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Abstract 

 
A major challenge in microarray classification 

and biomarker discovery is dealing with small-sample 
high-dimensional data where the number of genes used 
as features is typically orders of magnitude larger than 
the number of labeled microarrays. One way to 
address this challenge is by leveraging information 
from the publicly accessible repositories of microarray 
data. Following this idea, a multi-task feature 
selection filter is proposed that borrows strength from 
the auxiliary microarray classification data sets. The 
filter uses Kruskal-Wallis test on auxiliary data sets 
and ranks genes based on their aggregated p-values. 
Expressions of the top-ranked genes are used as 
features to build a classifier on the target data set. The 
proposed approach was evaluated on 9 microarray 
data sets related to 9 different types of cancers. 
Comparison of the classification accuracies reveals 
that the multi-task feature selection is superior to 
single-task feature selection. Furthermore, the results 
strongly suggest that multi-task algorithms could 
improve microarray classification by exploiting 
auxiliary data during feature selection and learning. 
 
1. Introduction 
 
Microarray technology has ability to simultaneously 
measure expression levels of thousands of genes for a 
given biological sample. In microarray classification 
tasks, samples belong to one of the several classes 
(e.g., cancer vs. control tissues) and the goal is to 
classify a new tissue sample based on its microarray 
measurements. Typical microarray classification data 
set contains a very limited number of labeled 
microarrays, ranging from only a few to several 
hundred. Training classifiers on such small-sample 
high-dimensional data sets is a challenging problem 
that has received an increasing attention from the 
research community. A standard way of addressing the 
challenge is to perform some kind of feature selection 

as a preprocessing step and to follow it by applying a 
classification algorithm that controls model complexity 
through some form of regularization. Feature selection 
filters, that perform a statistical test on every feature to 
determine its discriminative power [6], are reasonable 
dimensionality reduction strategy in microarray 
classification. Among the many classification 
algorithms, support vector machines and penalized 
logistic regression are particularly appropriate in 
small-sample learning scenarios.  

When the number of labeled microarrays is 
particularly small (e.g., less than 10), the amount of 
available information diminishes to the level that even 
the most carefully designed classification approaches 
are bound to underperform. The only remedy is to 
borrow strength from external information sources. 
One promising approach is to incorporate prior 
knowledge about features (e.g., information about gene 
networks and pathways, or functional gene properties) 
into the regularization term [3,10].  

An alternative approach is to utilize information 
from the external microarray data sets. For example, 
when learning to discriminate between infiltrative 
astrocytoma brain tumor and normal brain tissue using 
labeled microarray data obtained by a single lab, it 
might be beneficial to explore publicly available 
microarray data about other brain tumors or even about 
non-brain tumors. Recent work in multi-task learning 
[2] indicates that accuracy on the target classification 
task can be significantly increased if data from the 
auxiliary tasks are consulted during learning. This can 
be achieved either by modifying the regularization 
term [4] or by directly using auxiliary data for training 
[1]. However, multi-task learning with regularization 
might not be sufficient to mitigate the negative effects 
of high dimensionality in microarray data. In this case, 
feature selection becomes a necessary preprocessing 
step.  

A standard approach is to perform feature 
selection on training data of the target task. Our 
hypothesis was that such single-task feature selection 
suffers from similar problems as single-task 



classification. This is why in this paper we propose a 
multi-task feature selection filter that borrows strength 
from the auxiliary microarray data sets. 

The contributions of this paper are as follows: (1) 
we propose a new multi-task feature selection filter, 
(2) we demonstrate that feature selection is an 
important preprocessing step in conjunction with 
multi-task classification algorithms, and (3) we 
demonstrate the potential and limitations of multi-task 
learning on microarray data. 
 
2. Problem Definition  
 
Let us define the target data set as D = {(xi, yi), i = 
1…N }, where xi is an M-dimensional feature vector 
for i-th example, yi is its class label, and N is the 
number of labeled examples. We can assume that D is 
a random sample from an underlying distribution 
defined by feature distribution p (x) and conditional 
distribution p (y | x). The target task is defined as 
training a classifier f (x) that approximates the 
conditional distribution p (y | x). In single-task learning, 
only the target data D are used for training. 

