estimation
Non-linear estimation
Vector quantization
Aerosol retrieval
0167-8655/$ - see front matter � 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.patrec.2013.02.011

⇑ Corresponding author. Tel.: +1 (215) 204 7230; fa
E-mail addresses: mihajlo.grbovic@temple.edu (M

@temple.edu (S. Vucetic).
A typical approach in supervised learning when data comes from multiple sources is to send original data
from all sources to a central location and train a predictor that estimates a certain target quantity. This
can be inefficient and costly in applications with constrained communication channels, due to limited
power and/or bitlength constraints. Under such constraints, one potential solution is to send encoded
data from sources and use a decoder at the central location. Data at each source is summarized into a sin-
gle codeword and sent to a central location, where a target quantity is estimated using received code-
words. This problem is known as Decentralized Estimation. In this paper we propose a variant of the
Learning Vector Quantization (LVQ) classification algorithm, the Distortion Sensitive LVQ (DSLVQ), to
be used for encoder design in decentralized estimation. Unlike most related research that assumes known
distributions of source observations, we assume that only a set of empirical samples is available. DSLVQ
approach is compared to previously proposed Regression Tree and Deterministic Annealing (DA)
approaches for encoder design in the same setting. While Regression Tree is very fast to train, it is limited
to encoder regions with axis-parallel splits. On the other hand, DA is known to provide state-of-the-art
performance. However, its training complexity grows with the number of sources that have different data
distributions, due to over-parametrization. Our experiments on several synthetic and one real-world
remote sensing problem show that DA has limited application potential as it is highly impractical to train
even in a four-source setting, while DSLVQ is as simple and fast to train as the Regression Tree. In addi-
tion, DSLVQ shows similar performance to DA in experiments with small number of sources and outper-
forms DA in experiments with large number of sources, while consistently outperforming the Regression
Tree algorithm.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the decentralized estimation setup, the physical quantities
(e.g., temperature, pressure) are measured at distributed locations
by sensor devices with limited energy and memory capacities and
sent via constrained communication channels to a fusion center
where a desired target variable is estimated. With advances in
sensing technology, there is a growing interest in designing decen-
tralized estimation systems with sensors that provide multivariate
observations (e.g., camera sensor networks) and multi-type sen-
sors that measure different quantities (e.g. power plants). The tar-
get variable y can be either a continuous quantity to be estimated
from noisy sensor observations of the same type x ¼ yþ noise, a
continuous function of potentially multi-type and multi-dimen-
sional sensor observations x or a binary variable that indicates a
certain event. In the literature, Decentralized Detection (Nguyen
et al., 2005; Xiao and Luo, 2005) is used for categorical target
ll rights reserved.

x: +1 (215) 204 5082.
. Grbovic), slobodan.vucetic
and Decentralized Estimation for numerical target. Applications
of Decentralized Estimation can be found in remote-sensing, sonar
and seismology systems. It has been a focus of considerable re-
search in the past two decades (Lam and Reibman, 1993; Fang
and Li, 2010; Xiao et al., 2008; Grbovic and Vucetic, 2009;
Megalooikonomou and Yesha, 2000; Rao et al., 1996; Gubner,
1993; Li, 2007).

Given a bitlength constraint on messages, the sensors can trans-
mit only a summary message instead of the original measurement.
The principal approach is to design encoders at sensor sites and a
decoder at the fusion site that reconstructs the target variable from
the received encoder messages. The encoder types range from lin-
ear threshold-based quantizers (Fang and Li, 2010; Xiao and Luo,
2005; Xiao et al., 2008) to non-linear decision tree- (Megalooikon-
omou and Yesha, 2000), nearest prototype- Grbovic and Vucetic,
2009; Rao et al., 1996 and kernel-based (Nguyen et al., 2005) quan-
tizers. In most previous work, encoder design is carried out by
assuming that the joint distribution Pðx; yÞ is known (Lam and
Reibman, 1993; Xiao and Luo, 2005; Xiao et al., 2008; Fang and
Li, 2010; Wang et al., 2009). In practice this is violated, either be-
cause the parameters of Pðx; yÞ are unknown or even less is known

http://dx.doi.org/10.1016/j.patrec.2013.02.011
mailto:mihajlo.grbovic@temple.edu
mailto:slobodan.vucetic@temple.edu
mailto:slobodan.vucetic@temple.edu
http://dx.doi.org/10.1016/j.patrec.2013.02.011
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec

964 M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969
about it. Here, we consider a more realistic scenario and address
the problem using a set of empirical samples of sensor and target
measurements (Megalooikonomou and Yesha, 2000; Rao et al.,
1996; Grbovic and Vucetic, 2009). In many real-world applications
it is reasonable to assume that certain amount of source an target
data can be collected for purposes of encoder and decoder design.
Finally, unlike some methods (Fang and Li, 2010; Li, 2007) that re-
quire sensors to communicate among themselves, we consider sys-
tems where each sensor communicates only with the fusion
center. This setup is favorable as it does not increase the commu-
nication cost on account of solving the bitlength constraint
problem.

The proposed methodology was evaluated on several synthetic
problems with different number of sources and on a real-world
problem of predicting aerosol optical depth (AOD) from remotely
sensed data. Multisource observations in form of multispectral
images are collected from sensors aboard satellites across the en-
tire globe, while target AOD observations are collected from lim-
ited number of ground-based sensors placed at world-wide
locations. The collocated data are used to train encoders for satel-
lites and a decoder for AOD prediction, which reduces communica-
tion cost and allows prediction across the entire globe.

