
ARTICLE IN PRESS
0952-1976/$ - se

doi:10.1016/j.en

�Correspond
E-mail addr
Engineering Applications of Artificial Intelligence 19 (2006) 787–795

www.elsevier.com/locate/engappai
A statistical complement to deterministic algorithms for the retrieval
of aerosol optical thickness from radiance data

Bo Hana, Slobodan Vucetica, Amy Bravermanb, Zoran Obradovica,�

aCenter for Information Science and Technology, Temple University, 1805 N. Broad St, Philadelphia, PA 19122, USA
bJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

Received 18 May 2006; accepted 21 May 2006

Available online 14 August 2006
Abstract

As a complement to the conventional deterministic geophysical algorithms, we consider a faster, but less accurate approach: training

regression models to predict aerosol optical thickness (AOT) from radiance data. In our study, neural networks trained on a global data

set are employed as a global retrieval method. Inverse distance spatial interpolation and region-specific neural networks trained on

restricted, localized areas provide local models. We then develop two integrated statistical methods: local error correction of global

retrievals and an optimal weighted average of global and local components. The algorithms are evaluated on the problem of deriving

AOT from raw radiances observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard NASA’s Terra satellite.

Integrated statistical approaches were clearly superior to global and local models alone. The best compromise between speed and

accuracy was obtained through the weighted averaging of global neural networks and spatial interpolation. The results show that, while

much faster, statistical retrievals can be quite comparable in accuracy to the far more computationally demanding deterministic methods.

Differences in quality vary with season and model complexity.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

NASA’s Earth Observing System (EOS) satellites, Terra,
Aqua, and Aura, have now been in orbit for several years.
The instruments aboard these platforms provide steady
and massive streams of information on many different
geophysical characteristics of the Earth’s atmosphere and
environment. Their primary purpose is to characterize how
the Earth’s system is changing, and to identify and
understand the primary causes of that variability (Herring
and King, 2000).

As a basic principle of remote sensing, satellite instru-
ments measure radiances emitted or reflected from Earth.
These data are used to estimate underlying geophysical
characteristics, such as atmospheric temperature profiles,
cloud and aerosol properties, and the extent of snow, ice,
or vegetation cover (Diner and Davies, 2003). The process
e front matter r 2006 Elsevier Ltd. All rights reserved.
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of inferring these characteristics from observed radiances is
called retrieval. The retrieved quantities, called parameters,
are then used in various applications ranging from natural
resource monitoring to the development of general
circulation models for a climate. Accurate and timely
retrievals are critical for the success of the subsequent
analyses.
One of the most important tasks for the EOS mission teams

is the retrieval of aerosol information. Aerosols are small
particles produced by natural and man-made sources that
both reflect and absorb incoming solar radiation. Aerosol
concentration and chemical properties are important para-
meters in climate change models, in studies on regional
radiation balances, and of the hydrological cycle (Ramana-
than et al., 2002). Using radiance observations from satellites,
it is possible to estimate the attenuation of solar energy as it
passes through a column of atmosphere, a quantity commonly
known as aerosol optical thickness (AOT).
Since 2000, the Multi-angle Imaging SpectroRadio-

meter (MISR) instrument has been providing aerosol
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information. MISR AOT retrievals provide information
about both AOT (also called aerosol optical depth, AOD),
and aerosol particle properties. The operational MISR
retrieval algorithm is based on separately developed ocean
and land forward models, and uses a deterministic
inversion approach (Kahn et al., 1997; Martonchik et al.,
1998, 2002). The forward MISR model is applied on 24
representative aerosol mixtures to obtain a look-up table
with simulated observed radiances. The simulated data are
then compared to actual observations for the appropriate
scene type (land or ocean), and the nearest neighbor in the
look-up table is ‘‘retrieved’’. We call this the deterministic

retrieval.
Due to the large volume of data being collected by the

MISR, compromises are required between retrieval accu-
racy and processing complexity. For example, the MISR
collects raw data at a 1.1 km resolution, but retrieves
aerosol properties at 17.6 km resolution for just 24
postulated aerosol types. Processing 650MB of raw
radiance data collected every day requires 30–60 h on a
dual processor workstation with a maximum resident
memory of 1GB. Scientifically, it would be preferable to
retrieve aerosol properties at 1.1 km resolution and with a
much larger number of postulated aerosol types, but this
would require an increase in processing resources of several
orders of magnitude. The major objective of this study was
to explore whether statistical approaches can be used to
alleviate this computational hindrance.

