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Abstract

Precision agriculture data consisting of crop yield and
topographic features are examined with the objective of
explaining yield variability as a function of topographic
attributes in order to extrapolate this knowledge to unseen
agricultural sites. It is demonstrated that random data
partitioning into training, validation and test subsets is not
appropriate when dealing with agricultural problems
characterized with strong spatial data correlation. A sim-
ple spatial data partitioning scheme that leads to signifi-
cantly faster neural network training and dightly better
generalization is proposed. Also, integration of predictors
formed from spatially partitioned data led to improved
generalization over a bagging integration procedure in
experiments. The margin between the best spatial model
and a trivial predictor for our precision agriculture prob-
lem was small indicating that topographic features alone
could explain only a small amount of the yield variability.

Purpose

Data sets in typical machine learning problems [8] are se-
lected as a random sample drawn from an underlying data
generating process that is to be modeled. A typica first
step in estimating data generating process by neural net-
works and similar methods is to partition available data
randomly into training, validation and test subsets. The
validation data are used to prevent over-training and the
testing data are used to provide a fair assessment of a
model’s prediction ability. The application of neural net-
works and other prediction methods to spatial data set:
may require different partitioning schemes than simple
random selection, however. Spatial data are a collection o
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variables whose dependence is strongly tied to a spatial
location where observations close to each other are more
likely to be similar than observations widely separated in
space. Spatial data exhibit spatial continuity that can be
quantified by calculating correlation, covariance, or mo-
ment of inertia versus separation distance between points

[71.

One source of spatial data is what is called precision agri-
culture where agricultural producers are collecting large
amounts of spatial data using global positioning systems to
georeference sensor readings and sampling locations.
Based on the interpretation of spatial data sets that include
features such as topography, soil type, soil fertility levels,
remotely sensed crop and soil reflectance, and previous
crop yields, management decisions can be varied within
fields instead of keeping them constant across an entire
field area. Neural networks offer the potential to develop
site-specific regression functions from spatial agricultural
data that, given the ability to predict yield response, would
allow calculation of optimum levels of production inputs.
In this case, the objective is to explain yield variability as a
function of the site-specific driving variables in order to
extrapolate this knowledge to different agricultural sites,
or to the same sites but to different years. This objective
differs from the majority of research encountered in geo-
statistics [4] or spatial econometrics [1] where the goal is
spatial interpolation.

Important questions for achieving this objective are how to
design an appropriate procedure for fitting spatial ex-
trapolation models such as neural networks, and how to

§stimate their generalization properties. This paper com-

pares a spatial data partitioning scheme based on spatial
Plocking of data to simple random patrtitioning for deriving
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training, validation and test subsets. In addition, a modifi-
cation of the non-spatial bagging procedure is presented to
integrate predictors fitted on spatialy partitioned data to
further improve model generalization capabilities.

Method

Spatial data properties must be considered when training
predictors and testing their generalization capabilities. Ex-
planatory variables, as well as dependent variable in spatial
data sets are usually highly spatially correlated. As a con-
sequence, applying least squares regression techniques
(often used for neural network training) on such data is
likely to produce errors that are also spatially correlated. A
similar phenomenon occurs when forecasting time-series

[5].

When randomly partitioning data into model-fitting and
testing subsets, it is possible that one might obtain good
prediction results on the test data because of the spatial
proximity between test and model-fitting samples. In a
sense, the training and testing data are the same. This
would not be useful for estimating true generalization
properties of a predictor. Therefore, for spatial regression
experiments, the test subset should be spatialy separated
from the model-fitting data employed by the learning algo-
rithm. In the data-partitioning phase, the area containing
the data (afield in an agricultural example) should be split
into two spatially digoint sub-areas (sub-fields) used for
model fitting and testing (east and west fields shown in
Figure 1).

