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Abstract – Geospatial data collected by remote sensing 
instruments are often heterogeneous, with substantial 
variations in attribute values and relationships over 
space and time. Fusing such data sets to develop models 
with maximum predictive power is a challenging 
undertaking.  In this paper, we propose an approach in 
which global and local models are constructed, and 
predictions made by properly weighting their outputs. 
The algorithm is evaluated in the context of a particular 
problem of interest to the geoscience community: 
prediction of aerosol optical thickness using geospatial 
remote sensing data collected during four 16-day periods 
during 2002 over the continental US. Artificial neural 
networks are used to construct both global and local 
models. Results show that while the R2 accuracy of the 
global and local models are  at most 0.25 and 0.40, 
respectively, the fusion model is significantly more 
successful, achieving R2 accuracy above 0.50 and 
improving when using the training data are collected 
over longer time periods. In addition, accuracy 
improvements differ by spatial location, the largest being 
in the western US, and the smallest being in the east. This 
could be exploited to further improve the fusion algorithm. 

Keywords: geophysical retrievals, aerosols, regression, 
heterogeneous data, model fusion. 

 

1 Introduction 
Geophysical data collected through remote sensing are 

increasingly used in Earth sciences applications [10].  The 
size, quality, complexity and variability of atmospheric 
data collected by satellite instruments create many 
challenges in data analysis and modeling. The challenge 
addressed in this article is related to supervised learning 
from heterogeneous data characterized by large variations 
of observed attribute statistics, and by target functions that 
depend on unobserved attributes. We consider the problem 
of using remotely sensed attributes to predict geospatial 
parameters of interest. The specific objective of this study 
is prediction of atmospheric aerosol information from 
radiances observed by satellite instruments. 
    Prior related research has focused on construction of 
global prediction models from available labeled data. For 
example, a linear regression model was developed to 
measure correlation between dust concentrations and 

mean monthly values of aerosol optical thickness (AOT) 
on a global scale [11]. While such global approaches are 
convenient and use data collected over the entire Earth to 
learn complex models, the global predictors might fail to 
fully explain properties of specific spatial regions. Such 
problems were observed in various studies including 
exploration of the relationship between remote sensing 
visible bands and surface reflectance. For instance, it was 
found that surface reflectance, which is a critical 
parameter in the accurate derivation of optical thickness 
over land, varied substantially from one type of vegetation 
to another [12].  
    For heterogeneous data with varying characteristics 
over different local regions, an alternative solution is to 
construct a number of local predictors, each specific to a 
given spatial area. Such an approach is employed in the 
operational algorithms of MISR (the Multi-angle Imaging 
SpectroRadiometer) [8], a satellite instrument collecting 
aerosol data for NASA since early 2000. MISR is unique 
because it views Earth from nine different viewing angles 
and in four spectral bands simultaneously. Most sensors of 
this type use only one view angle. MISR measures 
reflected solar radiation in (9 x 4 =) 36 channels, and 
complex, computationally intensive algorithms, called 
retrieval algorithms, are used to convert the radiances into 
aerosol optical thickness (AOT) measurements. AOT is a 
measure of the attenuation of solar energy as photons 
travel through a column of atmosphere. It is an important 
quantity in the study of climate and climate change. MISR 
uses different algorithms for retrievals over different 
surface types [2, 9].  Region-specific approaches to 
retrieval of aerosol properties were also considered in [4]. 
While development of local models addresses the data 
heterogeneity problem, the scarcity of locally-specific 
annotated data could raise issues related to the choice of 
model complexity and overfitting control in supervised 
learning. 
    In this paper, we propose a fusion modeling approach 
where both global and local models are constructed, and a 
prediction obtained by weighting their outputs. We also 
develop a procedure for determining optimal weighting 
factors that minimize the mean squared prediction error 
over a specific region.  
    Our method is evaluated by performing six AOT 
prediction experiments using MISR data over the 
continental US during four time periods of 16-day 
duration in 2002.  We obtained MISR radiance and AOT 



data from NASA’s Langley Research Center [5] for the 
periods from 07/01/2002 – 09/02/2002. In each 
experiment, data collected in the previous period(s) are 
used to train global, local, and fusion models. These 
models are applied to predict AOT values in the following 
16-day period. We used artificial neural networks to 
construct both global and local models. Results indicate 
that the fusion model is more accurate than either local or 
global models alone. In addition, spatial analysis of 
prediction errors reveals that AOT over the western US 
are more difficult to predict than those in the east. 
Nevertheless, in both areas it is evident that prediction 
accuracy improves with the increase of the training data 
set size. 

