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Abstract: Leveraging information from the publicly accessible data 
repositories can be very useful when training a classifier from a small-sample 
microarray data. To achieve this, we proposed a multi-task feature  
selection filter that borrows strength from auxiliary microarray data. It uses  
Kruskal–Wallis test on auxiliary data and ranks genes based on their 
aggregated p-values. The top-ranked genes are selected as features for the 
target task classifier. The multi-task filter was evaluated on microarray data 
related to nine different types of cancers. The results showed that the multi-task 
feature selection is very successful when applied in conjunction with both 
single-task and multi-task classifiers. 
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1 Introduction 

Microarray technology has the ability to simultaneously measure expression levels of 
thousands of genes for a given biological sample. In microarray classification tasks, 
samples belong to one of the several classes (e.g., cancer vs. control tissues) and the goal 
is to classify a new tissue sample based on its microarray measurements. Typical 
microarray classification data set contains a very limited number of labelled microarrays, 
ranging from only a few to several hundred. Training classifiers on such small-sample 
high-dimensional data sets is a challenging problem that has received an increasing 
attention from the research community. A standard way of addressing the challenge is to 
perform feature selection as a pre-processing step and to follow it by applying a 
classification algorithm that controls model complexity through regularisation. Feature 
selection filters, which perform a statistical test on every feature to determine its 
discriminative power (Radivojac et al., 2004), are a reasonable dimensionality reduction 
strategy in microarray classification. Among the many classification algorithms, SVMs 
and penalised LR are particularly appropriate in small-sample learning scenarios. 

When the number of labelled microarrays is particularly small (e.g., less than 10),  
the amount of available information diminishes to the level that even the most carefully 
designed classification approaches are bound to underperform. The only remedy is to 
borrow strength from external information sources. One promising approach is to 
incorporate prior knowledge about features (e.g., information about gene networks and 
pathways, or functional gene properties) into the regularisation term (Li and Li, 2008;  
Tai and Pan, 2007). 

An alternative approach is to utilise information from the external microarray data 
sets. For example, when learning to discriminate between infiltrative astrocytoma brain 
tumour and normal brain tissue using labelled microarray data obtained by a single lab,  
it might be beneficial to explore publicly available microarray data about other brain 
tumours or even about non-brain tumours. Recent work in multi-task learning that was 
originally proposed in Caruana (1997) indicates that accuracy on the target classification 
task can be significantly increased if data from the auxiliary tasks are consulted during 
learning. This can be achieved either by modifying the regularisation term (Marx et al., 
2005) or by directly using auxiliary data for training (Bickel et al., 2008). However, 
multi-task learning with regularisation might still not be sufficient to mitigate the 
negative effects of high dimensionality in microarray data. In this case, feature selection 
becomes critical for the success of learning. 

A straightforward approach is to perform feature selection on training data of the 
target task. Our hypothesis was that such single-task feature selection suffers from similar 
problems found in single-task classification. This is why in this paper we propose a 
multi-task feature selection filter that borrows strength from the auxiliary microarray data 
sets. 

The contributions of this paper are as follows:  

• we propose a new multi-task feature selection filter 

• we demonstrate that feature selection is an important pre-processing step in 
conjunction with several popular single-task and multi-task classification algorithms 

• we demonstrate the potential and limitations of multi-task learning  
on microarray data. 
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2 Problem definition 

Let us define the target data set as D = {(xi, yi), i = 1, …, N}, where xi is an  
M-dimensional feature vector for ith example, yi is its class label, and N is the number of 
labelled examples. We can assume that D is a random sample from an underlying 
distribution defined by feature distribution p(x) and conditional distribution p(y|x).  
The target task is defined as training a classifier f(x) that approximates the conditional 
distribution p(y|x). In single-task learning, only the target data D are used for training. 

In multi-task learning, we have access to the additional K auxiliary data sets. Let us 
denote the kth auxiliary data set as ( ) ( ){( , ), 1, , },k k

k i i kD x y i N= = …  where ( )k
ix  and ( )k

iy  
are feature vector and target label for ith example in Dk, respectively, and Nk is the size of 
Dk. We can assume that Dk is a random sample from feature distribution pk(x) and 
conditional distribution pk(y|x). The goal of multi-task learning is to improve accuracy of 
the target classifier by exploiting the auxiliary data. 

