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Abstract If all features causing heterogeneity were observed, a 
mixture of experts approach (Jacobs et al., 1991) is likely 
to be superior to using a single model. When unobserved 
or very noisy spatial features are the cause for the hetero-
geneity, the observed feature spaces of homogeneous sub-
sets can highly overlap, leading to a biased global model 
or biased mixture of experts. Our goal is to allow more 
accurate predictions in such situations. 

Here, a supervised machine learning algorithm 
for the analysis of heterogeneous spatial data is 
proposed. It is based on partitioning the data set 
into more homogeneous regions by competition 
of regression models (linear or nonlinear). The 
algorithm starts from learning a global model, 
and adds new models into the competition until 
each model becomes specialized for one of the 
regions. The competition convergence is proven 
theoretically. Also, the influence of filtering the 
competing models residuals for improving con-
vergence speed and accuracy is discussed. A 
number of experiments on artificial and real-life 
spatial data are performed to validate some as-
pects of the algorithm and to illustrate its poten-
tial applications. The obtained results provide 
strong evidence that homogeneous regions can 
be identified with high accuracy by using the 
proposed approach even when their observed 
feature spaces highly overlap. 

An assumption of data independence valid for most of 
standard machine learning data sets is often unrealistic for 
spatial variables, whose dependence is strongly tied to a 
location, where observations spatially close to each other 
are more likely to be similar than observations widely 
separated in space. As a consequence, errors of spatial 
prediction models are also spatially correlated (Cressie, 
1993). The method proposed here incorporates knowledge 
of spatial correlation for more accurate partitioning of 
heterogeneous spatial data sets. 

The new partitioning algorithm is based on three impor-
tant mechanisms: (a) competition among learning models 
for spatial data points, (b) averaging errors of each com-
peting model over neighboring data points, and (c) an 
incremental introduction of additional models into the 
competition when needed.  

1.  Introduction 

Distinctive properties of spatial data require specific data 
analysis and modeling techniques (Cressie, 1993). Spatial 
data can often be heterogeneous, such that in distant areas 
the dependencies between observed features are different. 
If it is possible to partition heterogeneous data sets into 
homogeneous subsets, a local model could be learned 
separately on each of them. This would result in better 
overall prediction accuracy as compared to constructing a 
single model on all data since a global model is likely to 
be biased on most homogeneous subsets. Thus, in this 
study a data set is said to be heterogeneous if its partition-
ing can improve prediction accuracy. Given multivariate 
spatial data consisting of real-valued features and a real-
valued target, the learning tasks addressed in this study 
are: (1) determining if the data set is heterogeneous; (2) 
discovering an appropriate partitioning into more homo-
geneous subsets; and (3) constructing an ensemble of re-
gression models specialized to the identified subsets.  

In Section 2, the consequences of applying a global versus 
an ensemble of local models for heterogeneous spatial 
data are formally discussed. The initial algorithm for spa-
tial data partitioning is proposed and analyzed in Section 
3. An extension of the algorithm through error filtering is 
suggested in Section 4. The experimental results on artifi-
cial and real life data are discussed in Section 5. 

2.  Learning on Heterogeneous Spatial Data  

Let us assume that a spatial data set is a union of K dis-
joint homogeneous regions Ri, i = 1, …,K, where the 
number of regions, their size and location are unknown. 
The data generating process for Ri can be represented as 

isssis RsyEy ∈+= ,][ εx ,  
where xs is a vector of observed features and εs is the error 
term representing unexplained variance. Subscript s is 



 

used to indicate the spatial position of each data point. 
Domain Di of observed features xs corresponding to re-
gion Ri generally overlaps with the domains of other ho-
mogeneous regions. This means that the same input vec-
tor xs can, in different regions, result in quite different 
outputs, ys. 

Without prior knowledge of regions, learning a global 
regression model on the whole data set would ideally re-
sult in learning ][*

ssyE x  defined as 
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where D = D1∪D2∪…∪DK. Since whole data is a mixture 
of homogeneous regions, ][*

ssyE x  can be expressed as 
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where ri is the fraction of data points from region Ri used 
for regression, and pi(xs) is the probability density of input 
xs ∈ Di. As could be seen, the higher the ri the closer 

][*
ssyE x  is to ][ ssi yE x . 