Figure 1. A 220 ha wheat field near Pullman, WA separated
into east and west sub-fields used for fitting a model (model-
fitting sub-field) and testing its accuracy (test sub field)

An important part of the neural network design process is
deciding when to stop training to avoid overfitting. One
popular approach is to use part of the model-fitting data as
atraining set for designing the model, and use the rest as
validation data for stopping the training process. Training

is halted when the mean squared error (MSE) for the vali-
dation data starts to increase. For spatialy correlated
training and validation sets, minimizing the error on the
training subset would likely minimize the error on a ran-
domly chosen validation subset, since each sample in the
validation subset would have samples in the training subset
as its spatial neighbors. Therefore, it could be expected
that the training of a neural network with a randomly se-
lected validation subset would continue to the point of
gross overfitting resulting in increased training time and
lower generalization accuracy.

To address this problem, we propose a procedure that in-
creases the separation distance between the data points of
the training and validation subsets. The model-fitting por-
tion of the fidld is partitioned into squares of size MxM,
and half of these squares are randomly assigned for use in
training and the rest for validation. A possible partitioning
of the east subfield in Figure 1 into sguares of size 100 x
100 mis shown in Figure 2. One way to assign squares to
the training and validation subsets is to use a regular
checkerboard-like partitioning, assigning neighboring
squares to different subsets. A checkerboard-like assign-
ment has desirable packing properties maximizing the dis-
tance between the points in the two subsets for a given size
of squares. However, in this study the squares were as-
signed randomly such that an ensemble of models could be
constructed and integrated for possible accuracy improve-
ments.

BLACK - train-
: ing subset

I GRAY - valida-
tion subset

Figure 2. Spatial partitioning of east half of wheat field from
Figure 1 into squares of size M=100m. Black and gray squares
represent training and validation data while white represents
missing data

The size M of each sguare should be selected such that the
sguares are sufficiently large to minimize the influence of
spatial correlation between training and validation data,
and still small enough to provide a training set representa-
tive of the variability of the model-fitting part of the field.
One useful tool for describing the spatial variation of data



is a correlogram, which is a plot of the correlation coeffi-
cient as a function of the separation distance between data
points. We have explored if an optimum size M could be
selected by analyzing correlograms. The proposed method
selects M to be within a range where correlograms of all
topographic features start to approach zero. This mini-
mizes the spatial dependence between training and valida-
tion samples, and hopefully allows the validation set to
better track neural network generalization capabilities
during the training process.

Neural networks fitted on the obtained spatial partitions
are going to be unstable for two reasons. First, training of
feedforward multilayer neural networks, as powerful non-
linear models, is very dependent on weight initialization.
Second, it is influenced by the training set choice with
small changes in the training set often causing larger
changes in the predictor. Instability of neural network
models can in principle be addressed through multiple
model averaging. In one of the more successful techniques
called bagging [3] each predictor is independently trained
on N data points sampled with replacement from the N
origina data points of the training set and the ensemble
prediction is obtained by averaging all individual predic-
tors.

In this study spatial bagging using the proposed spatial
partitioning scheme instead of sampling with replacement
is considered as a possibly more appropriate choice for
spatial data like ours. More precisely, we propose training
a number of neural networks for different random assign-
ments of sgquares into training and validation subsets fol-
lowed by averaging the predictions of all such neura net-
works. This procedure allows combining desirable proper-
ties of spatial partitioning and ensemble predictors into a
more powerful prediction method.

Experimental results

A precision agriculture database containing a grid of 8
topographic attributes and winter wheat yield from a 220
ha field located near Pullman, WA was used for experi-
ments (Figure 1). In this case, we desired to predict wheat
yield as a function of the terrain attributes. The eight ter-
rain features were used as the input to the neural networks
and wheat yield was the dependent variable at the output
of the neural networks. The terrain attributes were derived
from USGS 30 m DEM data using the software package
TAPES-G [6]. The terrain attributes were: (f1) compound
topographic index; (f2) aspect east-west (0 to 180°, 0 =
east); (f3) aspect north-south (0 to 180°, 0 = north); (f4)
distance to flow paths > 232 m; (f5) flow direction; (f6)
slope; (f7) profile curvature; and (f8) average upslope
slope. All 8 features except for flow direction were con-
tinuous and mostly non-normally distributed (Figure 3).
The crop yield values were collected with a combine
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Figure3. Histograms of 8 topographic features

mounted yield monitor and a global positioning system.
All data were gridded to a 10 x 10 m grid. There were
24,592 patterns in the entire data set.