2. Problem setup

The general setup assumes a system of n distributed data
sources S1; . . . ; Sn that produce multivariate vectors x1; . . . ;xn

drawn from probability distribution Pðx1; . . . ;xnÞ, and a fusion cen-
ter (Fig. 1). It is assumed that the random vectors xi; i ¼ 1; . . . ;n, are
related to the unobservable continuous quantity y that the fusion
center needs to estimate and there exists a joint distribution
Pðx1; . . . ;xn; yÞ.

Due to the channel bandwidth and energy constraints, the ith
sensor communication is limited to Mi codewords. Let ai be the
quantization function for source Si. Instead of the original vectors,
x1; . . . ;xn, the data sources transmit quantized messages z1; . . .

; zn; zi ¼ aiðxiÞ, to the fusion center, where zi is as an integer from
set f1; . . . ;Mig. Let h be the function of the fusion center that gives
the estimate y ¼ hðz1; . . . ; znÞ of y, given the quantizers a1; . . . ;an. At
the fusion center, the goal is to find the point estimate of y that
minimizes the distortion measure d. The optimal estimate in this
case is the conditional expectation of a random vector
Y; EðYjx1; . . . ;xnÞ.

Under this setup, the problem of decentralized estimation is to
find the quantization functions a1; . . . ;an and the fusion function h
such that the estimation error EX ½dfEYðY jX1; . . . ;XnÞ;hða1ðX1Þ;
. . . ;anðXnÞÞg� is minimized under given communication con-
straints. Special case of the estimation error under assumption that
Fig. 1. Illustration of the decen
d is defined as the Mean Squared Error was formulated in (Gubner,
1993) as error ¼ EX ½ðEYðY jX1; . . . ;XnÞ � hða1ðX1Þ; . . . ;anðXnÞÞÞ2�.

For decentralized estimation with the squared error distortion,
when the joint probability distribution Pðx1; . . . ;xn; yÞ is known,
necessary conditions for the optimal compression functions
a1; . . . ;an and fusion function h were derived (Lam and Reibman,
1993). Assuming, without loss of generality, that n ¼ 2, they are:

Condition 1
(Decoder design). Given a1 and a2, the optimal h is given by
hðz1; z2Þ ¼ EðYja1ðx1Þ ¼ z1;a2ðx2Þ ¼ z2Þ, where z1 2 f1; . . . ;M1g and
z2 2 f1; . . . ;M2g.

Condition 2
(Encoder design). Given a2 and h, optimal quantization function a1

is determined as a1ðx1Þ ¼ arg minjEX2 ½ðEYðY jx1;X2Þ � hðj;a2ðX2ÞÞÞ2�,
where j 2 f1; . . . ;M1g.

The conditions lead to the solution by the generalized Lloyds
algorithm where the construction of the decentralized system is
performed iteratively. One step consists of optimizing the fusion
function h while fixing the local quantization functions at each
sensor, whereas another step involves optimizing the quantization
function at a given sensor while fixing h and the quantization func-
tions of the remaining sensors.

The problem addressed in this paper arises when only a set of
examples from the underlying distribution Pðx1;x2; yÞ is available,
D ¼ fðx1i;x2i; yiÞ; i ¼ 1; . . . ;Ng, where x1i is a K1-dimensional vector
and x2i a K2-dimensional vector. Given D and MSE as the distortion
measure, the expectation of the estimation error can be formulated
as

error ¼ 1
N

XN

i¼1

ðyi � hða1ðx1iÞ;a2ðx2iÞÞÞ2: ð1Þ

We propose an iterative procedure for decoder and encoder design
that minimizes (1) with respect to h and a1;a2.
3. Methodology

Let us first consider the decoder design. Following Condition 1
and assuming that only D is available, the optimal fusion function
h for each pair of codewords z1; z2, can be estimated by taking the
average of target values yi from examples in D that satisfy
a1ðx1iÞ ¼ z1 ^ a2ðx2iÞ ¼ z2,
tralized estimation system.

M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969 965
hðz1; z2Þ ¼ averagefyi : a1ðx1iÞ ¼ z1 ^ a2ðx2iÞ ¼ z2g: ð2Þ

The disadvantage of the resulting lookup table h is that it can easily
become too large due to its exponential growth in the number of
sensors and the message cardinality. Alternatives, such as the Direct
Sum (Gubner, 1993) method for estimating h, might be more appro-
priate in applications with large number of sensors.

For design of quantizer a1, given quantizer a2 and the fusion
function h, the challenge is in partitioning the space X1 into M1 re-
gions such that the estimation error is minimized. Analogously,
quantizer a2 can be designed given a1 and h. One viable approach
is based on the recursive partitioning of the X1 space using the
Regression Trees (Megalooikonomou and Yesha, 2000). An alterna-
tive, studied in this paper, is the multi-prototype approach.

In the multi-prototype approach, quantizer a1 consists of M1 re-
gions, where each region Rj; j ¼ 1; . . . ;M1 is represented as a union
of Voronoi cells defined by a set of prototypes. Thus, a1 is com-
pletely defined by a set of P prototypes fðmk; ckÞ; k ¼ 1; . . . ; Pg,
where mk is a K-dimensional vector in input space and ck is its
assignment label, defining to which of the M1 regions/codewords
it belongs. The input x1i is compared to all prototypes and its code-
word z1i is assigned as the assignment label of its nearest proto-
type, z1i ¼ cl; l ¼ arg minkðdeðx1i;mkÞÞ, where de is the Euclidean
distance.

