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Abstract – Aerosol optical thickness (AOT) is typically estimated from 
satellite radiance observations through computationally demanding 
deterministic retrievals based on manually constructed physical models. A 
statistical alternative to this deterministic method is to train regression 
models for AOT prediction from radiance data. This approach provides 
fast retrievals albeit with somewhat reduced accuracy. In this paper, we 
explore an integrative approach that combines statistical and deterministic 
algorithms to provide both inexpensive and accurate retrievals. Given a 
limited set of locations with AOT produced by the deterministic algorithm, 
and a full set of radiance data, we retrieve AOT at the remaining locations 
using several distinct statistical algorithms: (1) inverse distance spatial 
interpolation, (2) global neural networks learned on data from the entire 
domain, (3) region-specific neural networks, and (4) optimally weighted 
averaging ensembles of the first three algorithms. The integrated retrieval 
algorithms are evaluated using AOT and radiances observed by the Multi-
angle Imaging SpectroRadiometer (MISR) instrument onboard NASA’s 
Terra satellite during two 16-day periods in 2002 over the continental US. 
Results show that integration of the deterministic and statistical algorithms 
provide a range of options for selection of the best trade-off between 
accuracy and complexity. Moreover, on the statistical side, the best 
tradeoff between retrieval speed and accuracy was obtained through 
weighted averaging of global neural networks and spatial interpolation.  

1 Introduction 
Aerosols are small particles produced by natural and man-made sources that both reflect and absorb 

incoming solar radiation. Aerosol concentration and chemical properties are important parameters in climate 
change modeling, in studies of regional radiation balances and the hydrological cycle [11]. Using radiance 
observations from satellite instruments, it is possible to estimate the attenuation of solar energy as it passes 
through a column of atmosphere due to particulates, a quantity commonly known as Aerosol Optical 
Thickness (AOT). Since radiance intensity depends on AOT, deterministic forward simulation algorithms are 
used to “retrieve” AOT [2, 13]. These algorithms predict radiances for candidate aerosol types and amounts 
and select the types and amounts that most closely match the observed radiances.  While deterministic 
algorithms provide accurate retrievals, they are computationally demanding, and this limits achievable spatial 
resolution and the ability to provide timely updates.  

To address these issues we are exploring a complementary statistical approach based on supervised learning. 
In preliminary work, we used artificial neural networks (ANNs) to construct global aerosol predictors by 
learning from all available labeled aerosol data [10]. While the results were encouraging, the heterogeneous 
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spatial-temporal nature of aerosol makes it unlikely that a single aerosol predictor could fully exploit distinct 
properties of specific spatial regions. An alternative is to construct a number of local predictors, each specific 
to a given spatial area. While development of local models addresses the data heterogeneity problem, the 
scarcity of region-specific data could raise issues related to the choice of model complexity and overfitting 
control in supervised learning. Therefore, integration of local and global models is an attractive alternative. In 
a more recent study, we proposed an integration approach where global and local neural network models were 
appropriately combined resulting in more accurate retrievals than provided by the component models in 
isolation [3]. It is worth noting that region-specific approach has been used to a certain extent in the existing 
deterministic aerosol retrieval algorithms [8, 9]. For example, until recently, the operational aerosol retrieval 
algorithm for the MISR instrument differentiated between water, dense, dark, vegetated land, and 
heterogeneous land. Region-specific approaches to retrieval of aerosol properties are also considered in [4]. 

In this paper, we report preliminary results on integration of statistical and deterministic retrieval algorithms. 
The objective is to combine the strengths of the two approaches – the higher accuracy of deterministic 
retrievals, and significantly lower computational cost of statistical retrievals. The idea is as follows: use 
deterministic algorithms over a training set of locations and retrieve aerosols at the remaining locations by 
applying the statistical algorithm learned from the training set. The goal is to develop an integration model 
that provides the best trade-off between retrieval speed and accuracy. Two basic statistical approaches 
explored here are based on spatial interpolation and construction of neural network AOT predictors.  To 
combine predictions obtained from component neural networks and spatial interpolation models, we used 
weighted averages with weights optimized to minimize the mean squared prediction error over a specific 
region.  