In multi-task learning, we have an access to the 
additional K auxiliary data sets. Let us denote the k-th 
auxiliary data set as Dk = {(xi

(k), yi
(k)), i = 1…Nk}, 

where xi
(k) and yi

(k) are feature vector and target label 
for i-th example in Dk, and Nk is the size of Dk. We can 
assume that Dk is a random sample from feature 
distribution pk (x) and conditional distribution pk (y | x). 
The goal of multi-task learning is to improve accuracy 
of the target classifier by exploiting the auxiliary data. 

Auxiliary data can be particularly useful when the 
target data set is small. Clearly, the usefulness of an 
auxiliary data set depends on the similarity between its 
and the target data distributions. Interestingly, even 
when the similarity is only moderate, it has been 
demonstrated that the auxiliary tasks can boost the 
classification accuracy on the target task. It is also 
worth noting that multi-task learning can sometimes 
lead to negative transfer, where accuracy on the target 
task is decreased due to the use of auxiliary data. An 
objective of this paper is to evaluate potential benefits 
and limitations of multi-task learning in microarray 
classification.  
 
3. Penalized Logistic Regression for Multi-
Task Learning 
 
The multi-task feature selection filter proposed in 
Section 4 could in principle be used in conjunction 
with any single-task or multi-task classification 
algorithm. However, in this paper we focus attention to 

the penalized Logistic Regression (LR) classifiers due 
to their popularity and ability to easily introduce 
regularization. In this section, we give an overview of 
penalized LR classifiers and their use in single-task 
and multi-task scenarios. 

 
Penalized LR. Let us consider for simplicity only 

binary classification where target variable can have 
one of two values, y ∈ {0, 1}. In logistic regression, 
the posterior probability of positive class can be 
written as a logistic sigmoid of a linear function of the 
feature vector, p (y = 1 | x) = σ (wTx), where w is the 
weight vector to be learned, and the logistic sigmoid is 
defined as σ (z) = 1/(1+exp(−z)).  

The weight vector w can be estimated by 
maximizing the log-likelihood lD of the training data 
set expressed as 
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Therefore, the maximum likelihood estimate for w is 
given as  
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To reduce overfitting, we can introduce a prior 
distribution p (w) for the weight vector w. By 
conveniently setting the prior to be multivariate 
Gaussian p (w) = N (w | μ, Σ), we could obtain the 
maximum a posteriori (MAP) weight estimate as  
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The second term is the regularization term that 
penalizes any deviation of weights w from their desired 
values μ. Thus the name penalized LR for any training 
algorithm that estimates wMAP. Evidently, the choice of 
weight prior hyperparameters  μ and Σ is very 
important for the success of penalized LR.  

 
Single-Task Penalized LR (S_LR). In single-

task scenarios, there are typically two approaches in 
selection of prior hyperparameters μ and Σ. The most 
common is to use the penalized term solely for the 
purpose of regularization. Typically, one would choose 
μ = 0 and Σ = σ2I, where σ is scalar that determines 
how strongly the weights w are tied to zero and where 
I is the identity matrix. As for the choice of σ, it could 
be determined using cross-validation or by the more 
sophisticated empirical Bayes procedure. We call the 
resulting approach the single-task penalized LR and 
denote it as S_LR.  



Regardless of its simplicity, the S_LR is regarded 
as quite successful in overfitting prevention. However, 
it is also worth noting that its prior oversimplifies the 
rich structure among the features. It assumes that the 
weights are independent of each other and have equal 
uncertainty. This approach is likely to result in poor 
performance when the training data are extremely 
scarce (N<<M), as is the case with microarray datasets. 
The alternative approach is to select hyper-parameters 
based on some prior belief about the weight values. 
This second approach motivates the multi-task 
penalized LR described next. 

 
Multi-Task Penalized LR (M_LR). Recent work 

in multi-task learning resulted in many algorithms that 
define the prior hyperparameters to ensure that the 
predictors specialized on similar tasks have similar 
weights [4,7]. One of the simplest, yet effective, 
approaches of this type is to train a logistic regression 
model on each of the K auxiliary data sets and to use 
the resulting weight vectors w 

k, k = 1…K, to determine 
the hyperparameters μ and Σ. In this paper, we applied 
the approach of [4] that calculates μ as the average 
weight of auxiliary classifiers and Σ as the diagonal 
matrix whose elements Σj,j = σj

2 are weight variances, 

.)(
1

1,1
1

22

1
∑∑
==

−
−

==
K

k
j

k
jj

K

k
w

K
w

K
k μσμ  

 
Multi-Task Reweighted LR (RW_LR). The 

reweighting approaches for multi-task learning train 
the target classifier on both target examples and 
examples from the auxiliary data sets. Typically, 
examples from the target data set are given larger 
weights than those from the auxiliary data sets. The 
weights for each example can be calculated in various 
ways. Given the example weights, the logistic 
regression model is obtained as  
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where Ntot denotes all examples from the target and the 
auxiliary data sets and ri the example weights.  