Following this setup, given D, we can restate Condition 2 as find-
ing the optimal set of prototypes to minimize the overall distortion
of quantizer a1

L ¼
XN

i¼1

dðyi;hðz1i;a2ðx2iÞÞ; ð3Þ

where distortion d is the squared error,

dðyi;hðz1i;a2ðx2iÞÞ ¼ ðyi;hðz1i � a2ðx2iÞÞ2: ð4Þ

Finding fðmk; ckÞ; k ¼ 1; . . . ; Pg that minimize (3) is challenging. We
consider several approaches.

Hard Classification Approach. One approach to minimize (3) is to
convert the problem of encoder design to classification. To design
a1 in this manner, in each iteration we use the original training
data set D to create a new data set, D1 ¼ ðx1i; q1iÞ; i ¼ 1; . . . ;N,
where q1i is the codeword with the smallest error,
q1i ¼ arg minjðyi � hðj;a2ðx2iÞÞÞ2. The goal then becomes finding a
set of prototypes, fðmk; ckÞ; k ¼ 1; . . . ; Pg, that minimize the classi-
fication error on D1. Nearest Prototype Classification algorithms,
such as Learning Vector Quantization (LVQ) (Kohonen, 1990), can
be used for this purpose (Grbovic and Vucetic, 2009).

Let us consider the LVQ2 algorithm (Kohonen, 1990) which
starts from an initial set of prototypes, and reads the training data
points sequentially to update the prototypes. LVQ2 considers only
the two closest prototypes. Three conditions have to be met to up-
date the two closest prototypes: (1) Class of the prototype closest
to x1i has to be different from z1i, (2) Class of the second closest
prototype has to be equal to z1i, and (3) x1i must satisfy the ‘‘win-
dow rule’’ by falling near the hyperplane at the midpoint between
the closest (mA) and the second closest prototype (mB). These two
prototypes are then modified as

mtþ1
A ¼mt

A � gðtÞðx1i �mt
AÞ;

mtþ1
B ¼mt

B þ gðtÞðx1i �mt
BÞ; ð5Þ

where t counts how many updates have been made, and gðtÞ is a
monotonically decreasing function of t.

Let dA and dB be the distances between x1i and mA and mB. Then,
the ‘‘window rule’’, that was introduced to prevent divergence
(Kohonen, 1990), is satisfied if minðdB=dA; dA=dBÞ > w, where w is
a constant commonly chosen between 0:4 and 0:8.
Soft Classification Approach. The potential issue with the hard
classification approach is that it enforces assignment of a data
point to the codeword with the minimum squared error (4). This
can be too aggressive, considering that there might be other code-
words resulting in a similar squared error. The soft classification
approach addresses this issue. Instead of assigning a data point
to the closest prototype, let us consider a probabilistic assignment
pij ¼ Pðz1i ¼ jjx1iÞ defined as the probability of assigning i-th data
point to j-th codeword. The objective (3) can now be reformulated
as

L ¼
XN

i¼1

XM1

j¼1

pijdðyi;hðz1i;a2ðx2iÞÞÞ ¼
XN

i¼1

XM1

j¼1

pijeði; jÞ; ð6Þ

where eði; jÞ ¼ dðyi; hðz1i;a2ðx2iÞÞÞ was introduced to simplify the
notation. Objective (6) is an approximation of (3) that allows us
to find a computationally efficient solution. We use a mixture mod-
el to calculate the assignment probabilities pij. Let us assume that
the probability density Pðx1Þ of the observation at the first sensor
can be described by mixture

Pðx1Þ ¼
XP

k¼1

Pðx1jmkÞPðmkÞ; ð7Þ

where Pðx1jmkÞ is a conditional probability that prototype mk gen-
erates observation x1 and PðmkÞ is the prior probability. We repre-
sent the conditional density function Pðx1jmkÞ as the Gaussian
distribution with mean mk and standard deviation rs. Let us denote
gik � Pðmkjx1iÞ as the probability that i-th data point was generated
by k-th prototype. By assuming that all prototypes have the same
prior, PðmkÞ ¼ 1=P , and using the Bayes’ rule, gik can be updated as

gik ¼
expð�ðx1i �mkÞ=2r2

s ÞPP
l¼1 expð�ðx1i �mlÞ=2r2

s Þ
: ð8Þ

The probability pij can be obtained using (8) as

pij ¼
P

j:ck¼j expð�ðx1i �mkÞ=2r2
s ÞPP

l¼1 expð�ðx1i �mlÞ=2r2
s Þ

: ð9Þ

In soft classification approach, the objective of learning is to esti-
mate the prototype positions mk; k ¼ 1; . . . ; P, by minimizing (6).
This can be done using the stochastic gradient descent, where at
t-th update the prototypes are calculated as

mtþ1
k ¼mt

k � gðtÞ � ðeði; ckÞ �
XM1

j¼1
pijeði; jÞÞ � gik

ðx1i �mt
kÞ

r2
s

: ð10Þ

We will refer to this as the Soft Prototype Quantization (SPQ)
Parameter rs controls the fuzziness of the distribution. For

rs ¼ 0 the assignments become deterministic, and (6) is equivalent
to (3). If rs !1 the assignments become uniform, regardless of
the distance. One option is that r2

s be treated as a parameter to
be optimized such that (6) is minimized. It is not necessarily the
best approach since minimizing (6) does not imply minimizing
(3). In this work, we are treating r2

s as an annealing parameter that
is initially set to a large value and then is decreased towards zero
using r2

s ðt þ 1Þ ¼ r2
s ð0Þ � rT=ðrT þ tÞ, where rT is the decay param-

eter. The purpose of annealing is to facilitate convergence toward a
good local optimum of (3). We note that this strategy has been
used in soft prototype approaches by other researchers (Kohonen,
1990).