Mean squared error (MSE) of the global regression model 
][*

ssyE x  on region Ri can be expressed as  
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where the first term corresponds to an unavoidable error 
(obtained by a local model specialized for region Ri) and 
the second term corresponds to the bias of the global 
model on data from region Ri. If locations of homogene-
ous regions were known, the second term from the previ-
ous equation would be canceled by learning a local model 
on each homogeneous region.  

Let us now discuss the connection between heterogeneous 
spatial data, bias and complexity of global models. For 
spatial data, observed features and target are likely to be 
spatially correlated, and so the error es of a global model 
will likely be spatially correlated. In spatial statistics, es is 
often decomposed into two components: a slowly varying 
bias component ws, and a spatially uncorrelated compo-
nent us, such that es = ws + us. The bias ws can be caused 
by: (i) the misspecification of an estimation model, e.g. 
applying a linear model on spatial data with nonlinear 
relationships; or (ii) an application of a global model on 
heterogeneous spatial data (msei equation). In both cases 
it should be possible to suppress ws, either by: (a) intro-
ducing more complex learning algorithms; or (b) parti-
tioning the data into several homogeneous regions, and 
learning a separate local model on each of them. For the 
rest of the paper, we assume that the employed models are 
of sufficient complexity such that bias component is a 
consequence of data heterogeneity. Therefore, discover-

ing more homogeneous regions in spatial data is equiva-
lent to bias reduction. 

Observe that examining the error of a global model can 
provide an indication of possible heterogeneities in spatial 
data. The level of bias can be effectively estimated from 
an error correlogram used to measure spatial continuity of 
error. A correlogram of a spatial variable is a plot of the 
correlation coefficient computed as a function of the sepa-
ration distance between spatial data (Cressie, 1993). The 
correlogram is characterized by its type, range and nugget 
effect as shown in Figure 1. The correlogram type de-
scribes the way spatial dependency changes over distance, 
and is named by its approximate functional form (e.g., 
exponential, spherical, Gaussian). The range corresponds 
to a distance where spatial dependence vanishes, e.g. 
where the value of the correlogram drops somewhere be-
tween 0.01-0.1. The nugget effect, Nugget, equals the size 
of the spike of the correlogram at distance zero, and cor-
responds to the nonspatial component of a spatial vari-
able. After calculating the error correlogram of a global 
model, the value (1−Nugget) represents the percent of a 
total error variance contained in the bias component ws. 
The larger (1−Nugget) is, the larger the potential benefits 
of spatial data partitioning can be. 
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artitioning algorithm relies on the 
ression models for each part of a 
 β) we denote the regression model 
 and the set of parameters β. A 
eneous region R containing N data 
0 = {(xs, ys), s∈R}, where ys is the 
en region is partitioned into L dis-
L, the corresponding data subsets 
ere Si ={(xs, ys), s∈Ri}, and the 

L = {S1, …SL}. By Mi(x, β) we 
n model built on subset Ri.  



 

The algorithm (formally described in Table 1) starts by 
learning a global regression model on the whole data set. 
Next, the region is split spatially into two disjoint subsets 
of equal size and separate regression models are trained 
for each of them. The two models then compete for each 
data point such that a given point is assigned to the model 
achieving smaller error. This competition procedure iter-
ates until a stable partitioning 2 is obtained. The compe-
tition procedure is described in Table 2 and it contains an 
optional error filtering step which will be ignored in this 
section, but will be discussed in the next section. Subse-
quently, the prediction error obtained by such a partition 
is compared to the prediction error of the global model. If 
the improvement is not sufficiently large, the algorithm is 
stopped and it is concluded that the spatial data set is ho-
mogeneous. If using two regression models is better than 
one global model, the algorithm proceeds by partitioning 
data into three subregions in an attempt to further de-
crease the total error.  