Correlation between the terrain attributes and wheat yield
is shown in Table 1. Based on previous experience [9], the
wheat yield data was considered to be very noisy. Corre-
lograms for the topographic features are shown in Figure
4.

FEATURE CORRELATION WITH
YIELD

Comp. topog. index -0.06
Aspect east-west -0.09
Aspect north-south 0.22
Distance to flow path 0.16
Flow direction -0.19
Slope -0.09
Profile curvature 0.08
Average upslope slope -0.16

Table1l. Correlation coefficients between yield and

topographical features

The neural networks used in our experiments were feed-
forward neural networks with one hidden layer. Before
training, both the input terrain features and wheat yield
were normalized to mean zero and standard deviation one
to allow for more efficient training procedures. The resil-
ient backpropagation algorithm [10] was used for neura
network training.
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Figure 4.  Correlograms for variables whose histograms are

shown in Figure 3

The wheat field was separated into east and west halves
(Figure 1) and a two-fold cross validation procedure was
performed with the test set at the east and at the west half
of the field to allow for generalization testing. Forty pre-
dictors were trained for each position of a test set, and an
average M SE of the 80 fitted predictorsis reported.

Selection of testing setsfor spatial data

In the first experiment, models were fit to either the east or
west sub-fields. Data from the chosen sub-field was ran-
domly partitioned into two equal sets. One of these sets
was used to train neural networks with 5 and 15 hidden
nodes (100 training epochs), to fit a linear model, and to
fit atrivial predictor that uses the mean yield from training
data as a prediction for any test data point. These models
were tested with a random test set (RTS) and a spatialy
digoint test set (SDTS). The data partition of the modeled
sub-field that was not used for training was used for the
RTS; this corresponds to the classical random choice of
test set. Data from the sub-field that was not modeled was
used for the SDTS. Training, RTS and SDTS results aver-
aged over 80 experiments are reported in Table 2.

Increasing the number of hidden nodes decreased the MSE
on both the training subset and the RTS. Also, neural net-
works were superior to linear models and the trivial pre-
dictor on the training and RTS subsets. However, these
results from the training and RTS data sets are overly op-
timistic about the ability to learn useful relationships that
can be extrapolated to different data sites. Prediction re-

sults on the SDTS are much worse than on the RTS, and
there was little improvement, if any at all, from increasing
the complexity of predictors.

MODEL MSE
Train | RTS | SDTS
Trivial 369 366 390
Linear 322 317 371

NN 5 hidden nodes 253 267 370
NN 15 hidden nodes || 218 238 375

Table2.  MSE averaged over 80 experiments on training set,
random and spatially digjoint test sets for several models.

Prediction error within a randomly chosen 15 ha region of

a model-fitting field obtained by using a neural network

with 5 hidden nodes is shown on Figure 5. As can be seen,
errors are spatially correlated. This explains the ‘success’
in predicting the yield on RTS; decreasing MSE on train-
ing subset causes decreasing MSE on RTS because of spa-
tial correlation in prediction error. This does not guarantee
good generalization properties, as is obvious from the pre-
diction results on SDTS. Therefore, using test data spa-
tially separated from training data is necessary for a better
assessment of generalization capabilities of fitted predic-
tors.

Figure5.

Training error for randomly chosen 15 haregion of
the wheat field

Spatial partitioning of training and validation subsets

The proposed spatial partitioning of training and validation
sets on neural network training was examined next. Cor-
relogram analyses for all attributes showed a weakening of
spatial dependencies between 40 and 200 meters as can be
seen in Figure 4. Thus, we decided to experiment with
squares sizes of M = 40, = 100, and = 200 m. For each of
these values and for M =10 m which corresponds to a
typical random partitioning of data into training and vali-



dation sets, we used linear models and neura networks
with 5 and 15 hidden nodes to perform experiments sum-
marized in Table 3. Reported are average MSE together
with the standard deviation of MSE for 80 trained neural
networks when tested on spatialy digoint sets. Also
shown is the average number of epochs before early stop-
ping, together with its standard deviation over 80 experi-
ments. For comparison, average MSE over 80 linear mod-
els, as well asthe MSE of the trivial predictor are included
in the table.