Our goal here was to show that statistical approaches
could complement deterministic retrieval algorithms to
significantly reduce computational costs while introducing
only a slight accuracy overhead. The underlying idea was
to use deterministic algorithms over a reduced set of
locations, and to rely on statistical approaches to provide
accurate retrieval over the remaining locations.

We explored two basic statistical approaches. One is
based on spatial interpolation and another on the
construction of neural network predictors. They both have
been successfully used for geophysical parameter retrievals.
Zhao et al. (2005) applied spatial interpolation to improve
Moderate-Resolution Imaging Spectroradiometer primary
vegetation product MOD17. Faure et al. (2002) have
shown that the neural network approach could be used to
retrieve cloud parameters of inhomogeneous clouds from
high-resolution multispectral radiometric data. Berdnik
and Loiko (2006) investigated the problem of retrieval of
size and refractive index of spherical particles by using
multilevel neural networks.

In this study, spatial interpolation utilizes the property
that AOT values are strongly spatially correlated over the
distances of up to 100 km. In the second approach, neural
networks use AOTs provided by deterministic retrievals as
training data to directly learn mappings from raw radiance
observation attributes to AOT. Both statistical approaches
are less accurate than the deterministic algorithm because
they directly depend on its retrievals. Since spatial
interpolation and neural network approaches are quite
different, we also explored algorithms that combine their
strengths. To this end, we took two approaches: (1) using
spatial interpolation to correct errors in neural network
predictors and (2) using weighted averages of retrievals
produced separately by spatial interpolation and neural
networks.
Our preliminary results (Han et al., 2005) indicated that

statistical approaches have interesting trade-offs between
retrieval speed and accuracy. This paper reports on a more
detailed study by evaluating the preliminary and alter-
native statistical approaches over substantially larger data
sets. The proposed methods were evaluated using MISR
data over the continental United States during four 16-day
periods in 2002: July 1 to 16, 2002, July 7 to August 1,
2002, October 1to 16, 2002, and October 17 to November
1, 2002. Experimental results provide further indication
that statistical approaches represent a promising mechan-
ism for improving aerosol retrieval efficiency, without
significantly reducing accuracy.

2. Methodology

2.1. Preliminaries

Given a set fxig of satellite-based radiance observations,
each data point xi is represented as tuple xi ¼

½ti; lati; loni; oi1 . . . oiM ; ai1 . . . aiN �, where ti is the time of
the observation, lati and loni denote the spatial location, oij,
j ¼ 1 . . . M, are attributes derived from the observed
radiances, and aij, j ¼ 1 . . . N, are ancillary attributes.
For example, geometric parameters describe instrument
camera view angles and sun angle. The aerosol retrieval
task can be stated as a prediction of AOT, denoted as yi,
based on the corresponding values of xi.
Deterministic retrievals are based on a forward model

oi ¼ F ðai; yiÞ, which estimates what the observed radiances
oi will be based on the aerosol properties yi and ancillary
attributes ai. The forward model is derived directly from
physical principles. Given the forward model F, the
remaining task is to derive a retrieval algorithm as an
inverse operator of F, R ¼ F�1. The development of a
retrieval algorithm by the inversion of the nonlinear
forward model is an ill-posed problem. The deterministic
retrieval is based on the construction of a look-up table
that consists of a large number of tuples ðai; yi; F ðai; yiÞÞ

corresponding to a number of retrieval scenarios defined by
(ai, yi) tuples. Then, given an observation defined by pair
(a, o), the look-up table entry with values of (ai,F(ai, yi))
closest to the observation is found. The value yi of this
entry is reported. This inversion procedure is equivalent to
nearest neighbor algorithms and is computationally costly
because it requires linear search time for each retrieval.
Statistical retrievals use a labeled data set with tuples
fðxi; yiÞ; i ¼ 1 . . . Kg to provide retrievals at desired loca-
tions. In the case of neural networks, statistical retrieval
algorithms learn an accurate regression model NNðx; bÞ
that minimizes the Mean Squared Error (MSE) defined as
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E½ðy�NNðx; bÞÞ2�, where b is a set of model parameters.
While learning regression models can be time consuming,
the retrieval (i.e., evaluation of NNðx; bÞ for a given x) is
rapid. Alternatively, the spatial correlation of aerosols can
be used to predict AOT at locations in the vicinity of points
represented by the labeled data set.

