

A Reservoir Sampling Algorithm with Adaptive Estimation of
Conditional Expectation

Vuk Malbasa and Slobodan Vucetic

Abstract— Resource-constrained data mining introduces
many constraints when learning from large datasets. It is often
not practical or possible to keep the entire data set in main
memory and often the data could be observed in a single run in
the order in which they are presented. Traditional reservoir-
based approaches perform well in this situation. One drawback
of these approaches is that the examples not included in the
final reservoir are often ignored. To remedy this situation we
propose a modification to the baseline reservoir algorithm.
Instead of keeping the actual target values of reservoir
examples, an estimate of their conditional expectation is kept
and updated online as new data are observed from the stream.
The estimate is obtained by averaging target values of the
similar examples. The proposed algorithm uses a paired t-test
to determine the similarity threshold. Thorough evaluation on
generated two dimensional data shows that the proposed
algorithm is producing reservoirs with considerably reduced
target noise. This property allows training of significantly
improved prediction models as compared with the baseline
reservoir-based approach.

I. INTRODUCTION
N many real-life domains the amount of available data
greatly exceeds the computational and storage capacity of

devices used for learning from it. This challenge is often
complicated by having data access only through a single
sequential pass through the data. There are two major
approaches in addressing this problem. The first is online
learning that considers algorithms that are able to improve
their quality as new examples arrive [1]. While some
reasonably efficient algorithms exist [2, 3], they tend to be
sensitive to the order in which examples are presented and
there are often no guarantees that the learned model
approaches the accuracy of the batch-mode alternatives [3].

The second, reservoir-based, approach relies on
maintaining a representative sample of the observed data in
memory and on applying standard batch-mode learning
algorithms on the reservoir data. Assuming a reservoir with
capacity to hold R examples, the simplest procedure [4] is to
replace the t-th observed example from a stream with a
randomly chosen reservoir example with probability
min(1, R/t). This procedure guarantees that the resulting
reservoir is an unbiased sample of the observed data. The
appeal of this approach is in its simplicity and insensitivity
to example ordering. The drawback is that all observed

examples, other than the R examples included in the
reservoir, are simply ignored.

Manuscript received January 31, 2007. This work was supported in part

by the U.S. National Science Foundation under Grant IIS-0546155.
V. Malbasa and S. Vucetic are with the Center for Information Science

and Technology, Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA. (S. Vucetic phone: 215-
204-5535; fax: 215-204-5082; e-mail: vucetic at ist temple edu).

This paper proposes an enhancement to the reservoir-
based algorithm for regression that makes use of all
observed examples to generate a more informative reservoir.
Let us denote the j-th reservoir example with (xj, yj), where xj
is a K-dimensional input vector, and yj is a target variable.
The basic idea is to replace the actual target value of the j-th
reservoir example with its conditional expectation E[y | xj]. If
the estimate is successful, the resulting reservoir will have
considerably reduced noise compared to the baseline
reservoir algorithm. This will, in turn, lead to more accurate
learning. To get the estimate for the j-th reservoir example,
target values of all the similar observed examples are
averaged. As examples are being observed the estimate is
expected to approach the actual conditional expectation.

A major contribution to this paper is in a statistically-
based approach for determining the similarity threshold. It is
accomplished by introducing a modest memory overhead to
the reservoir. The proposed reservoir algorithm does not
require training of any predictor and has linear O(NMK) time
complexity where N is the number of observed examples, M
is reservoir size, and K is the data dimensionality. The
experimental results indicate that the algorithm is successful
in improving the learning accuracy.

II. METHODOLOGY

A. Problem Setup
The problem of reservoir sampling can be described in the

following way. The original data set D = {(xi, yi), i=1…N),
where N can be large, is observed sequentially in a single
pass. The data should be used to decide on the content of
reservoir that can hold a summary about R examples. Any
observed example can be used to update the content of the
reservoir but cannot be accessed after that. In this paper, we
represent the j-th reservoir example as a tuple (uj, zj, aj),
where uj is an input vector, zj is a target variable, and aj is an
overhead vector containing ancillary information.