Deterministic Annealing (DA) is a generalization of the soft clas-
sification approach. Instead of minimizing (6), it minimizes the
regularized objective,

L ¼ b �
XN

i¼1

XM1

j¼1

pijeði; jÞ � H; ð11Þ

Table 1
Parameter search grid.

Parameter Start value Search step End value

r2
s 0.3 þ0:3 sensor s data variance + 0.3

rT 5N �2 40N
b0 0.01 �2 0.08
bT 1.05 + 0.05 1.2

966 M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969
where b controls the tradeoff between the objective (6) (first term)
and the entropy H ¼ �

PN
i¼1

PM1
j¼1pij log pij.

In (Rao et al., 1996) authors suggest minimizing L starting at the
global minimum for b ¼ 0 and updating the solution as b increases.
As b!1 (11) becomes equivalent to (6). The role of the entropy
term is to further improve the convergence toward a good local
optimum. The DA prototype update rule can be obtained by the
stochastic gradient descent as

mtþ1
k ¼mt

k � gðtÞ � ðGiðckÞ �
XM1

j¼1

pijGiðjÞÞ � gik
ðx1i �mt

kÞ
r2

s
; ð12Þ

where GiðjÞ ¼ b � eði; jÞ þ log pij. Parameter r2
s is updated as

r2
s ðt þ 1Þ ¼ r2

s ð0Þ � rT=ðrT þ tÞ, where r2
s is reset back to r2

s ð0Þ after
each increase of b. The drawback is that, since the cost function is
defined and minimized at each value of b, the model takes quite
long to produce and the convergence can be quite sensitive to the
annealing schedule of b.

Distortion Sensitive Learning Vector Quantization. To apply the
stochastic gradient descent in (10), one should specify the learning
rate gðtÞ and the annealing rate for r2

s , while for the DA version in
(12) the annealing schedule for b is required too. In this subsection,
we show how the update rule (10) can be simplified such that it
does not require use of the parameter r2

s . The resulting algorithm
resembles LVQ2.

Objective (6) is a good approximation of (3) for small values of
r2

s . In this case, assignment probabilities pij of all but the closest
prototypes are near zero. As a result, we approximate (10) by using
only the two closest prototypes. Given x1i, we denote the closest
prototype as ðmA; cAÞ and the second closest as ðmB; cBÞ.

Let us consider three major scenarios. First, if mA and mB are in
similar proximity to x1i, their assignment probabilities will be
approximately the same, giA ¼ gjB ¼ 0:5. The prototype update rule
from (10) could then be expressed as

mtþ1
A ¼mt

A � gðtÞðeði; cAÞ � eði; cBÞÞðx1i �mt
AÞ;

mtþ1
B ¼mt

B þ gðtÞðeði; cAÞ � eði; cBÞÞðx1i �mt
BÞ; ð13Þ

where r2
s is incorporated in the learning rate parameter g. The dif-

ference ðeði; cAÞ � eði; cBÞÞ determines the amount of prototype dis-
placement; when the difference is small the prototype updates
are less extreme. The sign of the difference determines the direction
of updates; if eði; cAÞ is larger than eði; cBÞ, prototype mA is moved
away from data point x1i and mB prototype is moved towards it.

The second scenario is when the closest prototype is much clo-
ser than the second closest, which makes giB � 0. Following (10),
none of the prototypes are updated. Taken together, the first two
scenarios are equivalent to the LVQ2 window rule.

In the third scenario, the two closest prototypes belong to the
same codeword and, as a consequence of eði; cAÞ ¼ eði; cBÞ, the pro-
totype positions are not updated.

The three scenarios establish the new algorithm (DSLVQ2): Gi-
ven x1i, if the two closest prototypes, mA and mB, have different
class labels and minðdB=dA; dA=dBÞ > w, update their positions
(13), otherwise preserve their current positions.

To avoid settling of prototypes in a bad local minima, SPQ algo-
rithm uses annealing, while DA uses double annealing. The pro-
posed DSLVQ2 uses a simple and much faster procedure. Harmful
prototypes, stuck in local minima, are identified after every
nsð¼ 10Þ quantizer design iterations as the ones whose current la-
bel ck is different from label c�k which introduces the least predic-
tion error amount to its Voronoi cell

c�k ¼ arg minj

X
i:x1i2vk

eði; jÞ
()

; ð14Þ
where vk is Voronoi cell of the k-th prototype. In this case, DSLVQ2
switches the label from ck to c�k.

Relationship with LVQ2. When target variable y is categorical in-
stead of real-valued, we could use 0–1 error, defined as
eði; ckÞ ¼ dðyi;hðck;a2ðx2iÞÞÞ, where dð�Þ is the Dirac delta function,
instead of the squared error. Now, (13) reduces to (5). If, in addi-
tion, we update prototypes only if eði; cAÞ ¼ 1 and eði; cBÞ ¼ 0,
DSLVQ2 reduces to LVQ2.