2.2. Problem definition

Based on the properties of deterministic and statistical
retrieval algorithms described in Section 2.1, it is evident
that the two approaches are complementary—deterministic
retrieval algorithms are accurate and computationally
expensive, while statistical algorithms may be less accurate
and are significantly less expensive. The goal of this paper
is to explore how to combine the two approaches to achieve
a trade-off between accuracy and computational complex-
ity. The approach explored in our study is as follows:
�
 Instead of applying the deterministic algorithm at high
spatial resolution, we apply it over a significantly
reduced number of spatial locations and use a statistical
algorithm to provide retrievals at the remaining loca-
tions.

The objective here is to explore the potential of this
approach to significantly reduce retrieval time, with only a
slight decrease in accuracy. In Sections 2.3–2.7 we outline
five different statistical retrieval algorithms to be combined
with the deterministic algorithm used by MISR.

2.3. Retrieval by Global Artificial Neural Networks

(GANN)

Assume we are given a set of K labeled data points
fðxi; yiÞ; i ¼ 1 . . . Kg where labels yj are obtained from a
deterministic algorithm over some period of time. We
construct a GANN regression model yi ¼ GANNðxiÞ by
using non-spatial attributes xi (without including (lati,
loni)) as input, and targets yj as output. The trained model
is called global because it uses previously retrieved data in
all regions for its training.

In our experiments, GANN was structured as a
feedforward neural network, with a single hidden layer
having sigmoid neurons and a linear neuron at the output.
The design objectives were dimension reduction and
identification of an optimal GANN structure in order to
maximize the prediction accuracy on separate test data.
Prediction accuracy is measured by MSE, or by the
coefficient of determination R2 ¼ 1�MSE=VarðyÞ, where
Var(y) is the variance of the AOT target variable.

Publicly available MISR data products allow derivation
of a large number of attributes. Direct use of these
attributes as inputs would result in a neural network with
a large number of weights, a time-consuming training
procedure, and possible overfitting problems. Therefore,
we applied principal component analysis (PCA) to reduce
data dimensionality by using the largest principal compo-
nents as inputs to our ANN. We determined the appro-
priate number of hidden units in the ANN by empirically
comparing overall prediction accuracies. Based on results
of our preliminary study (Han et al., 2005), we selected
Bayesian regularization as the ANN training algorithm.

2.4. Retrieval by Inverse Distance Spatial Interpolation

(IDSI)

Given a set of K spatially co-located data points
fðlati; loni; yiÞ; i ¼ 1 . . . Kg obtained from the deterministic
algorithm, IDSI can be used to predict AOT at neighboring
locations. The AOT value y at desired location (lat, lon) is
computed as

y ¼
SK

i¼1yi=d
p
i

SK
i¼11=d

p
i

, (1)

where di is the distance between (lati, loni) and (lat, lon),
and p is a parameter determining the extent of emphasis on
the nearest neighbors (Vucetic et al., 2000). Larger p values
assign larger weights to the near neighbors, where p ¼ 0
corresponds to simple averaging, and p ¼ 1 is equivalent
to the nearest neighbor predictor. We explored several
choices for the value of p to determine the best one for use
in all subsequent experiments.

2.5. Retrieval by Region-Specific Neural Networks

(RSNN)

More complex interpolation methods are possible. For
example, we explored RSNN interpolators. For each
spatial region covered by one pass of the instrument,
called an orbit (see Fig. 1), a local neural network was
constructed using a subset of labeled data corresponding to
that orbit. In contrast to GANN, RSNN uses smaller
number of neurons because it is trained using a small
amount of data collected from a specific region. In
addition, the input to RSNN is composed of all available
attributes including latitude and longitude. Thereby,
RSNN can reflect specific properties of a region by
explicitly incorporating information from a spatially
constrained region. Using spatial coordinates as attributes
allows RSNN to perform spatial interpolation, which is
desirable for this type of application.