Table 1. Spatial partitioning algorithm 
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and leaving S1 intact to obtain 3,2. The better of the two 
partitions (denoted as 3) is compared to 2. The proce-
dure continues by adding new models into the competi-
tion until it is concluded that further partitioning does not 
improve predictability of the spatial data. 

Table 2. The competition procedure  

Start from a partitioning into L subsets L
0 and set n=0. 

repeat 
 Learn L models on L subsets of L

n, Si, i=1, …L. 
 Optionally, filter errors or absolute errors of 

all models on the whole data set with MAF. 
 If Mi(x, β) gives the smallest filtered error on (xs, 

ys), assign this point to subset Si. Form a new par-
titioning, L

n+1, by reassigning all data in this 
way. 

 n ← n+1 
until    less than p% of data points change subsets. 

3.1  A Technique for Comparison of Partitionings 
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When using complex nonlinear models (e.g. neural net-
works) on spatial domains special attention should be 
given to training and testing procedures. For spatial data, 
input features, target and residuals are likely to be spa-
tially correlated. Therefore, a random split of spatial data 
into a training and a test subset would lead to overly op-
timistic generalization estimates. This is a particularly 
serious problem for complex nonlinear models able to 
memorize training data. To avoid this problem and to 
allow proper performance estimation of the partitioning 
algorithm, testing points should be as spatially distant as 
possible from data points used for training and validation. 
One solution can be to divide the spatial region into 
squares of size S×S meters and assign a fraction of the 
squares exclusively for testing (Vucetic et al., 1999).  

This choice of test set is incorporated into the algorithm in 
order to provide correct termination signaling. Before 
starting the algorithm, a fraction of squares of size S×S is 
designated for testing. However, the whole data set is 
used in the competition procedure to provide as much 
data as possible for the partitioning algorithm. The other 
reason for using the whole data set for partitioning is that 
big spatial holes in the data caused by removing a number 
of squares from a training data set would deteriorate the 
proper delineation between homogeneous subregions.   

 

Learn a single regression model on global data set S0
and calculate its MSE, mse1. 
Split S0 into 2

0 = {S1,2
0, S2,2

0}, where S1,2
0 and S2,2

0

are disjoint and of equal size. 
Modify 2

0 through the competition procedure (Fig.
3) and calculate error mse2 achieved by the obtained
partitioning 2 = {S1,2, S2,2}. 
Terminate the algorithm if the ratio mse2/mse1 is larger
than α. Spatial data is homogeneous. 
L=2. 

eat 
for i = 1 to L 

 Split Si,L into two disjoint subsets of the same
sizes, Si,L′ and Si,L″, to obtain the initial par-
titioning  L+1,i

0 = { L/Si,L, Si,L′, Si,L″}. 
 Modify L+1,i

0 through the competition proce-
dure (Fig. 3) and calculate error mseL+1,i
achieved by the obtained partitioning L+1,i. 

end 
 Out of L partitions, L+1,i , i = 1, …L, choose the

partitioning achieving the smallest error, mseL+1,i,
to represent the new partitioning, L+1 = {S1,L+1,
…SL+1,L+1}, and save its error as mseL+1. 

 L ← L + 1 
il  the ratio mseL/mseL−1 is smaller than α,α∈(0,1) 
tput:   L−1 ‘homogeneous regions’ defined by partition-
 L−1 and their corresponding models. 
ird model is added to the competition in a tree-like 
er as described in Table 1. Starting from a partition-
to S1,2 and S2,2, subregion S1,2 is split spatially into 
qual size disjoint subsets, while S2,2 is left intact. 
ompetition of three models starting from such a par-
ng is performed and after converging to a stable 
oning 3,1, the error is calculated. Also, the same 
are repeated by splitting S2 spatially into two subsets 

After competing models have converged to their corre-
sponding regions, all data points are labeled according to 
the region to which they belong. Then, new regression 
models are learned on each subregion, excluding the 
squares designated for testing. Each of the new models is 
then tested on the test points of the corresponding label, 
and the achieved MSE is reported as a measure of good-
ness for the obtained partitioning. 