We evaluate our method using MISR data over the continental US during two, 16-day periods during 2002: 
07/01/2002 – 07/16/2002 and 10/01/2002 – 10/16/2002. Experimental results suggest that the integration 
approach may provide a promising mechanism for producing simultaneously fast and accurate retrievals. 

2    Methodology 
2.1 Preliminaries 

    Given a set {xi} of satellite-based radiance observations, each data point xi is represented as tuple xi = [ti, 
lati ,loni, xi1… xiM], where ti is the time of the observation, lati and loni denote the spatial location, and xij, j = 
1…M, are derived from the observed radiances and the corresponding geometric parameters which describe 
satellite camera view angles, and sun angle at time ti .  The aerosol retrieval task can be stated as prediction of 
target variable yi (i.e. AOT) based on the corresponding values of xi.  
    Deterministic retrieval algorithms are based on the physical models of the relationship between AOT, 
aerosol type, and radiances. Those models are developed manually by the domain experts. Alternatively, 
given a labeled set D consisting of N pairs di = (xi,yi), i = 1…N, statistical retrieval algorithms are based on 
learning an accurate regression model f(x,β) that minimizes Mean Squared Error (MSE) defined as 

])),([( 2βxfyE − , where β is a set of model parameters.  
    While learning regression models can be time consuming, the prediction (i.e. evaluation of f(x,β) for a 
given x) is rather inexpensive (not so for deterministic retrievals). It is important to emphasize that the quality 
of statistical algorithms depends on the appropriate attribute selection and, on the quality of labeled data. In 
practice, the true values of the target variable y are not known, and estimates based on the deterministic 
algorithms represent their best available proxy. Consequently, statistical algorithms could be only as accurate 
as the corresponding deterministic algorithm used to construct the labeled data. On the other hand, the 
accuracy of statistical algorithms is expected to increase with the amount of labeled data.  
 
2.2 Problem Definition 

    Based on the properties of deterministic and statistical retrieval algorithms described in 2.1, it is evident 
that the two approaches are quite complementary – deterministic retrieval algorithms are accurate and 
computationally expensive, while statistical retrieval algorithms may be less accurate and are significantly less 
expensive. The goal of this paper is to explore integration of the two approaches that allows optimization of 



the trade-off between accuracy and computational complexity. The approach here is as follows. Instead of 
applying the deterministic algorithm at high spatial resolution over a large region, apply it over a significantly 
reduced subset of spatial locations. Then use the statistical algorithm to provide retrievals at the remaining 
locations. It is evident that with the increase of the retrieval resolution by the deterministic algorithms, both 
retrieval accuracy and retrieval time are increased. The objective here is to explore the potential of the 
approach that integrates deterministic and statistical algorithms to significantly reduce retrieval time while 
allowing only a slight decrease in the retrieval accuracy. In sections 2.3-2.6 we outline four different 
statistical retrieval algorithms to be integrated with the deterministic algorithm used by MISR. 

2.3 Construction of a Global Neural Network Model 

    Given a set of K data points with observation attributes {(ti, latj, lonj, xj1, … xjM, yj), j = 1… K} obtained 
from the deterministic algorithm over a period of time. Use them to construct a set of labeled points for 
training a regression model. ANNs have been successfully used in many applications and we use them here. 
Specifically, we use a feedforward neural network with a single hidden layer of sigmoidal units to predict 
AOTs. The design objectives are feature selection, identification of an appropriate ANN structure, as well as 
choice of training algorithm to maximize prediction accuracy on out-of-the-sample test data. Prediction 
accuracy is measured by the coefficient of determination R2 = 1 – MSE/Var(y), where Var(y) is the variance 
of the AOT target variable. 
    MISR data provide a large number of informative attributes (ti, latj, lonj, xj1…xjM) (M=111 in our case). 
This results in a neural network with a large number of weights, and requires significant training time.  Under 
these circumstances, overfitting problems can result when learning from limited training data. Therefore, we 
used Principal Component Analysis (PCA) to reduce data dimensionality to k < M attributes, and used the 
largest k principal components as inputs to our ANN. We determined the appropriate number of hidden units 
in our ANN, and the best training algorithm experimentally. We considered 5, 10, 15 and 20 units, and the 
following training methods: Bayesian regularization, Powell-Beale conjugate gradient, Polak-Ribiere 
conjugate gradient, scaled conjugate gradient, Levenberg-Marquardt and quasi-Newton backpropagation. We 
chose those resulting in minimal prediction errors. Following similar strategies, we also developed global 
ANN models trained only on non-spatial attributes to determine to what extent AOT prediction accuracy by a 
global neural network is independent of spatial location. If reasonably accurate, such a property would allow 
efficient retrievals in future time periods without the position-memorization concerns arising from training a 
statistical model on historic data. 