2    Methodology 

2.1 Problem Definition 
    Given a spatial data set D with N training examples, 
each example di ∈ D is represented by a pair (xi,yi), where 
yi is the target attribute and xi = [xi1…xiM] is an M-
dimensional vector of attributes derived from the observed 
radiance information. The objective is to construct an 
accurate predictor f(x;β) of target attribute y by optimizing 
parameters β from a training set D, such that the mean 
squared error is minimized: 
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2.2 Global, Local, and Fusion Models 
    For data D partitioned into L spatial regions, the 
objective of local modeling is to construct L region 
specific predictors. Given a training data subset Tj of size 
Nj representing the local region j, j = 1…L, the 
corresponding local model is learned by optimizing 
parameters of function fj that minimize the mean squared 
error over the local training data Tj. 
    Local modeling allows us to exploit specific 
dependencies existing in   spatially constrained regions. 
However, to avoid local model overfitting due to scarcity 
of training data in local regions, one is forced to rely on 
insufficiently expressive models that might overlook 
important nonlinear local relationships. This issue is 
addressed by a global modeling approach that learns a 
single global model fG from the whole data set D. 
However, global models can fail to exploit the intricacies 
of the heterogeneous spatial data. 
    In view of this trade-off between local and global model 
benefits, we propose a fusion predictor gj for each local 
region j, j = 1…L:  

 , (2) ),x(f)1(),x(f)x(g jjjGGjj βα−+βα=

where the fusion parameters αj, j = 1…L, are constrained 
to lie in the interval [0, 1].  
    In (2), the global model fG aims at discovering spatially-
independent properties of the whole data set by adjusting 
parameters βG. Local model fj aims to discover locally 
specific properties of the data by adjusting parameters βj.  
We used feedforward artificial neural networks (ANN’s) 
with a single layer of hidden neurons to construct both 
global and local models. In the fusion predictor gj, the 
fusion parameters αj, j = 1…L, are used to find the 
optimal trade-off between the global and local models that 
maximizes the prediction accuracy over a particular local 
region.  

2.3 Optimization of the Fusion Parameters 
    The fusion parameter αj in equation (2) is optimized to 
minimize mean squared prediction error of fusion model gj 
defined as 
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    If αj < 0, its value is set to zero, and if αj > 1, its value 
is set to one.  
    It is worth noting that the value of the fusion parameter 
is a very informative piece of information about the nature 
of a local region. If αj is near 1, the properties of the local 
area do not differ from the global properties, while if αj is 
near 0, the local area is very different from the overall 
data distribution.  
 
3    Experimental Results 

3.1 Data Set 
    The MISR instrument aboard  NASA’s Terra satellite 
consists of nine cameras [1, 3, 6]. Terra is in polar orbit, 
and so MISR sees 36 (nine angles and four wavelengths) 
pieces of information for each north-to-south swaths of 
the Earth on each Terra daytime half-orbit. The central 
camera  points directly downward , four cameras  point 
forward and down along the flight path , and four  point 
aftward and down. The pointing angles are  0°, ±26.1°, 
±45.6°, ±60.0°, and ±70.5° relative to nadir. Each camera 
measures radiances in four spectral bands: blue, green, red 
and near-infrared. The band spectral shapes are 
approximately Gaussian and centered at 446, 558, 672, 