It is assumed that the data generating process that
produced the original data can be described as

 yi = f(xi) + εi, εi ~ N(0, σ2) (1)

where f(xi) is a regression function, and εi is an additive
noise term generated from Gaussian distribution with mean
zero and standard deviation σ. In this case, the conditional
mean E[y | xi] equals the regression function f(xi). The

I

objective of regression is to learn a prediction function from
the data that resembles the regression function as close as
possible. It is well known that the quality of learning
deteriorates when target noise is large and improves with the
size of training data. While in the reservoir sampling the data
size is fixed, it is possible to reduce the target noise. The
proposed algorithm accomplishes the noise reduction by
estimating the conditional expectation.

B. Basic Idea of the Algorithm
Let us assume that tuple (uj, zj, aj) is introduced to the

reservoir at time t and that its initial values are set to uj = xt,
zj = yt (for now, we will ignore aj). The basic idea of our
approach is to update the value of zj using examples
observed after time t. Let us denote Ij = {i, i ≥ t ∧ ||uj − xi|| <
rj} as a set of indices of examples observed after time t that
are at distance below rj from uj. We calculate zj as an
average of target values of these examples,

∑=
∈ jIi

i
j

j y
I

z
||

1 . (2)

where | I j | is the number of examples in set I j. It is evident
that choice of distance threshold rj influences the quality of
updates.

C. Theoretical Considerations of the Distance Threshold
To better understand the influence of the distance threshold,
we should consider the expectation , which
measures how different the estimate z

]))([(2
jj ufzE −

j is from its desired
value f(xj). By using the second-order Taylor expansion of
the regression function near uj

))(()(
2
1)()(

)()(

2
jjjjj

j

uxufuxufux

ufxf

−∇′−+∇′−

+=

(3)

and by observing from (2) and (1) that

))((
||

1
i

Ii
i

j
j

j

xf
I

z ε+∑=
∈

 (4)

we can express zj − f(uj) as

}.))(()(

)(){(
||

1)(

2
ijijji

Ii
jji

j
jj

uxufux

ufux
I

ufz
j

ε+−∇′−

∑ +∇′−=−
∈

(5)

Using this expression, and by assuming that the distribution
of input variables near uj is uniform, it can be shown that

 can be approximated as]))([(2
jj ufzE −

,
)()()(

2

)(
||||

]))([(

2

2

2

222
4

2

22
1

2
2

∑ ∑

∑

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∂

∂

∂

∂
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+=−

k l
l

j

k

j

lk

j
j

k
k

j

j

j

j
jj

x

uf

x

uf
xx
uf

rC

x
uf

I
rC

I
ufzE σ

(6)

where C1 and C2 are constants and the partial derivatives are
with respect to the k-th (or l-th) input variable. The quantity
| I j | depends on the observed data size N, radius rj, and local
data density around uj. By assuming that data distribution
around uj is uniform, | I j | is proportional to

| I j | ~ rj
K⋅(N−t) ⋅p(uj), (7)

where p(uj) is probability density at uj and K is data
dimensionality.

From (6) and (7) it can be concluded that the quality of zj
estimate increases with data size N and local data density
and decreases with original data noise variance σ2. It can be
noted that, as N→∞, the first two terms approach zero, while
the third term remains constant. Additionally, the estimation
quality is inversely proportional to gradient and Hessian of
the regression function at uj.

The influence of distance radius rj on the estimation is
more complex. Increasing the distance radius increases | I j |
and decreases the first term in (6). For K > 2 it also
decreases the second term in (6). However, the third term in
(6) is a bias term and it does not depend on | I j |; it rapidly
increases for sufficiently large rj. It is evident that there is an
optimal value of rj that provides the best tradeoff between
these two effects.

To derive the optimal rj, we would need to know (1) the
regression function, (2) the noise variance, and (3) the size
of the available data. If the whole data set could be stored in
the memory, these quantities could be estimated in an
iterative manner similar to locally weighted regression [5]
approach. However, in the reservoir sampling scenario, none
of these quantities could be estimated due to memory
constraints. Clearly, only heuristic approaches for estimation
of the distance threshold rj are acceptable in the streaming
scenario. In the following section, we propose a statistically-
motivated method for determination of the distance
threshold.