Prototype Initialization and Refinement. Regardless of whether
(5), (10), (12), or (13) are used for prototype update, the algorithm
starts by randomly selecting P points from D and assigning equal
number of prototypes to each codeword. Unlike DSLVQ which uses
a label replacement mechanism (14), and DA and SPQ which use
annealing, the regular LVQ algorithm is highly sensitive to initial
choice of prototypes. If the initialization is not done in a proper
way good results might never be achieved. Repeating random ini-
tialization or using K-means algorithm (MacQueen, 1967) to ini-
tialize the prototypes in case of regular LVQ helps in certain cases.
4. Experiments

In order to compare quantizer design using DSLVQ2 algorithm
with those using LVQ2, DA, SPQ, and Regression Tree algorithms,
we performed three sets of experiments with synthetic data and
one experiment with real-world AOD data. The series of experi-
ments were of increasing complexity, meaning that the number
of sources and source features grew. When compared to the
DSLVQ2 algorithm, the DA and SPQ algorithms showed a perfor-
mance decrease in out of sample prediction with increase in the
number of sources and source types.

Setup. The algorithms were compared on different budget sizes
P, representing the number of prototypes and Regression Tree
nodes. In synthetic data experiments we used two training data
sizes of N = 10,000 and N = 1000 points and a test set of size
10,000. The experiments were repeated 10 times and the average
test set MSE are reported. Training of encoders and decoder was
terminated when the training set MSE (1) stopped decreasing by
more than 10�5. Experiments were performed on Intel Core Duo
2.6 GHz processor machines with 2 GB of RAM. We also report
the total time needed to design a decentralized system from train-
ing data using different encoder design algorithms.

Parameter Selection. We have empirically observed that the sen-
sitivity of prototype-based algorithms to parameters varies signif-
icantly - they are fairly robust to some and highly sensitive to
others. The learning rate g is universal for all algorithms. We ini-
tially set it to g0 ¼ 0:03 and update it using gðtÞ ¼ g0 � gT=ðgT þ tÞ,
where gT ¼ 8N. The window parameter w, used in LVQ2 and
DSLVQ2, is easy to adjust and was fixed to a value of w ¼ 0:7. A
common practice (Rao et al., 1996) for annealing the DA parameter
b is to initially set it to a small value (e.g. 0:01) and update it using
btþ1 ¼ bT � bt , where bT ¼ 1:11. Parameter r2

s for sensor S is often
(Seo et al., 2003) initialized as the sensor data variance and up-
dated using the annealing schedule with rT ¼ 8N. However, our
preliminary experiments revealed that DA and SPQ are very sensi-
tive to these parameters. As a result, parameters r2

s ;rT ; bT ; b0 have
to be adjusted from case to case depending on K; P and N.

Table 3
2-sensor synthetic data performance comparison, Decoder: Lookup Table, M ¼ 4.

N Encoder Number of training sessions P

100 40 20

MSE time (s) MSE time (s) MSE time (s)

N = 10,000 DA 256 1.82 782 K 1.87 384 K 2.19 245 K
SPQ 16 2.03 36 K 1.93 18 K 2.03 14 K
Reg.Tree 1 1.99 526 2.09 434 2.32 347
LVQ2 1 2.99 2.8 K 3.21 1.8 K 3.76 1.2 K
DSLVQ2 1 1.98 382 1.92 407 2.30 285

N = 1000 DA 256 2.51 123 K 2.47 54 K 2.68 36 K
SPQ 16 2.46 3.2 K 2.33 2.1 K 2.53 1 K
Reg.Tree 1 2.52 38.5 2.78 32.4 2.81 31.1
LVQ2 1 3.32 1.5 K 3.58 1 K 3.93 735
DSLVQ2 1 2.44 177 2.33 178 2.72 171

Table 2
1-sensor synthetic data performance comparison, Decoder: Lookup Table, M ¼ 4.

N Encoder Number of training sessions P

100 40 20

MSE time (s) MSE time (s) MSE time (s)

N = 10,000 DA 256 0.956 485 K 0.968 254 K 1.12 155 K
SPQ 16 0.975 18 K 0.981 10 K 1.17 8 K
Reg.Tree 1 1.19 340 1.26 295 1.44 254
LVQ2 1 1.76 1.6 K 1.94 1 K 2.48 732
DSLVQ2 1 0.979 226 0.987 239 1.25 222

N = 1000 DA 256 1.22 71 K 1.24 30 K 1.40 22 K
SPQ 16 1.24 1.8 K 1.32 1 K 1.39 645
Reg.Tree 1 1.47 13.5 1.59 8.7 1.63 6.5
LVQ2 1 1.86 451 2.07 322 2.81 192
DSLVQ2 1 1.22 42.2 1.26 37.8 1.49 36.2

M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969 967
Parameter search for DA and SPQ algorithms was based on the
grid displayed in Table 1. The best parameters were chosen as the
ones that achieve the lowest MSE on the validation set, formed by
randomly selecting 25% of the training data. The same validation
set was used for Regression Tree pruning.

We note that if the sensors differ in type because they measure
different quantities, the choice of r2

s becomes more involved as
appropriate r2

s would differ for each type of sensor. If the best r2
s

for a single sensor type s is found in os training steps, the best com-
bination of r2

s values for T sensor types is found in o1 � o2 � . . . � oT

training steps.
Experiments with a single two-dimensional sensor. In the first

experiment we simulated a system with a single two-dimensional
noisy source that generates a vector x1 ¼ ½x11;x12�. This scenario
corresponds to the General Vector Quantization. Target variable y
was generated as y ¼ x2

11 þ x2
12 þ �, where xij � Nð0;1:25Þ and

� � Nð0;0:25Þ. We used a quantizer with M1 ¼ 4 codewords. At
the fusion site, target y was estimated using a one-dimensional
lookup table h with M1 elements.

