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Abstract— Resource-constrained data mining introduces 
many constraints when learning from large datasets. It is often 
not practical or possible to keep the entire data set in main 
memory and often the data could be observed in a single run in 
the order in which they are presented. Traditional reservoir-
based approaches perform well in this situation. One drawback 
of these approaches is that the examples not included in the 
final reservoir are often ignored. To remedy this situation we 
propose a modification to the baseline reservoir algorithm. 
Instead of keeping the actual target values of reservoir 
examples, an estimate of their conditional expectation is kept 
and updated online as new data are observed from the stream.  
The estimate is obtained by averaging target values of the 
similar examples. The proposed algorithm uses a paired t-test 
to determine the similarity threshold. Thorough evaluation on 
generated two dimensional data shows that the proposed 
algorithm is producing reservoirs with considerably reduced 
target noise. This property allows training of significantly 
improved prediction models as compared with the baseline 
reservoir-based approach. 

I. INTRODUCTION 
N many real-life domains the amount of available data 
greatly exceeds the computational and storage capacity of 

devices used for learning from it. This challenge is often 
complicated by having data access only through a single 
sequential pass through the data. There are two major 
approaches in addressing this problem. The first is online 
learning that considers algorithms that are able to improve 
their quality as new examples arrive [1]. While some 
reasonably efficient algorithms exist [2, 3], they tend to be 
sensitive to the order in which examples are presented and 
there are often no guarantees that the learned model 
approaches the accuracy of the batch-mode alternatives [3]. 

The second, reservoir-based, approach relies on 
maintaining a representative sample of the observed data in 
memory and on applying standard batch-mode learning 
algorithms on the reservoir data. Assuming a reservoir with 
capacity to hold R examples, the simplest procedure [4] is to 
replace the t-th observed example from a stream with a 
randomly chosen reservoir example with probability 
min(1, R/t). This procedure guarantees that the resulting 
reservoir is an unbiased sample of the observed data. The 
appeal of this approach is in its simplicity and insensitivity 
to example ordering. The drawback is that all observed 

examples, other than the R examples included in the 
reservoir, are simply ignored. 

 
Manuscript received January 31, 2007. This work was supported in part 

by the U.S. National Science Foundation under Grant IIS-0546155.  
V. Malbasa and S. Vucetic are with the Center for Information Science 

and Technology, Department of Computer and Information Sciences, 
Temple University, Philadelphia, PA 19122, USA. (S. Vucetic phone: 215-
204-5535; fax: 215-204-5082; e-mail: vucetic at ist temple edu). 

This paper proposes an enhancement to the reservoir-
based algorithm for regression that makes use of all 
observed examples to generate a more informative reservoir. 
Let us denote the j-th reservoir example with (xj, yj), where xj 
is a K-dimensional input vector, and yj is a target variable. 
The basic idea is to replace the actual target value of the j-th 
reservoir example with its conditional expectation E[y | xj]. If 
the estimate is successful, the resulting reservoir will have 
considerably reduced noise compared to the baseline 
reservoir algorithm. This will, in turn, lead to more accurate 
learning. To get the estimate for the j-th reservoir example, 
target values of all the similar observed examples are 
averaged. As examples are being observed the estimate is 
expected to approach the actual conditional expectation. 

A major contribution to this paper is in a statistically-
based approach for determining the similarity threshold. It is 
accomplished by introducing a modest memory overhead to 
the reservoir. The proposed reservoir algorithm does not 
require training of any predictor and has linear O(NMK) time 
complexity where N is the number of observed examples, M 
is reservoir size, and K is the data dimensionality. The 
experimental results indicate that the algorithm is successful 
in improving the learning accuracy. 