2.6. Retrieval by Error Correction Models (ECM)

We have observed that retrieval errors from GANN are
spatially correlated (see Section 3.2.1). Therefore, if
GANN is overestimating at given location, it is highly
likely that it will overestimate at neighboring locations (up
to about 100 km away). This phenomenon can be exploited
by spatial autoregressive modeling. In this study, we used a
simple approach: given a set of Kr labeled data points
fðxi; yiÞ; i ¼ 1 . . . Krg corresponding to orbit r, r ¼ 1 . . . R,
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Fig. 1. Examples of three orbits over the continental United States collected on July 15, 2002 (Orbit 6), July 9, 2002 (Orbit 16), and July 5, 2002 (Orbit 28).

Missing areas correspond to blocks without MISR retrieval. The intensity represents AOT.
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AOT at a location defined by vector x is estimated as

ECMrðxÞ ¼ GANNðxÞ þ �rðxÞ, (2)

where �rðxÞ is obtained by IDSI (Eq. (1)) applied to
prediction errors yi �GANNðxiÞ from GANN over the
labeled data. In these experiments, the same value of
parameter p was used as for original IDSI algorithm of
Section 2.4.
2.7. Retrieval by a Weighted Average Model (WAM)

To combine predictions from GANN models and spatial
interpolation models, we construct a WAM predictor for
each orbit r, r ¼ 1 . . . R, by weighting the component
predictors as

y ¼ arGANNðxÞ þ ð1� arÞIDSIrðxÞ. (3)

Here ar is the weight parameter constrained to lie in the
interval [0, 1].

The weight parameter ar in Eq. (3) is optimized to
minimize the mean-squared prediction error. It can be
shown that the optimal choice of ar is

ar ¼

PKr

i¼1

ðyi � IDSIrðxiÞÞðGANNðxiÞ � IDSIrðxiÞÞ

PKr

i¼1

ðGANNðxiÞ � IDSIrðxiÞÞ
2

, (4)

where Kr represents the number of labeled data points
within the rth orbit. If aro0, its value is set to zero; and if
ar41, its value is set to one.
3. Experimental results

3.1. Data set

MISR data used in our experiments were obtained from
NASA’s Langley Atmospheric Sciences Data Center.
MISR measures reflected solar radiation from nine view
angles along the direction of flight and in four spectral
bands at each angle (Bothwell et al., 2002; Bull et al., 2005;
Mcguckin et al., 1995). On each orbit, MISR sweeps out a
360 km wide swath of data from north to south at a 1.1 km
spatial resolution while in daylight. An example of
retrieved AOT based on observations during July 2002 is
shown in Fig. 1. Since MISR does not collect data at night,
consecutive swaths are separated geographically resulting
in 14 or 15 evenly spaced half-orbits per day. MISR’s
ground footprint repeats in 16-day cycles, which is the time
it takes the Terra satellite to fly 233 distinct orbital paths
(Diner, 1999). We obtained about 66GB of MISR aerosol,
radiance and cloud mask data covering four 16-day repeat
cycles over the entire continental US (cycle 1: July 1 to 16,
2002, cycle 2: July 17 to August 1, 2002, cycle 3: October 1
to 16, 2002, and cycle 4: October 17 to November 1, 2002).
The learning target is AOT at 470 nm retrieved at

17.6 km� 17.6 km spatial resolution (EOS Data Gateway,
2005). The attributes listed in Table 1 are derived from 116
radiance variables and geometric parameters (e.g., sun
angle, view angle, etc.) measured at 1.1 km spatial
resolution and aggregated over each 17.6 km� 17.6 km
block. In the preprocessing stage, we used the cloud mask
to filter out pixels where at least one of the nine cameras
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Table 1

Driving attributes constructed at 17.6 km� 17.6 km resolution from

1.1 km pixels

Attribute

index

Name and explanation

1, 2, 3, 4 Time, latitude, longitude, orbit number

5–40 36 mean values of radiance measurements

41–76 36minimum radiance measurements in each

17.6� 17.6 km region

77 Solar zenith angle

78–86 View zenith angle (9 cameras)