D. Statistical Method for Calculation of Distance
Threshold
Initially, very little is known about the data set. As the

data stream is being observed, the goal is to rapidly
understand the curvature (i.e. Hessian) of the regression
function around each reservoir point because, based on (6),
this is the crucial parameter for distance threshold
determination. The heuristic proposed in this paper is to set
the threshold to the largest value at which the curvature

remains negligible. A statistical test is proposed to determine
such threshold.

 The proposed method relies on maintaining two distance
thresholds, rj1 and rj2, where rj2 > rj1. Initially, rj2 is set to
some large value and rj1 to a smaller value that covers
approximately half of the volume covered by rj2. More
specifically, upon insertion of the j-th reservoir point from
the stream, the tuples aj1 = (rj1, nj1, mj1, sj1) and aj2 = (rj2, nj2,
mj2, sj2) are created. The role of the first tuple is to maintain
information about the smaller radius (rj1), number of
examples that fall within a sphere of radius rj1 around uj
(nj1), the sum of target values of these examples (mj1 = ΣIj yi),
and the sum of squares of target values (sj1 = ΣIj yi

2). Using
mj1 and sj1 the mean and standard deviation of the target

values can be calculated as μj1 = mj1/nj1 and σj1 = (sj1 −
2μj1mj1 + μj1

2)/nj1. Similar information is maintained for the
larger radius rj2, the only difference being that the statistics
maintained are of points falling at a distance between rj1 and
rj2 from uj. Every subsequent stream example that is within
distance rj1 from uj is used to update tuple aj1, while if it is at
distance between rj1 and rj2 from uj it is used to update aj2.

After an update of either tuple a statistical test is used to
evaluate the hypothesis that the two samples have equal
means, μj1 = μj2. The justification for this test is that if the
regression function around uj is approximately linear the
means of the two samples should be equal; if a significant
quadratic component exists in the regression function this
will not be the case. Therefore, if the hypothesis is rejected it
is concluded that smaller radius (rj1) is more appropriate than
the larger one. Then, tuple aj2 is overwritten with aj1, and aj1
is re-initialized and used to explore an even smaller radius
choice rj1. In this paper, we used rj1 = rj2/(21/K) that allows
inner and outer spheres to contain approximately the same
number of examples.

We decided to use the two-sample t-test because the
distribution of target variables within a sufficiently small
sphere can be approximated by Gaussian distribution. For
this test we calculated the t-statistics with nj1+nj2−2 degrees
of freedom as T = (μj1 − μj2)/σj, where σj is an unbiased
estimator of the target variance derived from nj1, σj1, nj2 and
σj2. Given the value of T, the hypothesis is rejected if its p-
value is below 0.05.

Input: stream of N examples, reservoir of
size R, the initial radius r0.

FOR i = 1 TO R
 // reservoir initialization
 read (xi,yi) from stream
 ui = x ; zi i

 r
i = y ;

i2 = r ; r0 i 0

 n
1 = r /(21/k);

i1 = 1; ni2 = 0;
 mi1 = yi; mi2 = NaN;
 s = 0; si1
END

i2 = NaN;

WHILE not end of stream
 i = i + 1
 read (xi,yi) from stream
 IF random(0,1) < R/I
 //replace a reservoir point
 j = random(1,R)
 uj = xi; zj = yi;
 rj2 = r0; rj1 = r0/(2

1/k);
 nj1 = 1; n = 0; j2

 mj1 = y ; mi 2

 = 0; s
j = NaN;

 sj1
 ELSE

j2 = NaN;

 FOR j = 1 TO R
IF dist(xi,uj) < rj1

 e aupdat
 ELSEIF dist(x ,u) < r

j1 using (xi,yi)
i j

 update a
j2

j2 using (xi,yi)
 END
 IF aj1 or aj2 were changed
 evaluate the t-test
 IF t-test is rejected
 aj2 = aj1;
 rj1 = rj2/(2