Auxiliary data can be particularly useful when the target data set is small. Clearly,  
the usefulness of an auxiliary data set depends on its similarity to the target data 
distribution. Interestingly, even when the similarity is only moderate, it has been 
demonstrated that the auxiliary tasks can boost the classification accuracy on the target 
task. It is also worth noting that multi-task learning can sometimes lead to negative 
transfer, where use of auxiliary data decreases accuracy on the target task. An objective 
of this paper is to evaluate potential benefits and limitations of multi-task learning in 
microarray classification. 

3 Single-task and multi-task classifiers 

The multi-task feature selection filter proposed in Section 4 can be used in conjunction 
with any single-task or multi-task classification algorithm. To demonstrate the robustness 
of the proposed multi-task feature selection method, we evaluate its performance on 
several popular classification algorithms. The results presented in Section 5 are aimed  
at demonstrating that the proposed multi-task feature filter indeed improves the 
classification performance no matter which classification algorithm is used. We start this 
section by an overview of three standard single-task classification algorithms: penalised 
LR, lasso and SVMs. We also outline several previously proposed extensions of these 
algorithms for multi-task classification. 

3.1 Penalised logistic regression for multi-task learning 

3.1.1 Penalised LR 

Let us consider for simplicity only binary classification where target variable can have 
one of two values, y ∈ {0, 1}. In LR, the posterior probability of positive class can be 
written as a logistic sigmoid of a linear function of the feature vector, p(y = 1|x) = σ(wTx), 
where w is the weight vector to be learned, and the logistic sigmoid is defined as 
σ(z) = 1/(1 + exp(−z)). 

The weight vector w can be estimated by maximising the log-likelihood lD of the 
training data set expressed as 
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Therefore, the maximum likelihood estimate for w is given as 

arg max ( ).ML w Dw l w=  

To reduce overfitting, we can introduce a prior distribution p(w) for the weight vector w. 
By conveniently setting the prior to be multivariate Gaussian p(w) = N(w|µ, Σ), we could 
obtain the Maximum A Posteriori (MAP) weight estimate as 

MAP

1

arg max [log ( | ) log ( )]
1arg max [ ( ) ( ) ( )].
2

w

T
w D

w p D w p w

l w w wµ µ−

= +

= − − Σ −
 

The second term is the regularisation term that penalises any deviation of weights w from 
their desired values µ. Thus, the name penalised LR for any training algorithm that 
estimates wMAP. Evidently, the choice of weight prior hyperparameters µ and Σ is very 
important for the success of penalised LR. 

3.1.2 Single-task penalised LR (S_LR) 

In single-task scenarios, there are typically two approaches to selection of prior 
hyperparameters µ and Σ. The most common is to use the penalised term solely for  
the purpose of regularisation. Typically, one would choose µ = 0 and Σ = σ2I, where  
σ is scalar that determines how strongly the weights w are tied to zero and I is the identity 
matrix. As for the choice of σ, it could be determined using cross-validation or by the 
more sophisticated empirical Bayes procedure. We call the resulting approach the  
single-task penalised LR and denote it as S_LR. 

Regardless of its simplicity, the S_LR is regarded as quite successful in overfitting 
prevention. However, it is also worth noting that its prior oversimplifies the rich structure 
among the features. It assumes that the weights are independent of each other and have 
equal uncertainty. This approach is more likely to result in poor performance when the 
training data are extremely scarce (N << M), as is the case with microarray data sets. 

The alternative approach is to select hyperparameters based on some prior belief 
about the weight values. This second approach motivates the multi-task penalised LR 
described next. 