 

If using less powerful linear regression models, the choice 
of a test set is not so critical as there is no danger of over-
fitting, and so standard statistical performance measures 
can be used without a need for testing on S×S squares. 

3.2  Analysis for Two Homogeneous Regions  

In this section we provide insight into the performance of 
the competition procedure by analyzing its behavior for 
the heterogeneous data with two (K=2) homogeneous 
regions R1 and R2. It is assumed that errors of ideal mod-
els for regions R1 and R2 are spatially uncorrelated and 
normally distributed with mean zero and variances σ1

2 
and σ2

2, respectively.  

For two models (L=2), determining the regression func-
tion with minimum error on a data point (xs,ys) is equiva-
lent to determining the sign of ∆es

2 = es,2
2−es,1

2, where 
{es,1} and {es,2} are the errors on the whole data set of the 
two competing regression models, M1(x, β) and M2(x, β), 
built on disjoint subsets S1 and S2, respectively. A positive 
sign of ∆es

2  means assigning a data point to model M1, 
and a negative sign to model M2. The following proposi-
tion gives the expression for a conditional distribution of 
∆es

2 on the two regions, R1 and R2. Without loss of gener-
ality, it is assumed that mse1,1<mse2,1 and mse2,2<mse1,2, 
where msei,j is MSE of Mi(x, β) on region Rj and it can be 
expressed as 
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with Dj denoting the domain for region Rj, i, j =1, 2. 

Proposition 1.{∆es
2 xs ,s∈R1}~Ν(A(xs)+δ1, 4A(xs)σ1

2), 
where δ1 is a small positive number, and A(xs) = 
(M1(xs, β) – M2(xs, β))2. Similarly, {∆es

2xs , s∈R2}~ 
Ν(−A(xs)−δ2, 4A(xs)σ2

2), where δ2 is a small positive 
number. 
Proof. Omitted for lack of space. 

The following proposition proves the convergence of the 
competition procedure, where Pi,j(n) denotes the fraction 
of data points from region Rj in subset Si at iteration n of 
the competition procedure. 

Proposition 2. If Pj,j(n0+1) > Pj,j(n0) for some n0, then 
Pj,j(n) is a strictly increasing function for n>n0. 

Proof sketch. ( ])(),([ 2xx yEME jjD j −β )  decreases 

from n0
th to (n0+1)th iteration, which in turn leads to an 

increase of A(xs). Consequently, the probabilities  
P{∆es

2 > 0xs , s∈R1} and P{∆es
2 < 0xs , s∈R2} increase, 

leading to an increase of Pj,j for the following iterations. 

However, Pj,j(n) does not reach 1 in the limit (when 
n→∞), since P{∆es

2 > 0xs , s∈R1} < 1. The bound on 
Pj,j(n) for n→∞ depends on the variances σ1

2 and σ2
2, and 

the difference between the underlying regression func-

tions of regions R1 and R2, as shown by the following 
proposition. 

Proposition 3. When n→∞, the probability of correctly 
assigning data points is upper bounded as  

∫ ><
jD ssjsjj dpZPnP xxx )(}0)({)(, , where  

Z(xs) ~Ν((E1[ysxs]−E2[ysxs])2, 4σj
2(E1[ysxs] −E2[ysxs])2).  

Proof sketch. Assuming a perfect separation at some it-
eration, M1(x, β) = E1[yx] and M2(x, β) = E2[yx], the 
probability of a correct classification, Pj,j, at the next itera-
tion depends on the distribution given by Prop. 1.  

Therefore, a perfect separation of homogeneous regions 
should not be expected. However, as will be explained in 
Section 4, and experimentally tested in section 5.1.1, spa-
tially filtering errors of competing models can improve 
the data partitioning by increasing Pj,j(n). 