and 866nm, respectively. Thus, each 1.1 km pixel is 
described by 36 radiance measurements. Terra has a 
repeat cycle of 16 days, meaning that every 16 days the 
ground track repeats.. In total, there are 233 distinct MISR 
orbit paths in the cycle, each covering about 360 km wide 
scanning swath.  
    In our experiments, we used four consecutive 16-day 
cycles of MISR Level 1B2 radiance data and MISR Level 
2 aerosol data [5] over the continental US. There are 47 
paths covering the continental US, but data from only 33 
paths were used in this study as only these paths were 
available for all 4 cycles (see Table 1). The radiance 
product includes 36 radiance measurements per data point 
with 1.1km×1.1km resolution. The MISR Level 2 aerosol 
product provides AOT information at 17.6k × 17.6km 
resolution.  
    To merge the radiance and AOT data, each radiance 
attribute is averaged over each 17.6k 17.6km block 
represented by a single AOT value. Before averaging, the 
MISR quality flag is used to identify and remove pixels 
with non-valid radiance information. Since AOT is not 
provided for regions covered with clouds, such regions 
are not used. 

×

Table 1. Data set summary 
 Time Period Number of points 

(over 33/47) 
h )Cycle 1 2002-7-1 − 2002-7-16 30530/45448 

Cycle 2 2002-7-17 − 2002-8-1 32374/49224 

Cycle 3 2002-8-2 − 2002-8-17 22395/35903 

Cycle 4 2002-8-18 − 2002-9-2 20079/32394 

 

3.2 Experimental Design 
    Given spatial coordinates, 36 radiance attributes, and 
AOT values obtained in previous cycles, our task is to 
predict AOT on the subsequent cycles. We designed the 
following six groups of experiments to compare prediction 
accuracy of our fusion approach against those of  global 
and local models alone.  
E1. Cycle 1 training data are used to predict optical 

thickness in cycle 2; 
E2. Cycle 1 training data are used to predict optical 

thickness in cycle 3; 
E3. Cycle 1 training data are used to predict optical 

thickness in cycle 4; 
E4. Cycle 1 and 2 training data are used to predict optical 

thickness in cycle 3; 
E5. Cycle 1 and  2 training data are used to predict optical 

thickness in cycle 4; 
E6. Cycle 1, 2 and 3 training data are used to predict 

optical thickness in cycle 4. 
 
  The experimental procedure consists of the following 
steps: 

STEP 1. Merge all data points from training cycles into a 
global data set T. 

STEP 2. Randomly select 10,000 examples from T to 
construct a global model fG. 

STEP 3. For each path j, j = 1…33, merge the 
corresponding data points into a local data set 
Tj. Divide Tj evenly into two subsets Tj1 and Tj2.  

STEP 4. By using data in Tj1, construct a local model fj. 
STEP 5. Use Tj2 to validate and compute the fusion 

parameter αj. 
STEP 6. Use global, local, and fusion models to predict 

AOT values for each path of the test cycle(s). 
STEP 7. Return to STEP 3 by proceeding with the data 

from the next path. 
    In the experiments, we used feedforward neural 
networks trained by the backpropagation algorithm to 
construct global and local models. Each neural network 
had an input layer with 36 radiance attributes, a single 
hidden layer with 10 hidden units, and a single output unit.  

3.3 Accuracy Results 
    The results of comparing the overall accuracy achieved 
by global, local and fusion model are reported in  Table 2. 
The accuracy is measured by  the mean squared error 
(MSE) and by  the coefficient of determination R-squared 
(R2)  R2 = 1−MSE/Var(AOT), where Var(AOT) is the 
variance of AOT values on test data. 
       Table 2. Prediction accuracy on the test cycles 

E1: Predict cycle 2 by training on cycle 1 
Predictor Global       Local     Fusion 