3.1.3 Multi-task penalised LR (M_LR) 

Recent work in multi-task learning resulted in many algorithms that define the prior 
hyperparameters to ensure that the predictors specialised on similar tasks have similar 
weights (Marx et al., 2005; Raina et al., 2006). One of the simplest, yet effective, 
approaches of this type is to train an LR model on each of the K auxiliary data sets and  
to use the resulting weight vectors wk, k = 1, …, K, to determine the hyperparameters  
µ and Σ. In this paper, we applied the approach of Marx et al. (2005) that calculates µ as 
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the average weight of auxiliary classifiers and Σ as the diagonal matrix whose elements 
2

, jj j
σ=∑  are weight variances, 

2 2

1 1

1 1, ( ) .
1

k

K K
k

j j j
k k

w w
K K

µ σ µ
= =

= = −
−∑ ∑  

3.1.4 Multi-task Reweighted LR (RW_LR) 

The reweighting approaches for multi-task learning train the target classifier using a 
mixture of target examples and examples from the auxiliary data sets. Typically, 
examples from the target data set are given larger weights than those from the auxiliary 
data sets. The weights for each example can be calculated in various ways. Given the 
example weights, the LR model is obtained as 

tot

RW
1

arg max log ( | , ) log ( ) ,
N

i i iw i

w r p y x w p w
=

 
= + 

 
∑  

where Ntot denotes all examples from the target and the auxiliary data sets and ri the 
example weights. 

In this paper, we applied the approach of Bickel et al. (2008) for calculation of 
weights ri. Weights of examples are obtained as the outputs of LR model trained to 
discriminate between target examples (denoted as positive examples) and examples from 
an auxiliary task (denoted as negative examples). Therefore, large overlap between the 
distributions of the target and the auxiliary data implies the large weights of the auxiliary 
examples. 

3.2 Lasso 

3.2.1 Single-task Lasso (S_Lasso) 

Lasso (Tibshirani, 1996) is a popular embedded feature selection technique. It does 
feature selection automatically by solving the l1-regularised learning problem. If used in 
conjunction with the LR, the optimal w is obtained by maximising the regularised  
log-likelihood 

Lasso 1arg max [log ( | ) || || ]S ww p D w wλ− = −  

where λ is a regularisation coefficient. This optimisation problem can also be explained 
as regularised LR with Laplacian prior (Krishnapuram et al., 2005; Cawley and Talbot, 
2006). 

Because of the nature of l1 penalty, solving this objective problem typically results in 
a sparse model where most of the weights become zeros. Owing to the sparse solution of 
Lasso, it becomes a very useful embedded feature selection approach. 

3.2.2 Multi-task Lasso (M_Lasso) 

A regularisation scheme for multi-task feature selection was proposed by Obozinski et al. 
(2010). It aims to find a common set of features that are relevant to all available 
classification tasks. This is achieved by defining a regularisation term as an l1 sum of  
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the l2 norms of the feature-specific vectors. The optimisation problem for multi-task 
Lasso can be represented as 

Lasso 2
1 1

arg max log ( | )
K M

k k
M w j

k j

w p D w wλ−
= =

 
= − 

 
∑ ∑  

where K is the number of tasks, M is the number of features, wj is a column vector  
that represents the coefficients of features j across all K tasks and wk is a row vector that 
represents parameters of the learned model for classification task k. The solution is a 
K × M matrix containing the learned parameter for all tasks. This l1/l2 regularisation 
scheme selects feature jointly across all considered classification tasks. The l2 norms 
measure the overall relevance of a particular feature while the l1 sum enforces feature 
selection. It encourages similar sparsity patterns for all task-specific models. Note that 
this l1/l2 regularisation scheme reduces to l1-regularisation if the number of tasks is 
reduced to one. 

3.3 Support vector machine 

3.3.1 Single-task Support Vector Machine (S_SVM) 

Support Vector Machines (SVMs) (Vapnik, 1995) are among the most powerful and 
popular classification algorithms. The SVM is solving the following problem 

2

1

1minimise || ||
2

subject to ( ) 1 , 0

N

i
i

T
i i i i

w C

y w x b

ξ

ξ ξ
=

+

+ ≥ − ≥

∑  

where w is the weight vector, b is the bias term, ξi are slack variables and C is the slack 
parameter. The resulting predictor has the form 

1
( ) ( )

N
TT

i i i
i

f x w x b y x x bα
=

= + = ⋅ +∑  

where 0 ≤ αi ≤ C (non-zero alphas correspond to the support vectors). If needed, this 
linear classifier can be easily converted to a non-linear classifier by kernelisation, i.e.,  
by replacing the dot product xi

Tx with an appropriately selected kernel function K(xi, x). 