4.  Spatial Partitioning with Error Filtering  

One of the most important mechanisms for efficient dis-
covery of homogeneous subregions is competition of re-
gression models with assigning a data point to the model 
achieving the smallest error of all competing models. If 
there are K homogeneous subregions Ri and a specialized 
model Mi is learned on each, it is reasonable to assume 
that models Mj, i≠j, would have larger bias on Ri then the 
model Mi. However, for large unexplained variance in 
spatial data, the nonspatial error component is also large. 
Therefore, the probability of Mj, achieving the smaller 
error then Mi on a point from Ri can be significant, caus-
ing a number of points to be misclassified to a wrong ho-
mogeneous region. In practice, the competing models are 
being learned on a mixture of points from the whole data 
set, and a misclassification due to unexplained variance is 
even higher (see Proposition 1). 

For a better separation between homogeneous regions, it 
is desirable to decrease the effect of nonspatial error com-
ponent us while preserving bias ws of all competing mod-
els. From spatial statistics, it is well known (Cressie, 
1993) that extracting ws from us is an unidentifiable prob-
lem and therefore some assumptions should be made to 
solve this problem approximately. Since us is a spatially 
uncorrelated component, it can be assumed to correspond 
to a nugget effect of the error correlogram. Bias ws then 
corresponds to the part of the correlogram at distances 
larger than zero. For improving the spatial partitioning 
algorithm, we propose an efficient heuristic for extraction 
of the bias component based on a spatial moving average 
filtering (MAF) of the prediction error. MAF of the 
proper size should cancel out us, while preserving ws as 
much as possible. Observe that for too small size of MAF 
a large potion of us would be preserved. Also, for too 
large MAF, ws would be filtered out together with us.  

 



 

The choice of proper MAF size should be closely related 
to the error correlogram. We propose selecting MAF size 
based on an analysis of the range and nugget effect of the 
error correlogram of a global model. MAF size should not 
exceed the range of the error correlogram (to prevent fil-
tering out the bias component) and should decrease with 
the nugget effect. Based on this analysis, instead of the 
competition procedure described in Section 3, its modifi-
cation with filtering the errors of competing models is 
used (an optional step in Table 2). Two types of moving 
average filtering are examined in the experimental sec-
tion: (Type 1) MAF of errors of competing models, and 
(Type 2) MAF of absolute errors of competing models. 

5.  Experimental Results  

Spatial data used in the experiments were: (1) artificially 
generated sets designed for fully controlled examination 
of some aspects of the partitioning algorithm, and (2) a 
real-life precision agriculture data set aimed at demon-
strating a possible application scenario. 

5.1  Experiments on Artificially Generated Spatial 
Data Sets  

We generated two types of artificial heterogeneous spatial 
data such that observed feature spaces of homogeneous 
regions highly overlap. For both data sets, it was assumed 
that 5 input spatial features were observed, while a spatial 
feature that was an indicator of existing homogeneous 
regions was hidden. It was assumed that both spatial data 
sets originated from a squared region of size 1280×1280 
meters, with data points gathered along a square grid with 
10 meters distance (totaling 128×128 data points). Five 
layers with Gaussian distribution, mean zero, variance 
one, and the spatial characteristics shown in the Table 3 
were generated as input features for both data sets using 
the method of the moving averages (Oliver, 1995).  

Table 3. Description of generated layers 

Layer Type of correlogram Range [m] 
X1 Exponential 100 
X2 Exponential 150 
X3 Spherical 150 
X4 Spherical 200 
X5 Gaussian 100 

Data set DS1 with two linear homogeneous regions. 
The squared region was first partitioned into 64 equal 
squares of size 16×16 data points. The value of the hidden 
feature was 1 and 2 in randomly selected halves of the 
squares (representing homogeneous regions R1 and R2) as 
shown in Figure 2.a. The overlap of normalized histo-
grams of R1 and R2 in observed features X1-X5 was 95%, 
98%, 95%, 96% and 93%, respectively. In both regions, 
the target was generated to be a linear function of the ob-

served input features, such that in both regions it had 
mean zero and variance one. Finally, Gaussian noise with 
variance one was also added to the target variable. 