II. METHODOLOGY 

A. Problem Setup 
The problem of reservoir sampling can be described in the 

following way. The original data set D = {(xi, yi),  i=1…N), 
where N can be large, is observed sequentially in a single 
pass. The data should be used to decide on the content of 
reservoir that can hold a summary about R examples. Any 
observed example can be used to update the content of the 
reservoir but cannot be accessed after that. In this paper, we 
represent the j-th reservoir example as a tuple (uj, zj, aj), 
where uj is an input vector, zj is a target variable, and aj is an 
overhead vector containing ancillary information. 

It is assumed that the data generating process that 
produced the original data can be described as 

 
  yi = f(xi) + εi, εi ~ N(0, σ2) (1) 

 
where f(xi) is a regression function, and εi is an additive 
noise term generated from  Gaussian distribution with mean 
zero and standard deviation σ. In this case, the conditional 
mean E[y | xi] equals the regression function f(xi). The 
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objective of regression is to learn a prediction function from 
the data that resembles the regression function as close as 
possible. It is well known that the quality of learning 
deteriorates when target noise is large and improves with the 
size of training data. While in the reservoir sampling the data 
size is fixed, it is possible to reduce the target noise. The 
proposed algorithm accomplishes the noise reduction by 
estimating the conditional expectation. 

B. Basic Idea of the Algorithm 
Let us assume that tuple (uj, zj, aj) is introduced to the 

reservoir at time t and that its initial values are set to uj = xt, 
zj = yt (for now, we will ignore aj). The basic idea of our 
approach is to update the value of zj using examples 
observed after time t. Let us denote Ij = {i,  i ≥ t ∧ ||uj − xi|| < 
rj} as a set of indices of examples observed after time t that 
are at distance below rj from uj. We calculate zj as an 
average of target values of these examples, 
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where | I j | is the number of examples in set I j. It is evident 
that choice of distance threshold rj influences the quality of 
updates.  

C. Theoretical Considerations of the Distance Threshold  
To better understand the influence of the distance threshold, 
we should consider the expectation , which 
measures how different the estimate z
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j is from its desired 
value f(xj). By using the second-order Taylor expansion of 
the regression function near uj
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and by observing from (2) and (1) that 
 

))((
||

1
i

Ii
i

j
j

j

xf
I

z ε+∑=
∈

 (4) 

 
we can express zj − f(uj) as 
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Using this expression, and by assuming that the distribution 
of input variables near uj is uniform, it can be shown that 
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where C1 and C2 are constants and the partial derivatives are 
with respect to the k-th (or l-th) input variable. The quantity 
| I j | depends on the observed data size N, radius rj, and local 
data density around uj. By assuming that data distribution 
around uj is uniform, | I j | is proportional to  
 

| I j | ~ rj
K⋅(N−t) ⋅p(uj), (7) 

 
where p(uj) is probability density at uj and K is data 
dimensionality. 

From (6) and (7) it can be concluded that the quality of zj 
estimate increases with data size N and local data density 
and decreases with original data noise variance σ2. It can be 
noted that, as N→∞, the first two terms approach zero, while 
the third term remains constant. Additionally, the estimation 
quality is inversely proportional to gradient and Hessian of 
the regression function at uj.  

The influence of distance radius rj on the estimation is 
more complex. Increasing the distance radius increases | I j | 
and decreases the first term in (6). For K > 2 it also 
decreases the second term in (6). However, the third term in 
(6) is a bias term and it does not depend on | I j |; it rapidly 
increases for sufficiently large rj. It is evident that there is an 
optimal value of rj that provides the best tradeoff between 
these two effects.  

To derive the optimal rj, we would need to know (1) the 
regression function, (2) the noise variance, and (3) the size 
of the available data. If the whole data set could be stored in 
the memory, these quantities could be estimated in an 
iterative manner similar to locally weighted regression [5] 
approach. However, in the reservoir sampling scenario, none 
of these quantities could be estimated due to memory 
constraints. Clearly, only heuristic approaches for estimation 
of the distance threshold rj are acceptable in the streaming 
scenario. In the following section, we propose a statistically-
motivated method for determination of the distance 
threshold. 