3.3.2 Multi-task Reweighted Support Vector Machine (RW_SVM) 

The reweighting approach introduced in Section 3.1.2 can be used to design a multi-task 
SVM. Knowing the weight ri of each example from the target and auxiliary tasks, we use 
the idea of fuzzy SVM (Lin and Wang, 2002) to train the multi-task SVM through 
solving the following optimisation problem 

2

1

1minimise || ||
2

subject to ( ) 1 , 0.

N

i i
i

T
i i i i

w C r

y w x b

ξ

ξ ξ
=

+

+ ≥ − ≥

∑  

The effect of reweighting is equivalent to changing the value of the slack parameter from 
C for all examples to C⋅ri. The resulting predictor has the same form as the original SVM, 
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with only difference that 0 ≤ αi ≤ C⋅ri. Therefore, examples with smaller weight ri will 
have smaller influence on the resulting predictor. To determine weights ri, we can use the 
approach by Bickel et al. (2008) described in Section 3.1.4. 

4 Multi-task feature selection 

In this section, we propose a multi-task feature selection filter suitable for microarray 
data. The main property of filters is that they are very efficient and do not require  
training a classifier. In general, feature xj, j = 1, …, M, is deemed useful by a filter if its  
class-conditional distributions p(xj|y = 1) and p(xj|y = 0) are different. A standard 
approach to measure the difference is to run a statistical test of the null hypothesis  
that the two distributions are identical (Radivojac et al., 2004). We first summarise this 
standard approach in the single-task scenario. 

Single-task feature selection filter (S_FS): Let us consider data set D = {(xi, yi), 
i = 1, …, N} and denote { , 1}j ij iX x y+ = =  and { , 0}j ij iX x y− = =  as the values of  
jth feature in positive and negative examples, respectively. Let us denote 

( , )j j jX Xθ θ + −= as a statistic measuring the difference between the two samples. Some 
examples of possible θ statistics are the difference in sample means, information gain and 
χ2 statistics. In the statistical filter, we ask the question of how likely it is that value θj or 
bigger occurs under the null hypothesis H0: p(xj|y = 1) = p(xj|y = 0). This is exactly the 
definition of the p-value of the statistical test. We denote the p-value for jth feature as 

0( ),j j jp p Q q= ≥  where 0
jQ  is the statistics under the null hypothesis. The p-values can 

be obtained analytically for some standard statistics such as the difference of means, 
while the permutation test can be used for other statistics such as the information gain. 

Given the p-values, features can be selected in two ways. First, all features with p-values 
below some threshold (e.g., pj < 0.05) are selected. Second, M* features with the smallest 
p-values are selected. In both cases, it is not clear what threshold is appropriate with 
respect to the resulting classification accuracy and a common practice is to use validation 
to determine it. 

Multi-task feature selection filter (M_FS): When labelled data set D is very small, even 
feature selection filters can become highly inaccurate. This is because the power of 
statistical tests to discriminate between useful and irrelevant features drops with the 
sample size. The consequence is that a large number of irrelevant features would be 
selected and that sizeable number of relevant features would not, regardless of threshold 
choice. The remedy proposed here is to use multi-task feature selection filters. The idea is 
to first determine p-values of features in each auxiliary data set and to integrate those 
values for target task feature selection. 

Let us consider kth auxiliary data set ( ) ( ){( , ), 1, , }.k k
k i i kD x y i N= = …  We propose to 

calculate pjk as p-value of jth feature in Dk. By repeating the procedure for each auxiliary 
task, each feature could be represented by a K-dimensional vector { ,j jkQ p=  

1, , }.k K= …  The following are four simple strategies to determine significance qj of jth 
feature from Qj:  
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• qj = min(Qj) 

• qj = mean(Qj) 

• qj = median(Qj) 

• qj = max(Qj).  