87–95 Relative view-Sun azimuth angle (9 cameras)

96–104 Scattering angle (9 cameras)

105–113 Glitter angle (9 cameras)

114 Number of cloud-free points in each 17.6� 17.6 km

region

115 Surface feature type in each 17.6� 17.6 km region

Table 2

Mean and standard deviation of AOT in each cycle

Cycle AOT mean AOT standard

deviation

Cycle 1: July 1 to 16, 2002 0.268 0.224

Cycle 2: July 17 to August 1, 2002 0.196 0.127

Cycle 3: October 1 to 16, 2002 0.087 0.052

Cycle 4: October 17 to November

1, 2002

0.085 0.047
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observed clouds. Additionally, the MISR quality flag was
used to remove 1.1 km pixels with invalid radiance
information. After data cleaning, we obtained 12,304,
10,778, 6616, and 3835 labeled data points for evaluation
of the proposed models.

Aerosol properties vary considerably over seasons, and
this should be accounted for when interpreting experi-
mental results. Table 2 shows average AOT and its
standard deviation over each of the four cycles. AOT is
significantly higher and more variable during the two July
cycles than during the two October cycles.
3.2. Optimization of statistical retrieval models

In the first set of experiments explained in Sections
3.2.1–3.2.3 we optimize GANN, IDSI, and RSNN models
by assuming that 10% of the deterministic AOT retrievals
are available for training.
3.2.1. Optimization of GANN

We examined accuracies of GANN with 5, 15, and 30
hidden nodes. We also explored cases when 31 principal
components (retaining 95% of attribute variance) and 54
principal components (retaining 99% of the variance) were
used as inputs to GANN. Table 3 summarizes the achieved
R2 accuracy for each cycle and every combination of
hidden nodes and principle components used to reduce
dimensionality. Considering learning complexity and
achieved accuracy, GANN with 15 hidden nodes and 31
principal components seemed to be an appropriate choice,
and was used in the remaining experiments.

By analyzing the prediction errors of GANN, we
observed that they are spatially correlated. As an illustra-
tion, in Fig. 2, we show MISR AOT, GANN, and MISR
AOT–GANN values for a portion of Orbit 7 on July 10,
2002. Clearly, all three quantities are strongly spatially
correlated.
3.2.2. Optimization of IDSI

To explore the influence of various ways of weighting
spatial interpolation towards near neighbors, we ran
experiments using different p-parameter values in inverse
distance interpolation (Eq. (1)). Results listed in Table 4
suggest that using p ¼ 2 is the optimal choice.

3.2.3. Optimization of RSNN

The RSNN should be constructed using a small amount
of regional training data. Based on our pilot study (results
not shown), an appropriate choice appears to be the five
largest principal components together with latitude and
longitude attributes. A minimum of 50 training points per
orbit were required for RSNN implementation. Thus, this
method could be used only for highly populated orbits.
Usually, such orbits have few clouds.

3.3. Comparison of statistical algorithms by using 10% of

deterministic AOT retrievals for training

Results comparing overall accuracies of GANN, RSNN,
IDSI, ECM, and WAM are listed in Table 5. WAM
performed best in all cycles. ECM significantly out-
performed GANN, IDSI, and RSNN during three
cycles. We also observed that performance of the five
statistical models can vary considerably over different
orbits. To analyze the models’ R2 accuracy in more
detail, we list the paired model comparisons in Table 6.
Results show the number of orbits (with more than
100 labeled points) for which the first model was more
accurate than the second model. WAM performed better
than the others on most orbits. These results are confir-
med in Table 7, which shows the number of orbits for
which each of the statistical approaches was superior to
the others.