D. Statistical Method for Calculation of Distance 
Threshold  
Initially, very little is known about the data set. As the 

data stream is being observed, the goal is to rapidly 
understand the curvature (i.e. Hessian) of the regression 
function around each reservoir point because, based on (6), 
this is the crucial parameter for distance threshold 
determination. The heuristic proposed in this paper is to set 
the threshold to the largest value at which the curvature 



 
 

 

remains negligible. A statistical test is proposed to determine 
such threshold. 

 The proposed method relies on maintaining two distance 
thresholds, rj1 and rj2, where rj2 > rj1. Initially, rj2 is set to 
some large value and rj1 to a smaller value that covers 
approximately half of the volume covered by rj2. More 
specifically, upon insertion of the j-th reservoir point from 
the stream, the tuples aj1 = (rj1, nj1, mj1, sj1) and aj2 = (rj2, nj2, 
mj2, sj2) are created. The role of the first tuple is to maintain 
information about the smaller radius (rj1), number of 
examples that fall within a sphere of radius rj1 around uj 
(nj1), the sum of target values of these examples (mj1 = ΣIj yi), 
and the sum of squares of target values (sj1 = ΣIj yi

2). Using 
mj1 and sj1 the mean and standard deviation of the target 

values can be calculated as μj1 = mj1/nj1 and σj1 = (sj1 − 
2μj1mj1 + μj1

2)/nj1. Similar information is maintained for the 
larger radius rj2, the only difference being that the statistics 
maintained are of points falling at a distance between rj1 and 
rj2 from uj. Every subsequent stream example that is within 
distance rj1 from uj is used to update tuple aj1, while if it is at 
distance between rj1 and rj2 from uj it is used to update aj2. 

After an update of either tuple a statistical test is used to 
evaluate the hypothesis that the two samples have equal 
means, μj1 = μj2. The justification for this test is that if the 
regression function around uj is approximately linear the 
means of the two samples should be equal; if a significant 
quadratic component exists in the regression function this 
will not be the case. Therefore, if the hypothesis is rejected it 
is concluded that smaller radius (rj1) is more appropriate than 
the larger one. Then, tuple aj2 is overwritten with aj1, and aj1 
is re-initialized and used to explore an even smaller radius 
choice rj1. In this paper, we used rj1 = rj2/(21/K) that allows 
inner and outer spheres to contain approximately the same 
number of examples. 

We decided to use the two-sample t-test because the 
distribution of target variables within a sufficiently small 
sphere can be approximated by Gaussian distribution. For 
this test we calculated the t-statistics with nj1+nj2−2 degrees 
of freedom as T = (μj1 − μj2)/σj, where σj is an unbiased 
estimator of the target variance derived from nj1, σj1, nj2 and 
σj2. Given the value of T, the hypothesis is rejected if its p-
value is below 0.05.  

Input: stream of N examples, reservoir of 
size R, the initial radius r0. 
 
FOR i = 1 TO R 
 // reservoir initialization 
 read (xi,yi) from stream 
 ui = x ;  zi i   

 r
i = y ;

i2 = r ; r0 i 0

 n
1 = r /(21/k);  

i1 = 1;  ni2 = 0; 
 mi1 = yi; mi2 = NaN;  
 s  = 0;  si1
END 

i2 = NaN; 

 
WHILE not end of stream 
 i = i + 1 
 read (xi,yi) from stream 
 IF random(0,1) < R/I  
  //replace a reservoir point 
   j = random(1,R) 
   uj = xi; zj = yi; 
   rj2 = r0; rj1 = r0/(2

1/k);  
   nj1 = 1; n  = 0; j2

   mj1 = y ; mi 2

  = 0; s
j  = NaN;  

 sj1 
 ELSE   

j2 = NaN; 