In this paper, we applied the approach of [1] for 
calculation of weights ri. Weights of the target 
examples are set to 1. Weights of examples from the k-
th auxiliary data set are obtained as the outputs of 
logistic regression model trained to discriminate 
between target examples (denoted as positive 
examples) and examples from the k-th auxiliary task 
(denoted as negative examples). Therefore, large 
overlap between the distributions of the target and the 
auxiliary data implies the large weights of the auxiliary 
examples.  

4. Multi-Task Feature Selection  
 
In this section we propose a multi-task feature 
selection filter suitable for microarray data. The main 
property of filters is that they are very efficient and do 
not require training a classifier. In general, feature xj, 
j = 1…M, is deemed useful by a filter if its class-
conditional distributions p(xj | y = 1) and  p(xj  | y = 0) 
are different. A standard approach to measure the 
difference is to run a statistical test of the null 
hypothesis that the two distributions are identical [6]. 
We first summarize this standard approach in the 
single-task scenario. 
 

Single-task feature selection filter (S_FS). Let 
us consider data set D = {(xi, yi), i = 1…N} and denote 
Xj

+ = {xij, yi = 1} and Xj
− = {xij, yi = 0} as the values of 

j-th feature in positive and negative examples, 
respectively. Let us denote θ j = θ (Xj

+, Xj
−) as a statis-

tic measuring the difference between the two samples. 
Some examples of possible θ statistics are the 
difference in sample means, information gain, and χ2 
statistics. In the statistical filter, we ask the question of 
how likely it is that value θ j or bigger occurs under the 
null hypothesis H0:  p(xj | y = 1) = p(xj  | y = 0). This is 
exactly the definition of the p-value of the statistical 
test. We denote the p-value for j-th feature as pj = p(θ j

0 
≥θ j), where θ j

0 is the statistics under the null 
hypothesis. The p-values can be obtained analytically 
for some standard statistics such as the difference of 
means, while the permutation test can be used for other 
statistics such as the information gain.  

Given the p-values, features can be selected in 
two ways. In first, all features with p-values below 
some threshold (e.g. pj < 0.05) are selected. In second, 
M 

* features with the smallest p-values are selected. In 
both cases, it is not clear what threshold is appropriate 
with respect to the resulting classification accuracy and 
a common practice is to use validation to determine it.  

 
Multi-task feature selection filter (M_FS). 

When labeled data set D is very small, even feature 
selection filters can become highly inaccurate. This is 
because the power of statistical tests to discriminate 
between useful and irrelevant features drops with the 
sample size. The consequence is that a large number of 
irrelevant features would be selected and that sizeable 
number of relevant features would not, regardless of 
threshold choice. The remedy proposed here is to use 
multi-task feature selection filters. The idea is to first 
determine p-values of features in each auxiliary data 
set and to integrate those values for target task feature 
selection. 



Let us consider k-th auxiliary data set Dk = 
{(xi

(k), yi
(k)), i = 1…Nk}. We propose to calculate pjk as 

p-value of j-th feature in Dk. By repeating the 
procedure for each auxiliary task, each feature could 
be represented by a K-dimensional vector Qj = {pjk, 
k = 1…K}. The following are four simple strategies to 
determine significance qj of j-th feature from Qj: (1) qj 
= min(Qj); (2) qj = mean(Qj); (3) qj = median(Qj); (4) qj 
= max(Qj). The selected M 

* features are those with the 
smallest qj values. The proposed strategies have 
slightly different objectives – min(Qj) favors features 
deemed very significant by any of the auxiliary tasks; 
mean(Qj) and median(Qj) prefer features that are most 
significant in average; and max(Qj) prefers features 
significant on all auxiliary tasks. 