2.4 Spatial Interpolation Using the Inverse Distance Method 

    Given a set of K data points {(latj, lonj, yj), j = 1… K} obtained from the deterministic algorithm, we 
applied inverse distance interpolation to predict AOT at unlabeled locations. The AOT value yi at unknown 
location (lati, loni) is computed as 

∑∑
==

=
m

j

p
ij

p
ij

K

j
ji ddyy

11

/1/          (1) 

where dij is the distance between points i and j, and p is a parameter determining the extent of weighting 
distance towards giving higher influence to near neighbors [12]. Larger p values assign larger weights to the 
near neighbors where p = 0 corresponds to an overall average estimator and p = ∞  is equivalent to the nearest 
neighbor predictor.  We explored several choices of p over multiple local regions and used the best fitting for 
all interpolations.  

2.5 Spatial Interpolation Using Region-Specific Neural Networks 

    More complex interpolation methods are possible. In this work, we have constructed locally-specific neural 
network interpolators. For each spatial region, called an orbit, a local neural network is constructed using a 
subset of labeled data corresponding to the region. In addition to using all available attributes for training 
local neural network, we also consider using only the non-spatial attributes. Since we only use labeled data 
from a spatially-constrained region, we expect that the neural network will memorize the specific properties 
of the region. This is desirable for this type of application and serves as an alternative type of spatial 



interpolation. The input dimensionality for local neural networks is determined by performing PCA reduction 
on local data aimed at retaining about the same variance as with PCA on global data (as in section 2.2). We 
repeat this data reduction process over multiple local regions and the average reduction size over these 
experiments is used as local PCA choice.  

2.6 Weighted Averaging Ensemble Model  

To combine predictions from global ANN model and spatial interpolation models, we construct an 
integration predictor gk for each local region r, r = 1… R, by weighting the component predictors as  

)()1(),()( xfxfxg kkGGkk α−+βα= . (2) 
Here fk(x) represents the AOT prediction from spatial interpolation, and αk are the weight parameters 
constrained to lie in the interval [0, 1]. 

The weight parameter αk in equation (2) is optimized to minimize mean squared prediction error of 
weighted averaging model gk. It can be shown that the optimal choice of αk is  
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where Nk represents the number of labeled data points within the k-th  region. If αk < 0, its value is set to zero; 
and if αk >1, its value is set to one.  

The value of the weight parameter can provide important information about the nature of a local region. If 
αk is near 1, the properties of the local area do not differ significantly from the global properties, while if αk is 
near 0, the local area is different from the overall data distribution.  

3    Experimental Results 

3.1 Data Set 

MISR data used in our experiments were obtained from NASA’s Langley Atmospheric Sciences Data 
Center. MISR measures reflected solar radiation from nine view angles along the direction of flight, and in 
four spectral bands at each angle [1, 6]. On each orbit, MISR sweeps out a 360 km wide swath of data from 
north to south at 1.1 km spatial resolution while in daylight. Since MISR does not collect data at night, 
consecutive swaths are separated geographically resulting in 14 or 15 evenly spaced half-orbits per day. 
MISR’s ground footprint repeats in 16 days cycles, which is the time it takes the Terra satellite to fly 233 
distinct orbital paths. We obtained about 12GB of MISR Level 1B2 radiance data covering two 16-day repeat 
cycles over the entire continental US (cycle 1 period July 1-16, 2002 and cycle 2 period October 1-16, 2002). 
There are 30 cycle 1 orbits and 29 cycle 2 orbits used in this study. 