  FOR j = 1 TO R 
IF dist(xi,uj) < rj1     

     e aupdat
    ELSEIF dist(x ,u ) < r

j1 using (xi,yi) 
i j

     update a
j2

j2 using (xi,yi) 
    END 
    IF aj1 or aj2 were changed  
   evaluate the t-test 
     IF t-test is rejected 
      aj2 = aj1; 
      rj1 = rj2/(2

1/k); nj1 = 0;  
       = NaN ;smj1

END 
j1 = NaN 

END 

The proposed statistical method introduces a memory 
overhead to the reservoir in form of tuples aj1 and aj2. More 
specifically, the j-th reservoir example is represented as (uj, 
zj, aj1, aj2). It is worth noting that this does not necessarily 
introduce a large burden to the reservoir. First, for the radii, 
assuming that we set the initial value of the larger radius to a 
known value for all reservoir examples, we only have to 
maintain how many times we rejected the hypothesis; this 
will be sufficient to determine rj1 and rj2. The number of 
rejections is likely to be small and, therefore, easily 
compressible. Similarly, counts nj1 and nj2 are likely to be 
moderately small because after each hypothesis rejection the 
value of nj1 is set to zero. While values of μj1 and μj2 should 
be maintained with large precision, it is not the case with σj1 
and σj2. Finally, the value of zj should not be maintained 
because it can be easily obtained from aj1 and aj2. Overall, 
the resulting memory overhead is modest with an effect 
similar to adding a couple of additional attributes to the data. 

END 
END 

END 
 

Figure 1. Pseudo code for the reservoir sampling 
algorithm with adaptive estimation of conditional 
expectation 

E. The Algorithm 
A pseudo code of the proposed reservoir sampling algorithm 
is shown in Figure 1. To update aj1, mj1 is replaced with 
mj1 + yi, sj1 with sj1 + yi

2, and nj1 with nj1+1. The t-test is 
evaluated by finding the p-value of the t-statistics T = (μj1 − 
μj2)/σj with nj1+nj2−2 degrees of freedom, where σj is 
calculated as the total standard deviation of targets in aj1 and 
aj2. 



 
 

 

III. EXPERIMENTAL REUSLTS 

A. Data Description 
We generated 2-dimensional data sets to evaluate the 

proposed reservoir algorithm. Input variables x1 and x2 were 
generated as uniformly distributed in a range between −1 
and 1. The target variable y was generated using the 
following generating process: 

y = sin(20x1)/(20x1) + x2 + ε, 
where ε is Gaussian additive noise with zero mean and 
standard deviation σ. The resulting regression function, with 
σ=0, is illustrated in Figure 2.  

B. Experimental Design 
The evaluation was performed on data streams of size 

20,000 with three levels of noise, σ = 0, 0.2, 1, which 
represented noise-free, low noise, and high noise learning 
scenarios. We used two reservoir sizes, R = 100 and R = 
500. This resulted in six combinations of reservoir size and 
noise levels in training data sets. For each of the 6 
combinations we constructed 30 data sets and run the 
reservoir sampling algorithm on each of them. 

For each reservoir example, we monitored three different 
labels. The first was the conditional mean value estimated by 
our algorithm. The second was the original target value from 
the training set that is maintained by the baseline reservoir 
algorithm. The third was the noise-free target value obtained 

directly from the regression function and it served to 
establish the lower bound on achievable learning accuracy. 
Ideally, our reservoir sampling algorithm would approach 
this lower bound as the number of observed example grows. 

During each run, the content of the reservoir was 
examined at times N = 100, 200, 500, 1000, 2000, 5000, 
10000, and 20000. At every reservoir snapshot and using 
each of the three types of target variables we trained 10 
neural networks starting from different initial weights. As a 
result, for every choice of noise level σ, reservoir size R, 

 
Figure 2. Visualization of the regression function used in 
the experiments 

 

 
 
Figure 3. The graphs represent average MSE of networks trained on reservoir data (y-axis) as a function of a number of 
observed examples (x-axis). Top row corresponds to reservoir size of R=100 and the bottom row to a reservoir size of 
R=500. Noise levels in panels from left to right decrease (σ = 1, 0.2, 0). The lines correspond to networks trained on 
reservoirs generated from noisy data (‘x’), noiseless data (‘+’), and by the proposed method (‘o’). 
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d) e) f) 



 
 

 

snapshot time N, and target type, we trained 10 neural 
networks and repeated this procedure 30 times; this required 
training of 67,200 neural networks. We used feedforward 
neural networks with 5 hidden nodes and trained them 
through 200 epochs of the resilient backpropagation training 
algorithm implemented by the Matlab Neural Networks 
toolbox.  