The selected M* features are those with the smallest qj values. The proposed strategies 
have slightly different objectives – min(Qj) favours features deemed very significant by 
any of the auxiliary tasks; mean(Qj) and median(Qj) prefer features that are most 
significant in average; max(Qj) prefers features significant on all auxiliary tasks. 

Related to the choice of M*, the multi-task filter determines it by validation of  
single-task classifiers on auxiliary tasks that use single-task filters. This approach is 
expected to be more powerful than an arbitrary selection, or doing validation on the target 
data set with only a few labelled examples. 

The proposed filter does not consider the similarity between auxiliary and target tasks 
and treats each auxiliary task as equally useful for feature selection. In practice, some 
auxiliary tasks are more similar to the target task than others. Therefore, our multi-task 
filter provides an option to use only a subset K* < K of the auxiliary data sets in feature 
selection. There, only pjk values from the K* auxiliary data sets are used in Qj.  
The practical issue is that the target data set can be too small to aid in detection of 
unrelated auxiliary tasks. 

To resolve this issue, we propose to measure accuracy of single-task auxiliary 
classifiers on target task examples and to select K* auxiliary tasks as those with the most 
accurate classifiers. To measure accuracy, we use the log-likelihood as defined in  
Section 3. To select the best value of K* parameter, while avoiding the danger of  
over-learning from the target data set, we validate K* on auxiliary data sets. 

Kruskal-Wallis test: Among many alternatives, we used the non-parametric  
Kruskal-Wallis test to determine feature p-values. The test is very appropriate for 
microarray data because it does not require strong distributional assumptions, it works 
well on small samples, and its p-values can be calculated analytically. Given positively 
and negatively labelled values of jth feature, and ,j jX X+ −  Kruskal-Wallis sorts the values 
and calculates the average rank of positive and negative labels. Then, it calculates test 
statistic kwj that becomes large when the average ranks deviate from the expected  
rank (N + 1)/2. The p-value of the statistics is calculated easily because kwj follows the 
standard χ2 distribution. 

5 Results 

5.1 Data description and experimental set-up 

Data sets used to evaluate the proposed algorithms were published in Ramaswamy et al. 
(2001) and we downloaded them in the pre-processed form from Statnikov et al. (2005). 
They were obtained using Affymetrix microarrays that measured expression of 
M = 15,009 genes. The original data corresponded to multiple samples from 14 human 
cancer tissues and 12 normal tissues. From that data, we extracted nine binary 
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classification data sets by coupling normal and cancer samples from the same tissue type, 
whenever available. The summary of these nine data sets in Table 1 indicates that all of 
them are small and that some of them are very imbalanced with just a few samples from 
normal tissues. 

Table 1 Data set (cancer: normal cases) 

Bladder (11 : 7) Lung (20 : 7) Prostate (14 : 9) 
Breast (17 : 5) Ovary (15 : 3) Renal (11 : 13) 
Colon (15 : 11) Pancreas (11 : 10) Uterus (11 : 6) 

We evaluated several feature selection methods (see Section 4) in our experiments:  

• Single-task (S_FS) 

• Multi-task (M_FS) 

• Random selection (R_FS).  

In M_FS algorithm, we used the p-value aggregation based on minimum p-value, 
qj = min(Qj). This approach proved slightly better than median and significantly better 
than maximum in our preliminary studies. The feature selection algorithms were 
evaluated in conjunction with different classification algorithms (see Section 3):  

• Single-task Lasso (S_Lasso) 

• Multi-task Lasso (M_Lasso) 

• Single-task SVM (S_SVM) 

• Multi-task reweighted SVM (RW_SVM) 

• Single-task penalised LR (S_LR) 

• Multi-task penalised LR (M_LR) 

• Multi-task reweighted LR (RW_LR).  