Table 2 compares prototype-based and Regression Tree algo-
rithms with different budget and training data sizes. It shows
MSE on test data and total training time in seconds. The total train-
ing time measures the complete effort needed to build the decen-
tralized estimation system. The largest computational effort in case
of DA and SPQ goes on the grid search, as the whole training pro-
cedure is repeated numerous times in search for the best combina-
tion of parameters (the number of training sessions due to grid
search is shown in the first column of the table).

The results in Table 2 show that DSLVQ2, SPQ and DA algo-
rithms have similar accuracy, with DA being the most accurate
overall. Regression Tree is significantly less accurate, while LVQ2
is the least accurate. Training time for DA is almost two orders of
magnitude longer than SPQ and more than 3 orders of magnitude
longer than the proposed DSLVQ2. The main reason is a signifi-
cantly higher effort needed for DA to explore the parameter space.
A minor difference is that a single training session for the fixed
parameter choice is up to 5 times slower for DA than for DSLVQ2.
Interestingly, LVQ2 is very slow, despite its simplicity. This is ex-
plained by the very slow convergence of this algorithm. Regression
Tree is the fastest overall, but is comparable to DSLVQ2. The effi-
ciency of regression tree comes at the price of significantly reduced
accuracy. Overall, the proposed DSLVQ strikes a nice balance be-
tween accuracy and computational time, as it is nearly as accurate
as DA and over 3 orders of magnitude faster to train.

Experiments with 2 two-dimensional sensors. In the second set of
experiments, we simulated a system with 2 two-dimensional
sources that generate vectors x1 ¼ ½x11;x12� and x2 ¼ ½x21;x22�. Tar-
get variable y was generated as y ¼ x11 þ 2x12 þ x2

21 þ x2
22 þ �,

where � � Nð0;0:25Þ and the j-th attribute had Gaussian Distribu-
tion xj � Nðlj;RjÞ;lj ¼ ð0;0Þ and Rj ¼ ð1:25;0:5; 0:5;1:25Þ. The
quantizers had M1 ¼ M2 ¼ 4 codewords. At the fusion center, the
y was estimated using a 4� 4 lookup table.

Table 3 summarizes total training times and test set MSE of dif-
ferent algorithms. It can be seen that DSLVQ2 performed slightly
worse than the computationally costly DA and SPQ when training
data were abundant (N ¼ 10;000). However, when N ¼ 1000 and
P ¼ 100;40 it was more accurate than DA and SPQ and for P ¼ 20
it had similar accuracy.

This is due to locally optimal solutions of DA and SPQ caused by
harmful prototypes, which are moved to low density regions of
training data in attempt to reduce their influence. However, these
low density regions can be populated with a significant number of
test data points and reflected in higher MSE. DSLVQ2 resolves this
issue by the label switching strategy from (14). DSLVQ2 consis-

Table 4
4-sensor synthetic data performance comparison.

N Encoder Number of training sessions P

120 80 40

MSE time (s) MSE time (s) MSE time (s)

Lookup table DA 2,160 2.42 8 M 2.65 7 M 2.82 4 M
SPQ 108 3.13 355 K 2.57 189 K 2.70 126 K
Reg.Tree 1 3.09 952 3.14 867 2.97 657
LVQ2 1 3.33 1.6 K 3.43 1 K 4.01 732
DSLVQ2 1 2.38 653 2.55 814 2.70 526

Direct sum DA 2,160 2.06 8 M 2.10 6.4 M 2.29 3.8 M
SPQ 108 2.77 336 K 2.33 174 K 2.22 122 K
Reg.Tree 1 2.27 857 2.29 781 2.68 549
LVQ2 1 2.61 1.5 K 2.78 960 3.22 721
DSLVQ2 1 2.01 573 2.06 782 2.24 552

Fig. 2. 2-sensor synthetic data quantization results (P ¼ 40;N ¼ 10;000) (a) sensor 1 DSLVQ2; (b) sensor 2 DSLVQ2; (c) sensor 1 Regression Tree; (d) sensor 2 Regression Tree.

968 M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969
tently outperformed Regression Tree algorithm, often by signifi-
cant margins, and was superior to the hard classification LVQ2 ap-
proach. The training time comparisons in Table 3 are consistent to
the 1-sensor experiments reported in Table 3. DA and SPQ training
times were orders of magnitude higher than DSLVQ2 and were
consistent with those reported in Table 2.

To gain a further insight into the resulting encoders, Fig. 2 com-
pares the resulting partitions of the DSLVQ2 and Regression Tree
encoders, for P ¼ 40 and N ¼ 10;000. The partitions for sensor 1
resemble parallel lines with slope near �1=2, reflecting the twice
larger sensitivity of target to x21 than to x11. The partitions for sen-
sor 2 resemble concentric rings, reflecting the quadratic depen-
dence of target to the observations at this sensor. As it can be
seen, the axis-parallel partitions of the regression tree are not
appropriate for representing either partition.

Experiments with 4 sensors. We simulated a system with 4 sen-
sors which measured different quantities as follows
x1 ¼ ½t1; p1;h1�;x2 ¼ ½t2�;x3 ¼ ½p2; h2� and x4 ¼ ½t3; p3� 1.

We assigned different numbers of codewords to different quan-
tizers, M1 ¼ M4 ¼ 8;M2 ¼ 2;M3 ¼ 4. The target variable y was gen-

erated as y ¼
P3

i¼1ðt2
i =3Þ þ

P2
i¼1ðh

2
i =3Þ þ

P3
i¼12pi þ �, where

� � Nð0;0:25Þ. Estimation of y was made using the fusion function
h for which we considered: 1) the lookup table method where h is
4-dimensional with 512 cells and 2) the Direct Sum method (Gub-
ner, 1993) with coefficients ai; bj; ck; dl; i ¼ 1; . . . ;8; j ¼ 1;2; k ¼ 1;
. . . ;4 and l ¼ 1; . . . ;8.