MSE 0.0189 0.0187 0.0147 
R2 0.1391 0.1491 0.3286 

 
E2: Predict cycle 3 by training on cycle 1 

Predictor Global  Local  Fusion  
MSE 0.0251 0.0180 0.0153 

R2 0.0800 0.3404 0.4550 
 

E3: Predict cycle 4 by training on cycle 1 
Predictor Global  Local  Fusion  

MSE 0.0156 0.0111 0.0100 
R2 0.0240 0.2916 0.3227 

 
E4: Predict cycle 3 by training on cycles 1+2 

Predictor Global  Local  Fusion  
MSE 0.0198 0.0164 0.0139 

R2 0.2910 0.4117 0.5016 
 

E5: Predict cycle 4 by training on cycles 1+2 
Predictor Global  Local  Fusion  

MSE 0.0137 0.0113 0.0089 
R2 0.1373 0.2856 0.4411 

 
E6: Predict cycle 4 by training on cycles 1+2+3 

Predictor Global  Local  Fusion  
MSE 0.0119 0.0095 0.0084 

R2 0.2521 0.3998 0.4686 



The fusion models outperformed local and global models 
in all of the six experiments. In addition, by comparing the 
accuracies on Cycle 4 in experiments E3, E5, and E6, as 
well as accuracies on Cycle 3 in experiments E2 and E4,  
it is evident that increase of the training data set size 
results in more accurate global, local, and fusion models. 
   Accuracies of global, local, and fusion models on 
individual paths for all of the six experiments E1-E6 are 
shown at Figure 1. Prediction accuracies of all models are 
higher in the eastern paths than in the western paths of the 
study area . This is consistent with previously published 
observations [7] comparing the AOT retrieved by MISR 
with AOT retrieved from ground-based instruments: 
western regions had lower correlation coefficients than 
eastern ones. 
    To  compare the accuracy of two models M1 and M2, 
we present the logarithms of their MSE ratios: log 
(MSE(M1)/MSE(M2)). Figures 2-7, show this ratio for 
each orbit path, Scores below 0 indicates that the model 
M1 is more accurate than M2, while scores above 0 
indicates that the model M2 is more accurate than M1.  
    Top, middle and bottom panels in Figures 2-7  
correspond to pairwise comparisons of log MSE 
accuracies for fusion vs. local, fusion vs. global and local 
vs. global models in experiments E1-E6.  It is interesting 
to note that the performances of global and local models 
were not stable from experiment to experiment. However, 
the fusion model outperforms both global and local 
models over most paths indicating that the approach may 
be successful regardless of the complexity of local aerosol 
properties. 
4  Conclusions 
    In this study, we proposed a fusion approach that 
improves accuracy of geospatial predictors by 
appropriately weighting global and local models. The 
approach takes advantage of large global data sets, but 
also exploits more specific spatial properties at local sites. 
The approach is evaluated on AOT  prediction using four 
MISR datasets representing four consecutive 16-day 
cycles during 2002 over the continental US. The results of 
six predictive experiments provide evidence that the 
fusion approach achieved higher overall accuracy than 
either  local or  global models alone. In addition, our 
analysis  reveals that the  fusion model outperforms both 
global and local models over most paths, and that 
prediciton of AOT for  paths in the western US is  more 
difficult than prediction of AOT in the east. The fusion 
model outperformed both global model and local models 
in most paths individually. This suggests that the fusion 
approach can improve the prediction accuracy at multiple 
scales by taking optimal advantage of both global and 
local information.  
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Figure 1: Comparison of MSE of three models on each path for E1 – E6 experiments 
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Figure 3 : Pairwise comparison of log MSE in E2. (a) 
Fusion model vs. Local Model ; (b) Fusion model vs. 
Global Model ; (c) Local model vs. Global model 
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Figure 2 : Pairwise comparison of log MSE in E1. (a) 
Fusion model vs. Local Model ; (b) Fusion model vs. 
Global Model ; (c) Local model vs. Global model 
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Figure 4 : Pairwise comparison of log MSE in E3. (a) Fusion 
model vs. Local Model ; (b) Fusion model vs. Global 
Model ; (c) Local model vs. Global model 
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Figure 5: Pairwise comparison of log MSE in E4. (a) 
Fusion model vs. Local Model ; (b) Fusion model vs. 
Global Model ; (c) Local model vs. Global model 
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Figure 6: Pairwise comparison of log MSE in E5. (a) 
Fusion model vs. Local Model ; (b) Fusion model vs. 
Global Model ; (c) Local model vs. Global model 
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Figure 7: Pairwise comparison of log MSE in E6. (a) 
Fusion model vs. Local Model ; (b) Fusion model vs. 
Global Model ; (c) Local model vs. Global model 

 