MODEL MSE | EPOCHS
Trivial 390 -
Linear 370+ 4 -
NN 5 hidden nodes

M=10m 371+14 | 147+31

M =40m 365+17 43+19

M=100m 365+15 30+14

M=200m 364+21 25+10
NN 15 hidden nodes

M=10m 377+13 | 190+38

M =40m 369+15 57421

M=100m 361+16 34+13

M=200m 371+23 29+13

Table3. Resultsin the table are means and standard deviations
averaged over 80 experiments. M SE is reported on spatially dis-
joint test sets.

The M SE of the linear model was 370, and the M SE of the
trivial predictor was 390. Average MSE for the neural
networks ranged from 361 to 377. With our experimental
agricultural data set, there was little decrease in MSE from
that obtained with the trivial predictor as model complex-
ity was increased. These results indicate that the topo-
graphic features in our data set explained only a small part
of the yield variability. While topography can influence
yield through associations with soil characteristics, water
availability, and microclimate [11], yield can be strongly
influenced by many factors such as soil fertility, weeds,
and diseases that were not measured or included in our
data set. Including such features would probably improve
predictability. Second, it is yet to be determined how much
knowledge can be extrapolated from one site to different
sites, or from the same sites but to different years. Further
research is needed to obtain an answer to this question.

While overall predictability appears limited by the features
available to us, the experimental results suggest that sig-
nificant improvements can be achieved by the proposed
data partition scheme. As can be seen, the proposed spatial
partitioning leads to significantly faster training and
somewhat improved prediction as compared to using the
typical random partitioning of training and validation data

(Table 3, column for M =10 m). Benefits of spatial data
partitioning are more evident for more complex models
than for simpler ones, since the danger of overfitting in-
creases with the model complexity [2]. Best overall pre-
diction results were obtained for M = 100 m, which is near
the middle of the range suggested by the data corre-
lograms.

Spatial bagging

In Table 4, we present comparative results between bag-
ging and spatial bagging proposed in the Method section.
Forty neural networks, the same ones used for Table 3,
were used as an ensemble in spatial bagging. Forty neural
networks were trained using the original bagging proce-
dure with half of the model-fitting data randomly assigned
to the validation subset. Experiments were performed for
two positions of the test field (east or west) and reported
MSE on spatially disioint test sets are average values for
both ensembles. As can be seen, origina bagging im-
proved prediction capabilities over single models from
Table 3. Further, spatial bagging led to even better per-
formance than original bagging. Thus, it seems that the
proposed spatial partitioning incorporated into a spatial
bagging procedure has advantage over bagging. Finaly,
both bagging and spatial bagging lead to better prediction
for more complex neural networks with 15 hidden nodes,
as compared to simpler ones with 5 hidden nodes.

MSE
METHOD NN 5 hidden | NN 15 hidden
nodes nodes
Bagging 357 351
Spatial Bagging
M =40m 351 344
M=100m 348 342
M=200m 348 339

Table4. Bagging vs. spatial bagging comparison for ensembles
of 40 neural networks. MSE is reported on spatially digoint test
sets.

New aspect of work

It has been shown that, for spatial data, spatial partitioning
of datainto training and validation subsets can lead to sub-
stantial improvements in learning speed, and increased
predictability, as compared to the traditional random parti-
tioning. Experimental results indicate that correlograms
can be used to determine the parameters of such spatial
data partitioning. In addition, a spatial bagging procedure
has been proposed, and experiments indicate that it can
lead to improved generalization capabilities as compared

to bagging.



Conclusions

The proposed method for dealing with spatial dependen-
cies between neighboring data points appears to be supe-
rior to the usual random split approach to spatial regres-
sion. Spatial statistics were helpful in determining the pa-
rameters of such partitions. Integration methods, such as
spatial bagging, are shown to further improve predictabil-
ity of neura networks for the very noisy spatia agricul-
tural domain.

For our experimental data set, the margin between the best
models and a trivial predictor was fairly small, indicating
that topographic features alone were able to explain only a
small amount of the yield variability.
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