In S_LR, we used hyperparameter σ = 1. To train an LR model, we used the conjugate 
gradient ascent method because it was much faster on high-dimensional microarray data 
than the more common Newton method (Minka, 2003). For S_Lasso and M_Lasso,  
we used TL_BBLasso algorithm implemented in UC Berkeley Transfer Learning Toolkit 
(Rakhlin, 2007). We used λ = 1 in both the S_Lasso and the M_Lasso algorithms.  
For training the S_SVM and RW_SVM classifiers, we used C = 1. For each combination 
of feature selection and data mining algorithms, we selected one of the nine data sets as 
target data and the remaining eight as the auxiliary data. To explore the influence of 
training size on transfer learning algorithms, we used N+ = {1, 2, 3, 4, 5} positive and the 
same number of negative target task examples for training. We used balanced training 
data to facilitate result interpretation. The remaining examples were used for testing. 
Because of lack of normal examples, in breast data set we used N+ = {1, 2, 3, 4} and for 
ovary data set N+ = {1, 2}. The reported accuracy was calculated as average between 
accuracy on positive and negative test examples, Acc = Acc+/2 + Acc–/2, where  
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Acc+ = TP/(TP + FN), Acc– = TN/(TN + FP). For each choice of N+, we repeated 
experiments ten times, each with different randomly selected N+ positive and N– = N+

 
negative examples from the target data. Thus, we built and tested 50 (except for breast 
and ovary data) classifiers for each feature selection-classifier combination. All 
experiments were repeated nine times so that each cancer data set was used as target data 
set in one set of experiments. 

5.2 Experimental results 

Choice of number of features M*: Following the approach proposed in Section 4,  
we trained S_LR classifiers using M* = {50, 100, 500, 5000, M} features selected by 
S_FS. Following the set-up from Section 5.1, we trained and tested 410 classifiers for 
each choice of M*. Table 2 summarises how many times S_FS + S_LR classifier with 
M* = 100 was more accurate than the same classifier with different choice of M*. 
M* = 100 was better than the alternative values. 

Table 2 Win : loss for M*= 100 vs. other M* 

M* = 50 500 5000 15,009 
M* = 100 289 : 121 216 : 194 259 : 141 269 : 141 

Choice of number of auxiliary tasks K*: We determined suitable number of auxiliary 
tasks for feature selection following the approach explained in Section 4. In Table 3,  
we compare win : loss statistics of M_FS + S_LR classifier with K* = 5 with the  
same classifier with K* = {0, 1, 3, 8} (K* = 0 corresponds to S_FS + S_LR classifier). 
Although the differences were rather small, K* = 5 seemed to be the best overall. 

Table 3 Win : loss for K* = 5 vs. other K* 

K* = 0 1 3 8 
K* = 5 241 : 169 251 : 159 219 : 191 216 : 194 

Comparing feature selection algorithms: In Figure 1, we compare performance of three 
different feature selection methods, R_FS, S_FS, M_FS, all using 100 selected features. 
Figure 1(a)–(g) shows average accuracies of seven different classifiers trained with  
N– = N+ = 2 target examples and using 100 selected features. Each of the nine sets of bars 
represents a case when a given data set is used as the target task and the remaining data 
sets as the auxiliary tasks. It could be seen from all seven figures that multi-task feature 
selection (M_FS) results in superior accuracies. There are only two cases (in S_Lasso 
experiments) where M_FS was outperformed and several other cases where M_FS 
performed similar either to S_FS or R_FS. Comparing R_FS and S_FS, it is hard to 
conclude which one is better. This clearly indicates that four training examples are not 
sufficient for a successful single-task feature selection. On the other hand, the success of 
M_FS demonstrates usefulness of the idea of borrowing strength from the auxiliary tasks. 
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Figure 1 Accuracies of three FS algorithms coupled with: (a) S_Lasso; (b) RW_Lasso;  
(c) S_SVM; (d) RW_SVM; (e) S_LR; (f) M_LR and (g) RW_LR 

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

 
(g) 

It is worth observing that results in Figure 1(b), (d), (f) and (g) correspond to different 
multi-task learning algorithms. Comparing the obtained accuracies with the 
corresponding single-task algorithms, it can be seen that they indeed increase the 
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classification accuracy. While multi-task algorithms are superior to their single-task 
counterparts, an important conclusion is that the proposed multi-task feature selection 
filter can further improve their performance. Therefore, the multi-task filter was a very 
useful pre-processing step for both single and multi-task learning algorithms. 