 

 

 

 

 
        (a)                                    (b) 

Figure 2. (a) Assignment of two homogeneous regions in DS1, 
and (b) the partitioning obtained after a single iteration of the 
competition procedure 

Data sets DS2,1 and DS2,2 with three highly nonlinear 
homogeneous regions. The squared region was first par-
titioned into 16 equal squares of size 32×32 data points. 
The hidden feature values were 1, 2 and 3 in randomly 
selected thirds of the squares (representing homogeneous 
regions R1, R2 and R3) as shown in Figure 3.a. An aver-
aged pairwise overlap of histograms of R1, R2 and R3 in 
observed features X1-X5 was 94%, 92%, 89%, 88% and 
90%, respectively. One of three highly nonlinear func-
tions was assigned to each homogeneous region and each 
was of the form , where f∏ == 5

1 )(i ii xfy i(x)’s were 
highly nonlinear functions (Pokrajac et al., in review). 
Also, in all three homogeneous regions the target means 
were set to zero and target variances to one, thus forming 
DS2,1. Data set DS2,2 with statistically identical properties 
was generated for the purposes of testing the generaliza-
tion capabilities of the spatial partitioning algorithm. A 
new set of 5 input features was generated according to 
Table 3, and it was assumed that DS2,2 was obtained from 
the same spatial region after some time period, such that 
the locations of homogeneous regions and their nonlinear 
relationships did not change (hidden features remained 
the same). Finally, Gaussian noise with variance 1 was 
added to the target variable in both DS2,1 and DS2,2. 

 

 

 

 

 

 
      (a)                        (b) 

Figure 3. (a) Assignment of three homogeneous regions in DS2,1 
and DS2,2, and (b) the resulting partitioning  
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For both types of generated data sets observed input fea-
tures could not help in discriminating between different 
homogeneous regions, making the problem of spatial par-
titioning extremely difficult. Using the first data set (DS1), 
convergence speed of the competition procedure and in-
fluence of error filtering were tested. With the second data 
set DS2,1, neural networks and linear models were used as 
regression models for the algorithm, and generalization 
capabilities of the obtained partitionings were examined 
on DS2,2. 

 

 

 

 

 

 

 

 5.1.1  TESTING CONVERGENCE AND ACCURACY ON DS1 
Assume that two linear models compete for DS1 data, 
such that at iteration n of the competition procedure 
model M1(n) is learned on set S1(n) which is a mixture of 
P1,1(n) data from R1 and 1−P2,2(n) of the data from R2, 
while model M2(n) is learned on set S2(n) which is a mix-
ture of 1−P1,1(n) from R1 and P2,2(n) from R2. Assuming 
P1,1(n) and P2,2(n) are larger than 0.5, models M1(n) and 
M2(n) can be considered as experts for regions R1 and R2, 
respectively. We were interested in the speed of conver-
gence of the competition procedure to more homogeneous 
regions, and in how well the obtained partitioning resem-
bles the actual locations of homogeneous regions. There-
fore, we measured the fraction of correctly classified 
points at iteration n of the competition defined as:  

 

Figure 4. P(n+1) vs. P(n) for th ypes of error filtering on 
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 and we plot P(n+1) vs. P(n).  
 Using DS1 (Figure 2.a) experiments were performed over 

the whole range of P(n), such that for various fractions 
P(n) we constructed equal size subsets S1(n) and S2(n) 
with P1,1(n) = P2,2(n) = P(n), and learned linear models 
M1(n) and M2(n) on them, respectively. Based on the 
competition between M1(n) and M2(n), new sets S1(n+1) 
and S2(n+1) were constructed and the corresponding 
P(n+1) was calculated. 

 

 

 

 

 

Plots of P(n+1) vs. P(n) for the competition procedure (a) 
without error filtering; (b) with error filtering and MAF 
size of 70×70 meters, and (c) with absolute error filtering 
and MAF size of 70×70 meters are shown in Figure 4. It 
could be seen that an absolute error filtering resulted in 
the most accurate discovery of homogeneous regions. 
Also, the shape of the plot reveals that the competition 
procedures converge to a stable partitioning very fast even 
for an initial partitioning with P(1) value near 0.5. 