Related to the choice of M 
*, the multi-task filter 

determines it by validation of single-task classifiers on 
auxiliary tasks that use single-task filters. This 
approach is expected to be more powerful than an 
arbitrary selection, or doing validation on the target 
data set with only a few labeled examples. 

The proposed filter does not consider the 
similarity between auxiliary and target tasks and treats 
each auxiliary task as equally useful for feature 
selection. In practice, some auxiliary tasks are more 
similar to the target task than others. Therefore, our 
multi-task filter provides an option to use only a subset 
K 

* < K of the auxiliary data sets in feature selection. 
There, only pjk values from the K 

* auxiliary data sets 
are used in Qj. The practical issue is that the target data 
set can be too small to aid in detection of unrelated 
auxiliary tasks.  

To resolve this issue, we propose to measure 
accuracy of single-task auxiliary classifiers on target 
task examples and to select K 

* auxiliary tasks as those 
with the most accurate classifiers. To measure 
accuracy, we use the log-likelihood as defined in 
Section 3. To select the best value of K 

* parameter, 
while avoiding the danger of over-learning from the 
target data set, we validate K 

* on auxiliary data sets.  
 

Kruskal-Wallis test. Among many alternatives, 
we used the nonparametric Kruskal-Wallis test to 
determine feature p-values. The test is very appropriate 
for microarray data because it does not require strong 
distribution assumptions, it works well on small 
samples, and its p-values can be calculated 
analytically. Given positively and negatively labeled 
values of j-th feature, Xj

+ and Xj
−, Kruskal-Wallis sorts 

the values and calculates the average rank of positive 
and negative labels. Then, it calculates test statistic kwj 
that becomes large when the average ranks deviate 
from the expected rank (N+1)/2. The p-value of the 

statistics is calculated easily because kwj follows the 
standard χ2 distribution. 

 
5. Results 
 
5.1 Data Description and Experimental Setup 
 
Data sets used to evaluate the proposed algorithms 
were published in [8] and we downloaded them in the 
pre-processed form from [9]. They were obtained 
using Affymetrix microarrays that measured 
expression of M = 15,009 genes. The original data 
corresponded to multiple samples from 14 human 
cancer tissues and 12 normal tissues. From that data, 
we extracted 9 binary classification data sets by 
coupling normal and cancer samples from the same 
tissue type, whenever available. The summary of these 
9 data sets in Table 1 indicates that all of them are 
small and that some of them are very imbalanced with 
just a few samples from normal tissues. 

 
Table 1. Data set (cancer:normal cases) 

Bladder (11:7) Lung (20:7) Prostate (14:9) 
Breast (17:5) Ovary (15:3) Renal (11:13) 
Colon (15:11) Pancreas (11:10) Uterus (11:6) 

 
We evaluated several feature selection methods 

(see Section 4) in our experiments: (1) Single-task 
(S_FS), (2) Multi-task (M_FS), (3) Random selection 
(R_FS), and (4) Select all features (A_FS). In M_FS 
algorithm, we used the p-value aggregation based on 
minimum p-value, qj = min(Qj). This approach proved 
slightly better than median and significantly better than 
maximum in our preliminary studies. The feature 
selection algorithms were evaluated in conjunction 
with 3 logistic regression algorithms (see Section 3): 
(1) Single task penalized LR (S_LR), (2) Multi-task 
penalized LR (M_LR), (3) Multi-task reweighted LR 
(RW_LR). In S_LR we used hyperparameter σ = 1. To 
train a logistic regression model, we used the 
conjugate gradient ascent method because it was much 
faster on high-dimensional microarray data than the 
more common Newton method [5].  

For each combination of feature selection and 
logistic regression algorithms, we selected one of the 9 
data sets as target data and the remaining 8 as the 
auxiliary data. To explore the influence of training size 
on transfer learning algorithms, we used N 

+ = {1, 2, 3, 
4, 5} positive and the same number of negative target 
task examples for training. We used balanced training 
data to facilitate result interpretation. The remaining 
examples were used for testing. Due to lack of normal 
examples, in breast data set we used N 

+ = {1, 2, 3, 4} 



and for ovary data set N 
+ = {1, 2}. The reported 

accuracy was calculated as average between accuracy 
on positive and negative test examples, Acc = Acc+/2 + 
Acc−/2, where Acc+ = TP/(TP+FN), Acc− = TN/(TN+ 
FP). For each choice of N 

+ we repeated experiments 
10 times, each with different randomly selected N 

+ 
positive and N 

− = N 
+

 negative examples from the 
target data. Thus, we built and tested 50 (except for 
breast and ovary data) classifiers for each feature 
selection-classifier combination. All experiments were 
repeated 9 times so that each cancer data set was used 
as target data set in one set of experiments. 
 