Lasso accuracy vs. number of input features: The l1 regularisation used in the Lasso 
model plays the role of an embedded feature selection. Figure 1(a) and (b) shows results 
of applying Lasso on 100 selected features. To better test the usefulness of the proposed 
feature selection filter to Lasso, we also evaluated its performance (on N– = N+ = 2 target 
training examples) using M* = {8000, 1000, 100} selected features. The results are 
shown in Figure 2. We can observe that in the S_Lasso case (left column of Figure 2)  
100 M_FS selected features achieved the best results overall. It demonstrates that our 
multi-task feature filter is in fact beneficial to S_Lasso. Similar behaviour occurred in 
M_Lasso experiments, although the difference between selecting 100 features using 
M_FS and other methods is slightly smaller. Comparing M_Lasso with S_Lasso,  
we could conclude that the M_Lasso is more accurate. Overall, the M_Lasso with  
100 M_FS (top right panel in Figure 2) achieves the highest accuracy. 

Figure 2 Accuracies of three FS algorithms with different number of selected features coupled  
with (left) S_Lasso and (right) M_Lasso 

 

Accuracy vs. training size: In Figure 3, we compare accuracies of four representative LR 
algorithms as a function of the training size on each target task using 100 selected 
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features. S_LR + S_FS is purely single-task algorithm, S_LR + M_FS is combination of 
single-task classifier and multi-task feature selection, and the remaining two are purely 
multi-task. It can be seen that S_LR + S_FS was inferior to the other algorithms and  
that the difference in accuracy was particularly large for small target training sizes.  
The difference between the three multi-task algorithms is rather small, with 
RW_LR + M_FS being most accurate overall. Interestingly, S_LR + M_FS is a very 
competitive combination of single-task classifier and multi-task feature selection.  
When N– = N+ = 5, the difference between the four algorithms decreased and, in few 
cases, we could even observe slight negative transfer for the multi-task algorithms. In one 
particular case (prostate cancer as the target task), S_LR + S_FS was better than 
S_LR + M_FS. The reason might be that the biological mechanism and biomarkers of 
prostate cancer are very different from other eight cancers. 

Figure 3 Comparison of four LR based classifiers on nine target tasks for varying training sizes  
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In Figure 4, we compared three different linear SVM-based classifiers where the number 
of selected features was 100. The results are similar to those in Figure 3. Overall, 
RW_SVM + M_FS was the most accurate model while S_SVM + S_FS was the least 
accurate. The negative transfer can also be seen when prostate cancer is the target task. 

Figure 4 Comparison of three SVM based classifiers on nine target tasks for varying training 
sizes 
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In Figure 5, we evaluated three algorithms based on Lasso, where the number of selected 
features was 100. It can be concluded that the M_FS filter increases the accuracy of both 
S_Lasso and M_Lasso. Overall, the M_Lasso + M_FS achieved the best results. Because 
Lasso results in sparse predictors, the number of final features used in the LR model is 
actually less than 100. We found that the number of features used in S_Lasso model was 
in the range between 1 and 15 and that the number of features used in M_Lasso model 
was in the range between 20 and 40. 

Figure 5 Comparison of three Lasso based classifiers on nine target tasks for varying training 
sizes 
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Comparing different classification algorithms: In Figure 6, we compare performance of 
three different multi-task learning algorithms with 100 M_FS selected features. RW_LR 
is the most accurate on six data sets, while RW_SVM is the best on the remaining three 
data sets. Both algorithms are significantly more accurate than M_Lasso. The difference 
between the three algorithms decreases with the training size. 

Figure 6 Comparison of multi-task version of Lasso, SVM, LR classifiers on nine target tasks for 
varying training sizes 
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6 Related work 

Transfer or Multi-Task Learning has attracted significant attention in recent years.  
The objective of transfer learning is to improve the accuracy on target classification task 
by borrowing strength from similar auxiliary tasks. Previous work (Caruana, 1997;  
Ando and Zhang, 2005; Bickel et al., 2008) showed that the transfer learning technology 
can be very useful in many real-life applications. 