 

 

Figure 5. P(n+1) vs. size of MAF
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Starting from an initial partitioning into 2 equal size sub-
sets with a fraction of only P(1)=0.55, the fraction of cor-
rectly classified points after one iteration of the competi-
tion procedure increased to P(2)=0.93 in the case of abso-
lute error filtering. The result of this partitioning is shown 
in Figure 2.b. 
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maining experiments. In addition, it should be noted that 
the size of the optimum filter increased with the level of 
the noise in the data. For comparison, the correlograms of 
errors of a global model had range at about 100 meters for 
all levels of noise.  

Table 4. Influence of error filtering on the competition 

No MAF Type 1 MAF Type 2 MAF σ2 P(2) P(2) Size [m] P(2) Size [m] 
0 0.92 0.92 1 0.97 30 
1/4 0.78 0.85 50 0.96 50 
1 0.68 0.80 70 0.93 70 
4 0.60 0.73 110 0.88 110 

5.1.2  PERFORMANCE ON HIGHLY NONLINEAR DS2,1 AND 
DS2 DATA 
A global neural network with 5 hidden nodes was first 
trained on the whole DS2,1. The error correlogram of the 
global model is calculated to select the size S of 80 meters 
for error filtering. Neural networks with 5 hidden nodes 
were also competing in the spatial partitioning algorithm, 
with the stopping criterion α from Table 1 set to 0.95. 
30% of squares of size 50×50 meters were randomly se-
lected to be used as the testing data set for comparing the 
obtained partitionings.  

Table 5. Intermediate results of partitioning DS2,1 

Number of regions 1 2 3 4 
R2 0.55 0.73 0.89 0.90 

The intermediate results of applying the partitioning algo-
rithm to DS2,1 starting from the global model and ending 
with four regions are shown in Table 5. Performance was 
measured by the coefficient of determination R2 com-
puted as 1−MSE/σ2, where σ2 was the target variance, and 
which is used as a measure of predictive capabilities of 
different regression model (R2 of 1 and 0 corresponds to 
the perfect and a mean prediction, respectively). The 
small difference between R2 corresponding to partitioning 
into three and four regions indicated that three homoge-
neous regions existed (shown in Figure 3.b). Here, 94% of 
all data points were correctly classified to the appropriate 
homogeneous regions. This suggests that the proposed 
algorithm can be successfully applied on highly complex 
heterogeneous data sets.  

Table 6. Performance comparison on DS2,2 

Model R2 
Global 0.54 
Ideal partitioning 0.95 
Partitioning algorithm 0.90 

To further test the algorithm, the obtained partitioning and 
regression models from DS2,1 were used to predict targets 
in DS2,2. In Table 6 we show the R2 of (a) a global regres-
sion model learned on the whole DS2,1; (b) ideal 3 models 

assuming the positions of the 3 homogeneous subregions 
were known; and (c) the 3 partitions and 3 corresponding 
models obtained by the partitioning algorithm. The ob-
tained R2 results provide additional evidence for validity 
of the proposed algorithm. 

To observe the influence of model complexity on parti-
tioning, the proposed algorithm has been applied to the 
same data with linear models instead of neural networks. 
Due to highly nonlinear functions used for the target gen-
eration, linear models were not able to identify regions 
well. As expected, the competition of linear models re-
sulted in partitioning the data set into more regions 
(seven). R2 on training data increased from 0.32 for a 
global model to 0.68 for an ensemble of 7 local linear 
models. Although the improvement seems significant, the 
generalization properties as measured on the second data 
set DS2,2 were poor and even worse than the global linear 
model (R2 of 0.33 for a global model as compared to 0.06 
using the obtained 7 subregions and their linear models). 
These results provide additional evidence that a regres-
sion model choice can be very important for the perform-
ance of the partitioning algorithm. 