Table 1. Driving attributes constructed at 17.6k× 17.6km resolution from 1.1 km pixels 

Attribute Index Name and Explanation 

1,2,3,4 Time, Latitude, Longitude, Orbit number 
5 Block number (8*32 aggregate of 17.6x17.6km regions) 

6-41 36 mean values of  radiance measurements 

42-77 36 stand derivations of radiance measurements 

78 Solar zenith angle 

79-87 View zenith angle (9 cameras) 

88-96 Relative view-Sun azimuth angle (9 cameras) 

97-105 Scattering angle (9 cameras) 

106-114 Glitter angle (9 cameras) 

The learning target is AOT retrieved at 17.6k× 17.6km spatial resolution [5]. The attributes listed at Table 
1 are derived from 114 radiance variables, and their corresponding geometric parameters (e.g. sun angle, view 
angle, etc.) measured at 1.1 km spatial resolution. In the preprocessing stage, we average each of 36 radiance 
attributes over 17.6k×17.6km regions represented by a single AOT target value. Before averaging radiances, 



the MISR quality flag was used to remove 1.1km pixels with non-valid radiance information. After data 
cleaning, we have 12,167 cloud-free examples for cycle 1 and 8,753 cloud-free examples for cycle 2. 

3.2 Optimization of Statistical Retrieval Models  

Data in each orbit in cycles 1 and 2 were independently and randomly divided into three, equal size, disjoint 
subsets used for training, validation and testing respectively.  We study the influence of data reduction and 
choices of modeling parameters for global, local and weighted averaging models. Results reported at this 
section were averaged over 3 cross-validation experiments. 

3.2.1 Optimization of a Global Neural Network Model 
We first developed ANNs that use attributes of various dimension, all with one hidden layer of 15 neurons 

and trained using Bayesian regularization backpropagation. For cycle 1, any reduction by PCA starting from 
114 attributes listed at Table 1 to more than 10 attributes results in similar accuracy while the best accuracy 
for cycle 2 is obtained when projecting to 25 dimensions. Therefore, in the remaining studies of both cycles 
we fixed PCA reduction to 25 dimensions and call the projected data PCA25 (retained variance 97% and 96% 
for cycle 1 and 2 respectively). For ANN with PCA25 trained using Bayesian regularization backpropagation 
we explored several choices for hidden nodes. The best accuracy was achieved with 15 and 10 hidden nodes 
for cycle 1 and 2 data respectively (Table 2). These choices were used in the remaining experiments. 

Table 2. Hidden layer optimization for global ANNs with PCA25 and Bayesian regularization 

Number of hidden nodes 5 10 15 20 
R2 (2002.7.1 – 2002.7.16) 0.867 0.871 0.873 0.871 

R2 (2002.10.1– 2002.10.16) 0.806 0.825 0.806 0.824 

We also explored the influence of training algorithm choice for global ANNs with 15 and 10 hidden nodes 
(cycle 1 and 2 respectively) using PCA25 attributes. Table 3 reports accuracy, measured by the overall 
coefficient of determination R2 (1−MSE/Var(AOT over all orbits in a cycle)). Bayesian regularization and 
Levenberg-Marquardt backpropagation are the best choices for cycles 1 and 2 respectively. These algorithms 
are fixed for the remaining global ANN experiments.  