One approach for transfer learning attempts to transfer knowledge from auxiliary data 
sets on the example level. Most often, this entails using examples from auxiliary data sets 
for training the target task classifier. For example, Bickel et al. (2008, 2009) proposed  
a reweighting approach, which compares the distributions of auxiliary and target tasks. 
Different types of reweighting approaches were proposed by Wu and Dietterich (2004) 
and Liao et al. (2005). Another approach attempts to transfer knowledge from  
auxiliary data sets at the feature level. These methods try to learn the common feature 
representation across all tasks (Ando and Zhang, 2005; Argyriou et al., 2008; Obozinski 
et al., 2010). The underlying assumption is that multiple classification tasks share  
a common predictive feature structure and that the feature structure can be more reliably 
estimated by considering all tasks together. Obozinski et al. (2010) proposed an approach 
that encourages similar sparsity models for all tasks by penalising the sum of l2 norms of 
the blocks of coefficients associated with each feature across different classification 
tasks. Similar idea of using a block l1/l2 norm for feature selection in multi-task learning 
setting was also independently proposed by Argyriou et al. (2008). A third type of 
transfer learning is attempting to incorporate prior information by assuming the models of 
target and auxiliary tasks share the same prior distribution (Marx et al., 2005; Raina et al., 
2006). The prior information could be learned from the auxiliary tasks or from the 
domain knowledge. For example, in the microarray classification problem, the prior 
information about the genes (features) can be mined from the Gene Ontology (Harris  
et al., 2004) or KEGG (Kanehisa et al., 2004) database. 

Feature selection is one of the main issues in microarray classification. Feature 
selection filters are among the most successful algorithms in practice despite their 
simplicity. Wrapper or embedded feature selection methods consult the prediction model 
and offer an opportunity to construct more accurate classifiers. Lasso (Tibshirani, 1996) 
and Elastic Net (Zou and Hastie, 2005) are two popular embedded feature selection 
methods for microarray classification. Both of these two methods use the l1 norm to 
encourage a sparse solution of the model. The Lasso and Elastic Net can be efficiently 
solved by the recently proposed algorithm LARS (Efron et al., 2004). Li and Li (2008) 
extend the idea of the elastic net by incorporating the prior information about the genes 
(e.g., information about gene networks and pathways, or functional gene properties) into 
the regularisation term. The prior information about the genes could be easily obtained 
from Gene Ontology (Harris et al., 2004) or KEGG (Kanehisa et al., 2004). Another type 
of embedded methods uses the weight of each feature in the model. The Recursive 
Feature Elimination (RFE) proposed by Guyon et al. (2002) involves an iterative 
procedure where a linear SVM is trained at each iteration and features corresponding to 
the smallest absolute weights are discarded. Weston et al. (2003) proposed a method  
for feature selection by minimising the zero-norm of the parameters of linear model.  
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The l2-AROM method gives a simple but practical solution to the original NP-hard 
problem of minimising the zero-norm. So, the zero-norm minimising problem can be 
solved efficiently by iteratively calling the standard SVM solver on rescaled inputs. 
Helleputte and Dupont (2009) extend the AROM method such that the prior knowledge 
about the domain can be more easily incorporated. 

7 Conclusion 

Transfer learning is a very attractive technology for microarray classification because of 
the availability of rich public repositories of microarray and related data. In this paper,  
we proposed a multi-task feature selection filter suitable for microarray classification. 
The filter can be used as a pre-processing step for an arbitrary classification algorithm. 
Experimental results indicate that the proposed filter boosts accuracy of both single-task 
and multi-task classifiers. Combination of multi-task feature selection and classification 
appears particularly successful. We observed that multi-task learning is the most useful 
when target examples are scarce. Its benefits decrease with data size and could even lead 
to negative transfer. Despite its limitations, it is evident that multi-task learning can be  
a useful bioinformatics tool in many biological problems. 
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