5.2 Experimental Results 

 
Choice of number of features M *. Following the 
approach proposed in Section 4, we trained S_LR 
classifiers using M * = {50, 100, 500, 5000, M} 
features selected by S_FS. Following the setup from 
Section 5.1, we trained and tested 410 classifiers for 
each choice of M *. Table 2 summarizes how many 
times S_FS + S_LR classifier with M * = 100 was more 
accurate than the same classifier with different choice 
of M *. M * = 100 was better than the alternative values. 

 
Table 2. Win:loss for M 

*= 100 vs. other M * 
M * =  50 500 5,000 15,009 
M 

* = 100 289:121 216:194 259:141 269:141 
 
Table 3. Win:loss for K 

*= 5 vs. other K * 
K * =  0 1 3 8 
K 

* = 5 241:169 251:159 219:191 216:194 
 
Choice of number of auxiliary tasks K *. We 
determined suitable number of auxiliary tasks for 
feature selection following the approach explained in 
Section 4. In Table 3 we compare win:loss statistics of 
M_FS + S_LR classifier with K 

* = 5 to the same 
classifier with K 

* = {0, 1, 3, 8} (K 
* = 0 corresponds to 

S_FS + S_LR classifier). Although the differences 
were rather small, K 

* = 5 seemed to be the best overall 
choice. 
 
Comparing feature selection algorithms. In Figure 1 
we compare performance of three different feature 
selection methods, R_FS, S_FS, M_FS, all using 100 
selected features. Figure 1.a shows average accuracies 
of S_LR classifier trained with N 

− = N 
+ = 2 target 

examples and using 100 selected features. Each of the 
9 sets of bars represents a case when a given data set is 
used as the target data and the remaining as the 
auxiliary data. Figures 1.b and 1.c show accuracies of 
multi-task classifiers M_LR and RW_LR. It could be 
seen from all three figures that multi-task feature 
selection (M_FS) results in superior accuracies. There 
are only few cases when it is not the best performing 
approach. Comparing R_FS and S_FS, S_FS is slightly 
better when coupled with S_LR and slightly worse 
with RW_LR. This clearly indicates that 4 training 
examples are not sufficient for a successful single-task 
feature selection. On the other hand, borrowing 
strength from the auxiliary tasks appears very helpful. 
 
Accuracy vs. training size. In Figure 2 we compare 
accuracies of four representative algorithms on each 
target task as a function of the training size. S_LR + 
S_FS is purely single-task algorithm, S_LR + M_FS is 
combination of single-task classifier and multi-task 
feature selection, and the remaining two are purely 
multi-task. It can be seen that S_LR + S_FS is inferior 
to the other algorithms and that the difference in 
accuracy is particularly large for small target training 
sizes. Interestingly, S_LR + M_FS is very competitive 
to purely multi-task algorithms. When N 

− = N 
+ = 5, the 

difference decreases and, in few cases, we could even 
observe slight negative transfer. The difference 
between the 3 remaining algorithms is rather small, 
with RW_LR + M_FS being most accurate overall.  

Figure 1.a-c Accuracies of 3 FS algorithms coupled with a) S_LR, b) M_LR, and c) RW_LR  
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Figure 2 Comparison of 4 classifiers on 9 target tasks for varying training sizes. 
 

6. Conclusion 
 
In this paper we proposed a multi-task feature selection 
filter suitable for microarray classification. The filter is 
widely applicable because of the availability of rich 
public repositories of microarray data. The filter can be 
used as a preprocessing step for an arbitrary 
classification algorithm. Experimental results indicate 
that the proposed filter boosts accuracy of both single-
task and multi-task classifiers. Combination of multi-
task feature selection and classification appears 
particularly successful. We observed that multi-task 
learning is the most useful when target examples are 
scarce. Its benefits decrease with data size and could 
even lead to negative transfer. Despite its limitations, it 
is evident that multi-task learning can be a useful 
bioinformatics tool in many biological problems.  
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