Table 3. Prediction accuracy of global ANNs with PCA25 achieved by different training algorithms 

Training algorithm Bayesian 
regularization 

Powell-Beale 
conjugate gradient 

Polak-Ribiere 
conjugate 
gradient 

Scaled 
conjugate 
gradient 

Levenberg-
Marquardt 

BFGS  
quasi-
Newton 

R2 (2002.7.1 – 2002.7.16) 0.873 0.871 0.869 0.864 0.864 0.867 
R2 (2002.10.1– 2002.10.16) 0.786 0.767 0.767 0.786 0.825 0.806 

Excluding latitude, longitude and other spatial information from the set of attributes, we repeated the 
experiments using PCA25 and ANN with 15 and 10 hidden nodes, and trained by Bayesian regularization and 
Levenberg-Marquardt backpropagation. A global model without spatial information achieves just slightly 
lower prediction accuracy (R2 equals 0.8681and 0.8165 for cycle 1 and 2) than global model using all 114 
attributes. This is appealing from a computational standpoint since such a global ANN model can be used on 
the next cycle data without retraining.  

3.2.2 Optimization of Local Spatial Interpolation Models 
To explore the influence of various ways of weighting spatial interpolation towards near neighbors we ran 

experiments for different p-parameter values in inverse distance model (equation (1)). Results listed at Table 
4 suggest using p=2.5 as the best interpolation choice.   

Table 4. Accuracy of inverse distance interpolation using different p value 

P 0.5 1 1.5 2 2.5 3 3.5 4 
R2 (2002.7.1 – 2002.7.16) 0.692 0.811 0.865 0.882 0.886 0.884 0.880 0.879 
R2 (2002.10.1– 2002.10.16) 0.570 0.726 0.804 0.823 0.844 0.843 0.823 0.833 



3.2.3 Optimization of Local Neural Network Models  
To optimize settings in local ANN models, we applied PCA on each orbit to seek the minimal dimension 

for which retained variance is larger than 97% in 1 cycle and 96% in cycle 2. These are the proportions of 
variance retained by PCA25 on the entire cycle 1 and 2 datasets respectively (see section 3.2.1). The average 
reduced dimension over multiple orbits, retaining sufficient variance, was 19 and 17 for cycle 1 and 2 data. 
These choices were used for designing local ANN models with a single layer of hidden nodes. Furthermore, 
results shown in Table 5 suggests that, like the global ANN for local ANN models, it is beneficial to use all 
attributes instead of relying only on non-spatial radiance information (36 attributes).  However, the difference 
in accuracy is fairly small, and training non-spatial local ANNs can be nevertheless be beneficial when 
resources are limited.  

Table 5. Accuracy of local ANN reduced from 114 and 36 attributes with different number of hidden nodes 

Number of hidden nodes 5 10 15 20 
Number of attributes 36 114 36 114 36 114 36 114 
R2 (2002.7.1 – 2002.7.16) 0.804 0.847 0.853 0.879 0.876 0.899 0.881 0.905 
R2 (2002.10.1– 2002.10.16) 0.746 0.759 0.830 0.746 0.836 0.860 0.842 0.867 

3.3 Comparison of Statistical Retrievals using 2/3 of Deterministic AOT Retrievals for Training 
Results of comparing the overall accuracies of global ANN (GANN), local ANNs (LANN36 and LAN114 

using 36 and 114 attributes respectively), local inverse distance interpolation models (LIDI) and the 
corresponding weighted averaging models are listed in Table 6. Here, weighted averaging model WAGANN+LIDI 
integrates GANN with LIDI models, while WAGANN+LANN36 and WAGANN+LANN114 are weighted averaging models 
obtained by integrating GANN with LANN36 and LANN114 respectively. The weighted averaging models 
significantly outperformed local and global models. The accuracies also varied with time period and region 
(orbit) as data dependences changed in space as shown in Figure 1. The weighted averaging of global ANN 
and local models was clearly beneficial at all orbits while the integration was such that discovered 
relationships were mostly global at some orbits, mostly local at other orbits and exhibited both types of 
dependencies elsewhere. In Figure1 these results are shown as a plot of weight parameter over individual 
orbits. 