As we can observe from Table 4, DSLVQ2 is consistently and sig-
nificantly more accurate than LVQ2 and Regression Tree algorithm.
It is more accurate than SPQ and DA when the budget is large and
as accurate as SPQ and DA when the budget is small. The decrease
in SPQ and DA performance is due to the fact that sensors are of
1 ti � Nðlt ;RtÞ;hi � Nðlh;RhÞ; pi � Nðlp;RpÞ;lt ¼ lp ¼ ð0; 0; 0Þ;lh ¼ ð0; 0Þ;Rt ¼
ð1:03;0;0; 0;1:03;0; 0; 0;1:03Þ;Rh ¼ ð1:25;0:625; 0:625;1:25Þ;Rp ¼ ð1:6;1:2;1:2; 1:2;
1:6;1:2; 1:2;1:2;1:6Þ:
different type, meaning that they require different r2
s parameters.

This leads to an increase in the number of parameters. In addition,
DA and SPQ training comes at the price of very large computational
effort, due to extensive parameter search as the sensors measure
different quantities. Training of DSLVQ2 was the fastest overall. Fi-
nally, the Direct Sum decoder was superior to the lookup table
decoder.

Experiments with AOD data. Let us first describe the instruments
that were used for data collection, mainly AERONET and MODIS.

AERONET is a global network of highly accurate ground-based
instruments that observe aerosols. They are densely situated in
industrialized areas and sparsely located elsewhere. For our evalu-
ation purposes we considered 37 AERONET instruments located in
North America (Holben et al., 1998).

MODIS, aboard NASA’s Terra and Aqua satellites, is an instru-
ment for satellite-based AOD retrieval (Kaufman et al., 1992) that
provides global coverage with a moderately accurate AOD retrieval
estimated from multispectral images collected by MODIS.

The characteristics of MODIS- and AERONET-based AOD retrie-
val are quite different. AERONET retrievals consist of providing a
single continuous measurement (AOD retrieval) many times a
day but only at instrument location. On the other hand MODIS
achieves an almost complete global coverage daily, providing mul-
tivariate observations extracted from multispectral images (e.g.
reflectance, azimuth, etc.) in form of a feature vector that serves
as an input to NASA’s currently operational MODIS retrieval algo-
rithm (C005) (R, 2006). C005 provides AOD retrieval predictions
that are considered to be of moderate accuracy. It is typically out-
performed by more sophisticated methods such as neural net-
works (Radosavljevic et al., 2010; Ristovski et al., 2012).

Data collected using AERONET served as our ground truth y
measurement, while MODIS measurements at distributed loca-
tions collocated with the corresponding AERONET site served as
our x measurements. The collocation of the AERONET and the
MODIS data involved aggregating MODIS observations into blocks
of 10 km � 10 km around each AERONET site. In our setup, 9

Table 5
3� 3 grid AOD data performance comparison, Decoder: Direct Sum, M ¼ 4.

Data type Algorithm Number of training
sessions

MSE R2

Original data Neural
network

10 .0058 .7952

C005 1 .0094 .6698

Encoded
data

DA 256 .0098 .6564
SPQ 16 .0087 .6949
Reg.Tree 1 .0111 .6097
LVQ2 1 .0187 .3443
DSLVQ2 1 .0075 .7370

M. Grbovic, S. Vucetic / Pattern Recognition Letters 34 (2013) 963–969 969
closest blocks to each AERONET site were considered, i.e. 9 21-
dimensional feature vectors, x1;x2; . . . ;x9. The features constructed
using MODIS observations are said to be temporally collocated
with the corresponding AERONET AOD retrievals if there is a valid
AERONET AOD retrieval within a one-hour window centered at the
satellite overpass time. The data collocated in this way are ob-
tained from the official MODIS Web site of NASA (R, 2006).

The goal was to design 9 encoders with M = 4 codewords aboard
satellite, and a decoder to be used at any ground location. Once the
encoders and the decoder are trained, the satellite no longer needs
to transmit 9 � 21 continuous measurements for AOD prediction
at specific ground locations. Instead, only 9 discrete variables with
cardinality M ¼ 4 are communicated.

For our study, we collected 2,210 collocated observations dis-
tributed over 37 North America AERONET sites during year 2005.
A total of 1,694 examples at randomly selected 28 AERONET sites
were used as training data, while 516 examples at remaining 9
AERONET sites were used as test data. This procedure ensured that
the resulting model was tested at AERONET locations unobserved
during training, which gave us some insight into model perfor-
mance at any North America ground location.

Table 5 compares prototype-based and Regression Tree algo-
rithms in terms of MSE and R2, defined as

R2 ¼ 1�
PN

i¼1ðyi � hða1ðx1iÞ;a2ðx2iÞÞÞ2PN
i¼1ðyi � �yÞ2

; ð15Þ

where �y ¼ 1
N

PN
i¼1yi.

Budget was set to P ¼ 100, and estimation of y was made using
the Direct Sum fusion function h. Alternative fusion function look-
up table method was highly inefficient due to large number of ta-
ble cells. The decentralized estimation results were in addition
compared to C005 and Neural Network algorithms that used origi-
nal features in absence of communication constraints. A Neural
Networks with 5 hidden layers was trained using resilient propa-
gation optimization algorithm for 300 epochs.