3.4. Statistical retrievals using different fractions of

deterministic AOT retrievals for training

Experiments described in Section 3.3 were performed
using 10% of the deterministic AOT retrievals for training.
We also repeated the exercise using 2%, 5%, 20%, and
50% of available deterministic retrievals as labeled data for
training. This covers a wide range of retrieval speed trade-
offs. Since statistical retrievals are several orders of
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Table 3

Hidden layer optimization for GANN

No. of hidden nodes PCA retained variance

95% (31 attributes) 99% (54 attributes)

5 15 30 5 15 30

R2 of cycle 1 0.825 0.839 0.825 0.839 0.842 0.840

R2 of cycle 2 0.617 0.648 0.617 0.640 0.647 0.643

R2 of cycle 3 0.353 0.359 0.353 0.357 0.372 0.375

R2 of cycle 4 0.429 0.446 0.429 0.440 0.424 0.411

Fig. 2. (a) MISR AOT intensities retrieved over a portion of Orbit 7 (latitudeA[36.0, 41.7], longitude A[�117.9,�112.1]) on July 10, 2002. (b) GANN

AOT intensities retrieved over a portion of Orbit 7 (latitudeA[36.0, 41.7], longitudeA[�117.9,�112.1]) on July 10, 2002. (c) Errors of GANN AOT

retrievals over a portion of Orbit 7 (latitudeA[36.0, 41.7], longitude A[�117.9,�112.1]) on July 10, 2002.

Table 4

Accuracy of IDSI using different p values

p 0.5 1 1.5 2 2.5 3

R2 of cycle 1 0.685 0.792 0.828 0.839 0.837 0.834

R2 of cycle 2 0.395 0.504 0.561 0.648 0.607 0.586

R2 of cycle 3 0.277 0.313 0.371 0.359 0.482 0.481

R2 of cycle 4 0.318 0.398 0.433 0.446 0.434 0.426

Table 5

Comparison of overall accuracies achieved by different models

Model name GANN IDSI RSNN ECM WAMGANN+IDSI

R2 of cycle 1 0.839 0.837 0.841 0.864 0.864

R2 of cycle 2 0.648 0.582 0.465 0.700 0.728

R2 of cycle 3 0.359 0.684 0.638 0.575 0.745

R2 of cycle 4 0.446 0.439 0.465 0.472 0.661
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magnitude faster than the deterministic one, using the
deterministic method for 2% of locations and statistical
algorithms over the remaining 98% results in a speed-up of
almost 50 times.
By increasing the fraction of training data from 2% to
10%, retrieval accuracy was increased nearly linearly.
Accuracy leveled off with a further increase in training set
size (Fig. 3). We view this as computational support for the
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Table 6

Paired model comparison

Comparison pair Cycle 1 Cycle 2 Cycle 3 Cycle 4

WAM4GANN 27 25 26 14

WAM4IDSI 21 18 25 13

WAM4RSNN 28 29 24 14

WAM4ECM 30 27 18 13

ECM4GANN 19 12 20 13

ECM4IDSI 10 9 20 12

ECM4RSNN 22 22 22 13

IDSI4GANN 28 21 21 12

IDSI4RSNN 24 25 17 12

RSNN4GANN 16 7 12 4

Results show the number of orbits in which the first model had higher accuracy than the second model. Cycle 1 had 33, Cycle 2 had 30, Cycle 3 had 26, and

Cycle 4 had 16 orbits.

Table 7

Number of orbits won by each model

Model name GANN IDSI RSNN ECM WAMGANN+IDSI

Cycle 1 3 9 2 3 16

Cycle 2 3 9 1 3 14

Cycle 3 0 0 4 7 15

Cycle 4 0 3 1 4 8
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geoscientist’s decisions to provide deterministic retrievals
at 17.6 km� 17.6 km spatial resolution rather than at a
higher resolution. Fig. 3 shows that over a large range of
training data densities, statistical models obtained by
weighted averaging of global and local predictors were
superior in accuracy to global or local models by
themselves. We also observed that ECM models followed
GANN models: they performed better than both GANN
and IDSI when GANN accuracies are large, and
performed worse than IDSI when GANN accuracies are
small. RSNN performance was comparable with IDSI
when the training set size was large.
3.5. Quality comparison of statistical vs. deterministic

retrievals

R2 values reported in Tables 3–5 are not sufficient to
conclude the extent to which statistical retrievals can be
used to complement deterministic AOT retrieval algo-
rithms in practice. In particular, in Table 5, smaller R2

scores in cycle 4 are due to a very small standard deviation
in the deterministic AOT retrievals in this period (Table 2)
such that minimal prediction errors of statistical retrievals
resulted in low R2 scores. More insight is possible by
comparing errors introduced by statistical AOT retrieval
algorithms to those of deterministic algorithms.