5.2  Experiments on Real-Life Spatial Data 

A database containing a grid of 8 topographic attributes 
and winter wheat yield from a 220 ha field located near 
Pullman, WA was used for experiments on real-life data. 
The goal was to predict wheat yield as a function of ter-
rain attributes derived from USGS 30 m DEM data 
mapped to a 10 x 10 m grid. The terrain attributes were: 
Compound Topographic Index; Aspect East-West (0 to 
180°); Aspect North-South (0 to 180°); Distance to Flow 
Paths > 232 m; Flow Direction; Slope; Profile Curvature; 
and Average Upslope Slope. All features except for flow 
direction were continuous and non-Gaussian. The crop 
yield values were collected with a combine mounted yield 
monitor and a global positioning system. There were 
24,592 patterns in the entire data set. 

From the previous results (Vucetic et al., 1999), it was 
known that topographical features alone can explain just a 
small part of crop yield variance. A global neural network 
with 5 hidden nodes achieved R2 of only 0.11 on test data. 
The spatial partitioning algorithm was applied in order to 
examine if the field was heterogeneous. If homogeneous 
regions existed, each of them could be treated differently. 
Using the advances in precision agriculture, this would 
allow farmers to apply different practices on each of the 
homogeneous regions to obtain larger profits as compared 
to treating the whole field uniformly. 

From the correlogram of residuals of a global neural net-
work achieving the range at about 150 meters, and ob-
serving the large unexplained variance in data, the size of 
MAF was set to 150 meters. The spatial partitioning algo-

 



 

 

Table 8. Analysis of discovered regions rithm discovered 3 homogeneous regions shown at Figure 
6, with the intermediate results of the partitioning shown 
in Table 7. As could be seen, a significant improvement in 
test R2 has been achieved by the partitioning, indicating 
the existence of homogeneous regions within the field. A 
brief analysis of discovered regions (Table 8) shows that 
the largest homogeneous region corresponds to the high 
yielding part of the field, while the smaller two regions 
correspond to the low yielding part. The mean and stan-
dard deviation of yield in different regions were normal-
ized versus statistics for the entire field with the global 
mean and the global standard deviation mapped to 0±1. 

Region Size Yield Aspect NS Slope 

1 61% 
High 

0.4±0.7 Average 
Slightly 
lower 

2 21% 
Low 

−0.4±0.8 
Slightly 
South 

Slightly 
higher 

3 18% 
Low 

−0.8±0.9 
Slightly 
North 

Moderately 
higher 

6.  Conclusions 

When learning on heterogeneous data with unobserved or 
noisy features, bias of a global model on homogeneous 
subsets is typically large but learning an ensemble of local 
models on appropriately partitioned data could decrease 
it. A method for identifying such a partitioning for het-
erogeneous spatial data through a competition of local 
models is proposed. Assuming local models of appropri-
ate complexity, this method is likely to reduce the bias. 
The convergence of the algorithm was proven for a mix-
ture of two homogeneous regions, while the experiments 
indicated that the convergence is very fast. In the presence 
of unexplained variance in spatial data, incorporating er-
ror filtering to the competition procedure can significantly 
improve the partitioning accuracy. In our experiments, the 
absolute error filtering consistently outperformed the al-
ternatives. An analysis of the obtained partitioning can 
result in discovering potentially useful knowledge, as 
demonstrated on real-life precision agriculture data. 

 

 

 

 

 

 

 

 

Figure 6. A 220 ha wheat field near Pullman, WA. Partitioning 
of the wheat field into 3 subsets by the algorithm 

An additional analysis aimed at extracting a set of fuzzy 
classification rules is performed to explain the difference 
between identified homogeneous regions. The resolution 
of rules depends on an overlap between the observed fea-
ture spaces of discovered regions. A smaller feature over-
lap among identified regions would result in higher reso-
lution rules that might be used for transfer of knowledge 
to remote geographical locations. However, even if fea-
ture overlap is too high for extraction of higher resolution 
fuzzy rules, knowledge on homogeneous regions limited 
to a specific geographical site can be useful for improving 
treatment in the subsequent years. 
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