1/k); nj1 = 0;
 = NaN ;smj1

END
j1 = NaN

END

The proposed statistical method introduces a memory
overhead to the reservoir in form of tuples aj1 and aj2. More
specifically, the j-th reservoir example is represented as (uj,
zj, aj1, aj2). It is worth noting that this does not necessarily
introduce a large burden to the reservoir. First, for the radii,
assuming that we set the initial value of the larger radius to a
known value for all reservoir examples, we only have to
maintain how many times we rejected the hypothesis; this
will be sufficient to determine rj1 and rj2. The number of
rejections is likely to be small and, therefore, easily
compressible. Similarly, counts nj1 and nj2 are likely to be
moderately small because after each hypothesis rejection the
value of nj1 is set to zero. While values of μj1 and μj2 should
be maintained with large precision, it is not the case with σj1
and σj2. Finally, the value of zj should not be maintained
because it can be easily obtained from aj1 and aj2. Overall,
the resulting memory overhead is modest with an effect
similar to adding a couple of additional attributes to the data.

END
END

END

Figure 1. Pseudo code for the reservoir sampling
algorithm with adaptive estimation of conditional
expectation

E. The Algorithm
A pseudo code of the proposed reservoir sampling algorithm
is shown in Figure 1. To update aj1, mj1 is replaced with
mj1 + yi, sj1 with sj1 + yi

2, and nj1 with nj1+1. The t-test is
evaluated by finding the p-value of the t-statistics T = (μj1 −
μj2)/σj with nj1+nj2−2 degrees of freedom, where σj is
calculated as the total standard deviation of targets in aj1 and
aj2.

III. EXPERIMENTAL REUSLTS

A. Data Description
We generated 2-dimensional data sets to evaluate the

proposed reservoir algorithm. Input variables x1 and x2 were
generated as uniformly distributed in a range between −1
and 1. The target variable y was generated using the
following generating process:

y = sin(20x1)/(20x1) + x2 + ε,
where ε is Gaussian additive noise with zero mean and
standard deviation σ. The resulting regression function, with
σ=0, is illustrated in Figure 2.

B. Experimental Design
The evaluation was performed on data streams of size

20,000 with three levels of noise, σ = 0, 0.2, 1, which
represented noise-free, low noise, and high noise learning
scenarios. We used two reservoir sizes, R = 100 and R =
500. This resulted in six combinations of reservoir size and
noise levels in training data sets. For each of the 6
combinations we constructed 30 data sets and run the
reservoir sampling algorithm on each of them.

For each reservoir example, we monitored three different
labels. The first was the conditional mean value estimated by
our algorithm. The second was the original target value from
the training set that is maintained by the baseline reservoir
algorithm. The third was the noise-free target value obtained

directly from the regression function and it served to
establish the lower bound on achievable learning accuracy.
Ideally, our reservoir sampling algorithm would approach
this lower bound as the number of observed example grows.

During each run, the content of the reservoir was
examined at times N = 100, 200, 500, 1000, 2000, 5000,
10000, and 20000. At every reservoir snapshot and using
each of the three types of target variables we trained 10
neural networks starting from different initial weights. As a
result, for every choice of noise level σ, reservoir size R,

Figure 2. Visualization of the regression function used in
the experiments

Figure 3. The graphs represent average MSE of networks trained on reservoir data (y-axis) as a function of a number of
observed examples (x-axis). Top row corresponds to reservoir size of R=100 and the bottom row to a reservoir size of
R=500. Noise levels in panels from left to right decrease (σ = 1, 0.2, 0). The lines correspond to networks trained on
reservoirs generated from noisy data (‘x’), noiseless data (‘+’), and by the proposed method (‘o’).

a) b) c)

d) e) f)

snapshot time N, and target type, we trained 10 neural
networks and repeated this procedure 30 times; this required
training of 67,200 neural networks. We used feedforward
neural networks with 5 hidden nodes and trained them
through 200 epochs of the resilient backpropagation training
algorithm implemented by the Matlab Neural Networks
toolbox.

The algorithm performance was evaluated by measuring
the Mean Square Error (MSE) of neural networks on a
noise-free test data set of size 20,000. We also measured the
Reservoir Noise, defined as the average squared difference
between noise-free targets and our conditional mean
estimates. It is expected that this quantity decreases with N.