MISR deterministic AOT retrieval algorithms have been
undergoing extensive validation by comparison with
ground-based AOT observations from Aerosol Robotic
Network (AERONET) sites. A recent study (Abdou et al.,
2005) reported that the standard deviation of MISR AOT
retrieval error over land is approximately 0:05� 0:2t,
where t denotes actual AOT value. This indicates that the
magnitude of AOT retrieval error increases with AOT.
Using this, we estimate MSE of MISR deterministic AOT
retrievals, MSEdet, as

MSEdet ¼
1

K

XK

i¼1

ð0:05þ 0:2�AOTiÞ
2: (5)

Our regression models are constructed based on MISR
AOT retrievals. Therefore, their prediction value ystat can
be represented as

ystat ¼ ydet þ �stat ¼ yAERONET þ �det þ �stat. (6)

Assuming independence between deterministic and statis-
tical prediction errors, �det and �stat, MSE of the statistical
retrieval, MSEstat can be estimated as

MSEstat ¼ E½ð�det þ �statÞ
2
� ¼ E½�2det� þ E½�2stat�

¼MSEdet þMSED, ð7Þ

where MSED is MSE of our (statistical) prediction.
Based on formulas (5) and (7), we computed MSEstat for

WAM and MSEdet for deterministic AOT retrievals.
Square root values of MSE (RMSE), commonly used in



ARTICLE IN PRESS

Fig. 3. Overall accuracy of statistical retrieval models GANN, IDSI, RSNN, ECM, and WAM when using 2–50% of available deterministically retrieved

AOT for training of statistical models.

Table 8

Comparison of RMSEstat for WAM versus RMSEdet of deterministic AOT retrievals over the same data

Type of algorithm Statistical (WAMGANN+IDSI) Deterministic

Fraction of training data

2% 5% 10% 20% 50%

RMSE of cycle 1 0.149 0.143 0.139 0.137 0.131 0.113

RMSE of cycle 2 0.118 0.117 0.114 0.112 0.112 0.092

RMSE of cycle 3 0.078 0.074 0.072 0.073 0.071 0.068

RMSE of cycle 4 0.078 0.075 0.073 0.072 0.071 0.067

Results are shown for fractions of deterministic retrievals equal to 2%, 5%, 10%, 20%, and 50%.
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the geosciences, are shown in Table 8. Statistical retrievals
can be quite comparable in quality to deterministic ones,
where the difference in quality varies with season and
model complexity. For example, using deterministic
retrieval over only 2% of locations, the RMSEstat was
about 1.3 times larger than RMSEdet in the first two cycles
(summer period) and about 1.15 times larger than
RMSEdet in the last two cycles (autumn). By increasing
the fraction to 20%, the difference in quality of decreased
to 1.2 and 1.05 times, respectively.
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4. Conclusion

In this study, we explored whether data-driven statistical
retrievals can serve as an efficient and practically useful
complement to traditional physical model-based determi-
nistic retrieval methods. For statistical retrievals, we
considered (1) global neural networks trained using a
fraction of deterministic retrievals sampled from the entire
domain, (2) local neural networks, and (3) local spatial
interpolation models developed using data from limited
regions (single orbits in our experiments). To address
spatial heterogeneity of AOT data distribution, we
proposed using local statistical models for correction of
spatially correlated errors from global regressions. We also
developed a weighted average-based ensemble model,
which takes advantage of large global data sets but also
exploits more specific spatial properties at local sites.

We evaluated this methodology in the context of AOT
retrievals for four 16-day cycles of MISR data over the
entire continental United States. In our experiments, both
methods for integration of global and local statistical
components were clearly superior to global and local
statistical retrievals alone. The most accurate results were
obtained through a weighted average optimization of
global and local components. The benefits were particu-
larly evident when a larger fraction (20%) of deterministic
AOT retrievals were used for training, but relying on
smaller fractions (2%) of deterministic retrievals also
resulted in quite accurate results. This suggests that
statistical AOT retrievals can serve as a practically useful
complement to traditional deterministic retrieval methods
in providing higher resolution retrievals with reduced
computational efforts.
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