Table 6. Comparison of accuracies achieved by different models 

Model Name GANN LIDI LANN36 LANN114 WAGANN+LIDI WAGANN+LANN36 WAGANN+LANN114 

R2 (2002.7.1 – 2002.7.16) 0.874 0.883 0.881 0.905 0.901 0.886 0.911 
R2 (2002.10.1– 2002.10.16) 0.817 0.842 0.842 0.867 0.870 0.859 0.885 

The results suggest that AOT for orbits covering the western US are more difficult to predict than those in 
the east. This is consistent with previously published observations [7] comparing MISR AOT with AOT 
retrieved from ground-based instruments. By comparing weight parameter for the same path in different 
cycles, we see that they also change with time, suggesting global or local dominance changes with seasons. 

3.4 Statistical Retrievals using Different Fractions of Deterministic AOT Retrievals for Training  
Experiments described at Section 3.3 are performed using 2/3 of the deterministic AOT retrievals for 

training and validation. We also repeated the exercise using various other fractions of available deterministic 
AOT retrievals for training and validation. In nine sets of additional experiments, we varied fraction of 
training data from 10% to 90% of total data in increments of 10%. When learning from training data of lower 
spatial density accuracy was increasing nearly linear while improvement was less evident when learning from 
high fraction of deterministic retrievals (Figure 2). We view this as computational support of geoscientist’s 
decisions to provide deterministic AOT retrievals AOT at 17.6k×17.6km spatial resolution rather than doing 
this at a lower resolution. From Figure 2 it can be observed that over a large range of training data densities, 
statistical models obtained by weighted averaging of global and local predictors were  superior in accuracy to  
global or  local statistical models by themselves.  
 



 

Figure 1:  Accuracy R2 and weight parameter of weighted averaging model WAGANN+LIDI for individual orbits 
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Figure 2: Overall accuracy of global model GANN, local inverse distance interpolation model LIDI and weighted 
averaging model WAGANN+LIDI when using 10% to 90% of available deterministically retrieved AOT for training 

statistical models 
 
 

Finally, plots shown in Figure 2 can be used for analyzing consequences of trading retrieval accuracy for 
speed since time requirements of deterministic modeling are much higher than statistical. For example, if we 
retrieve AOT at 20% of the locations using the deterministic algorithm, and then use the results to train a 
statistical retrieval model, computational efforts would be reduced nearly five times assuming computation 
cost of deterministic retrievals is only linear with the number of retrieved AOT examples. However, in such a 
case the coefficient of determination on 80% AOT retrievals obtained statistically versus using deterministic 
retrievals would be about 0.6. 

4  Conclusions and Next Steps 
In this study, we proposed integration of deterministic AOT retrievals with less accurate but 

computationally more efficient statistical approaches. We considered global neural networks trained using 
data from the entire domain, local neural networks, and local spatial interpolation models developed using 
data from a limited region (a single orbit in our experiments). We also proposed a weighted average ensemble 
of global and local statistical model outputs to improve accuracy of geospatial predictors. Averaging takes 
advantage of large global data sets, but also exploits more specific spatial properties at local sites. The 



methodology is evaluated in the context of AOT prediction using MISR data.  
Our experimental results provide some evidence that statistical AOT retrievals can serve as a practically 

useful complement to traditional deterministic retrieval methods. We found that statistical prediction of AOT 
for orbits in the western US is more difficult than such prediction of AOT in the east. Changes in 
dependencies with seasons were also evident (Summer vs. Fall data of cycles 1 and 2). Therefore, further 
research is needed to fully understand where in space and time such integration is likely to be the most 
beneficial. 

The results also showed that the global-local weighted average ensamble approach achieved higher overall 
accuracy than either local or global models did alone in our test datasets. Although the best overall results 
were obtained through weighted averaging of global and local ANNs, replacing local ANN with spatial 
interpolation models achieved comparable accuracy, and has the additional benefit of running faster. The 
benefits of weighted averaging statistical models were particularly clear when larger fraction of deterministic 
AOT retrievals are used for training (2/3 or more). This suggests that integrating statistical and deterministic 
AOT retrievals may be useful for obtaining high quality AOT retrievals at higher resolutions without 
significant additional computational burden. Exploring this topic in more details is a subject of our next steps 
research.  
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