The algorithm performance was evaluated by measuring 
the Mean Square Error (MSE) of neural networks on a 
noise-free test data set of size 20,000. We also measured the 
Reservoir Noise, defined as the average squared difference 
between noise-free targets and our conditional mean 
estimates. It is expected that this quantity decreases with N. 

C. Results 
Figures 3 and 4 illustrate how the quality of reservoirs 

improves as more and more points are read from the stream. 
The horizontal axis in both figures is in logarithmic scale 
and represents the number of examples observed from the 
stream. In Figure 3, the vertical axis is MSE accuracy. For 
very noisy data with σ = 1 (Figs 3.a, 3.d) we observe 
significant improvement in learning accuracy as more 
examples are being observed by the algorithm. Initially, the 
accuracy is equal to that achievable by the traditional 
reservoir sampling. Very rapidly, it approaches the accuracy 
achievable when learning on a noise-free data set. The 
performance with R = 100 (Fig 3.a) and R = 500 (Fig 3.d) is 
qualitatively similar. For smaller noise levels with σ = 0.2 
(Figs 3.b, 3.e) the improvement in accuracy is evident with 
increase in the number of observed examples, and again, it 
approaches the noise-free scenario rather quickly and 
becomes superior to the traditional reservoir approach. In 
Figure 4 we show the Reservoir Noise levels and for both σ 
= 1 (Fig 4.a) and σ = 0.2 (Fig 4.b) and observe a strong 
decrease in noise levels that approaches zero in both cases.  

The behavior for noise-free scenario with σ = 0 (Figs 3.c, 
3.f, and 4.c) is expected. The averaging within a small radius 
introduces noise to the original noise-free target values. 
However, the algorithm is quickly realizing that the original 
data has low noise and is rapidly reducing the distance 
threshold. As a result, as the number of observed examples 

becomes large, the algorithm is approaching the 
performance of the noise-free scenario. This result shows 
that the proposed algorithm is robust even in noise-free 
scenarios. 

IV. CONCLUSION 
We proposed a reservoir-based algorithm that achieves 

accurate estimation of conditional expectation for each 
reservoir example. The reduction of target noise of reservoir 
examples leads to more accurate learning from them. The 
proposed statistical method for determining distance 
threshold for the estimation of conditional expectation is 
robust in both low and high noise scenarios. The algorithm is 
computationally efficient because it is proportional with the 
size of the reservoir and the number of observed examples. It 
introduces a slight memory overhead with each reservoir 
example due to the need to store ancillary information for 
the conditional expectation estimation.  

 

 
 
Figure 4. The graphs represent the Reservoir Noise (y-axis) as a function of the number of observed examples (the x-
axis) for reservoir size R = 100 and with noise levels in panels from left to right decreasing, having values σ = 1, 0.2, 0. 
The lines correspond to Reservoir Noise of reservoirs generated from noisy data (‘x’) and by the proposed method (‘o’). 
 

a) b) c) 

While the experimental results on low-dimensional data 
are promising, the algorithm in its current form is likely to 
be less successful for the high dimensional data due to the 
curse of dimensionality. Future work is needed to design an 
algorithm suitable for high dimensional data. Such an 
algorithm would most likely have to rely on the sensitivity 
analysis of the regression function to the input variables. An 
interesting question would be how to perform the sensitivity 
analysis in the streaming data scenario. 
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