C. Results
Figures 3 and 4 illustrate how the quality of reservoirs

improves as more and more points are read from the stream.
The horizontal axis in both figures is in logarithmic scale
and represents the number of examples observed from the
stream. In Figure 3, the vertical axis is MSE accuracy. For
very noisy data with σ = 1 (Figs 3.a, 3.d) we observe
significant improvement in learning accuracy as more
examples are being observed by the algorithm. Initially, the
accuracy is equal to that achievable by the traditional
reservoir sampling. Very rapidly, it approaches the accuracy
achievable when learning on a noise-free data set. The
performance with R = 100 (Fig 3.a) and R = 500 (Fig 3.d) is
qualitatively similar. For smaller noise levels with σ = 0.2
(Figs 3.b, 3.e) the improvement in accuracy is evident with
increase in the number of observed examples, and again, it
approaches the noise-free scenario rather quickly and
becomes superior to the traditional reservoir approach. In
Figure 4 we show the Reservoir Noise levels and for both σ
= 1 (Fig 4.a) and σ = 0.2 (Fig 4.b) and observe a strong
decrease in noise levels that approaches zero in both cases.

The behavior for noise-free scenario with σ = 0 (Figs 3.c,
3.f, and 4.c) is expected. The averaging within a small radius
introduces noise to the original noise-free target values.
However, the algorithm is quickly realizing that the original
data has low noise and is rapidly reducing the distance
threshold. As a result, as the number of observed examples

becomes large, the algorithm is approaching the
performance of the noise-free scenario. This result shows
that the proposed algorithm is robust even in noise-free
scenarios.

IV. CONCLUSION
We proposed a reservoir-based algorithm that achieves

accurate estimation of conditional expectation for each
reservoir example. The reduction of target noise of reservoir
examples leads to more accurate learning from them. The
proposed statistical method for determining distance
threshold for the estimation of conditional expectation is
robust in both low and high noise scenarios. The algorithm is
computationally efficient because it is proportional with the
size of the reservoir and the number of observed examples. It
introduces a slight memory overhead with each reservoir
example due to the need to store ancillary information for
the conditional expectation estimation.

Figure 4. The graphs represent the Reservoir Noise (y-axis) as a function of the number of observed examples (the x-
axis) for reservoir size R = 100 and with noise levels in panels from left to right decreasing, having values σ = 1, 0.2, 0.
The lines correspond to Reservoir Noise of reservoirs generated from noisy data (‘x’) and by the proposed method (‘o’).

a) b) c)

While the experimental results on low-dimensional data
are promising, the algorithm in its current form is likely to
be less successful for the high dimensional data due to the
curse of dimensionality. Future work is needed to design an
algorithm suitable for high dimensional data. Such an
algorithm would most likely have to rely on the sensitivity
analysis of the regression function to the input variables. An
interesting question would be how to perform the sensitivity
analysis in the streaming data scenario.

REFERENCES
[1] R.S. Sutton, S.D. Whitehead, “Online learning with random

representations,” International Conference on Machine Learning,
314-321, 1993.

[2] G. Cauwenberghs, T. Poggio, “Incremental and decremental support
vector machine learning,” Neural Information Processing Systems,
409-415 2000.

[3] P. Domingos, G. Hulten, “Mining high-speed data streams,” ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 71-80, 2000.

[4] J.S. Vitter, “Random sampling with a reservoir,” ACM Transactions
on Mathematical Software, 11(1), 37-57, 1985.

[5] S. Schaal, C. Atkeson, “Robot juggling: An implementation of
memory-based learning,” Control Systems, 14, 57-71, 1994.

	I. INTRODUCTION
	II. Methodology
	A. Problem Setup
	B. Basic Idea of the Algorithm
	C. Theoretical Considerations of the Distance Threshold
	D. Statistical Method for Calculation of Distance Threshold
	E. The Algorithm
	Experimental Reuslts
	A. Data Description
	B. Experimental Design
	C. Results

	IV. Conclusion