It can be observed that DSLVQ2 outperformed the competing
methods. Using additional parameters in SPQ and DA was not ben-
eficial, probably due to large number of sources. Very low values of
AOD retrievals might also have effected the accuracy of SPQ and DA
(y had a mean value of 0:14 and ranged from 0:006 to 1).

In addition, DSLVQ2 had better accuracy than NASA’s C005
algorithm and performed fairly close to NN, while achieving signif-
icant communication cost savings. Each satellite message for a sin-
gle ground location requires 9� 2 bits with DSLVQ2, requires
9� 504 bits with NN, which is a significant difference, especially
when we consider that these measurements are taken all year
round.
5. Discussion

Overall, the most appealing features of DSLVQ2 are ease of
implementation, training speed, and insensitivity to parameter
selection. DSLVQ2 training is much faster than DA and SPQ because
it does not require annealing. On the accuracy side, DSLVQ2 is
superior to LVQ2 and Regression Trees, it is comparable to more
expensive and difficult to tune SPQ and DA algorithms in scenarios
with small number of sensors, while it becomes superior to SPQ
and DA when the number of sensors and sensor measurements
increases.

6. Conclusion

In this paper we addressed the problem of data-driven quan-
tizer design in decentralized estimation. We proposed DSLVQ2, a
simple algorithm that was shown to be successful in multi-type,
multi-sensor environments. DSLVQ2 exhibits better performance
than previously proposed LVQ2 and Regression Tree algorithm. It
also outperforms the state of the art DA algorithm in applications
with large number of sensors and sensor measurements, while
being less sensitive to parameter selection and orders of magni-
tude cheaper to train.

References

Fang, J., Li, H., 2010. Distributed estimation of GaussMarkov random fields with
one-bit quantized data. IEEE Signal Process. Lett. 17 (5), 449–452.

Grbovic, M., Vucetic, S., 2009. Decentralized estimation using learning vector
quantization. Data Compress. Conf., 446.

Gubner, J.A., 1993. Distributed estimation and quantization. IEEE Trans. Inf. Theory
39 (3), 1456–1459.

Holben, B.N., Eck, T.F., Slutsker, I., Tanr, D., Buis, J.P., Setzer, A., Vermote, E., Reagan,
J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998.
AERONET: A federated instrument network and data archive for aerosol
characterization. Remote Sensing Environ. 66 (1), 1–16.

Kaufman, Y., Menzel, W.P., Tanre, D., 1992. Remote sensing of cloud, aerosol, and
water vapor properties from the Moderate Resolution Imaging Spectrometer
(MODIS). IEEE Trans. Geosci. Remote Sensing 30 (1), 2–27.

Kohonen, T., 1990. The Self-organizing Map. Proc. IEEE 78, 1464–1480.
Lam, W.M., Reibman, A.R., 1993. Design of quantizers for decentralized estimation

systems. IEEE Trans. Comm. 41 (11), 1602–1605.
Li, H., 2007. Distributed adaptive quantization and estimation for wireless sensor

networks. Signal Process. Lett. 14 (10).
MacQueen, J.B., 1967. Some methods for classification and analysis of multi- variate

observations. Proc. 5th Berkeley Symposium on Mathematical Statistics and
Probability, 281–297.

Megalooikonomou, V., Yesha, Y., 2000. Quantizer design for distributed estimation
with communication constraints and unknown observation statistics. IEEE
Trans. Comm. 48 (2).

Nguyen, X.L., Wainwright, M.J., Jordan, M.I., 2005. Nonparametric decentralized
detection using kernel methods. IEEE Trans. Signal Process. 53 (11), 4054–4066.

Remer, L.A., Tanr, D., Kaufman, Y.J., Levy, R., Mattoo, S. Algorithm for remote sensing
of tropospheric aerosol from MODIS: Collection 005. MODIS Algorithm
Theoretical Basis Document ATBDMOD-04, 2006.

Radosavljevic, V., Vucetic, S., Obradovic, Z., 2010. A data-mining technique for
aerosol retrieval across multiple accuracy measures. IEEE Geosci. Remote
Sensing Lett. 7 (2), 411–415.

Rao, A., Miller, D., Rose, K., Gersho, A., 1996. A generalized VQ method for combined
compression and estimation. Internat. Conf. Acoust. Speech Signal Process,
2032–2035.

Ristovski, K., Vucetic, S., Obradovic, Z., 2012. Uncertainty analysis of neural
network-based aerosol retrieval. IEEE Trans. Geosci. Remote Sensing 50 (2),
409–414.

Seo, S., Bode, M., Obermayer, K., 2003. Soft nearest prototype classification. Trans.
Neural Networks 14, 390–398.

Wang, T.Y., Chang, L.Y., Chen, P.Y., 2009. Collaborative sensor-fault detection
scheme for robust distributed estimation in sensor networks. Trans. Comm. 57
(10), 3045–3058.

Xiao, J.J., Luo, Z.Q., 2005. Universal decentralized detection in a bandwidth-
constrained sensor network. IEEE Trans. Signal Process. 53 (8), 2617–2624.

Xiao, J.J., Cui, S., Luo, Z.Q., Goldsmith, A.J., 2008. Linear coherent decentralized
estimation. IEEE Trans. Signal Process. 56 (2), 757–770.

	Decentralized Estimation using distortion sensitive learning vector quantization
	1 Introduction
	2 Problem setup
	3 Methodology
	4 Experiments
	5 Discussion
	6 Conclusion
	References

