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ABSTRACT 
Spatial analysis of disease risk, or disease mapping, typically 
relies on information about the residence and health status of 
individuals from population under study. However, residence 
information has its limitations because people are exposed to 
numerous disease risks as they spend time outside of their 
residences. Thanks to the wide-spread use of mobile phones and 
GPS-enabled devices, it is becoming possible to obtain a detailed 
record about the movement of human populations. Availability of 
movement information opens up an opportunity to improve the 
accuracy of disease mapping. Starting with an assumption that an 
individual’s disease risk is a weighted average of risks at the 
locations which were visited, we show that disease mapping can 
be accomplished by spatially regularized logistic regression. Due 
to the inherent sparsity of movement data, the proposed approach 
can be applied to large populations and over large spatial grids. In 
our experiments, we were able to map disease for a simulated 
population with 1.6 million people and a spatial grid with 65 
thousand locations in several minutes. The results indicate that 
movement information can improve the accuracy of disease 
mapping as compared to residential data only. We also studied a 
privacy-preserving scenario in which only the aggregate statistics 
are available about the movement of the overall population, while 
detailed movement information is available only for individuals 
with disease. The results indicate that the accuracy of disease 
mapping remains satisfactory when learning from movement data 
sanitized in this way. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Apps—Data Mining 

General Terms 
Algorithms, Performance, Experimentation, Human Factors. 

Keywords 
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1. INTRODUCTION 
Disease mapping aims to understand the geographic distribution 
of a disease by studying the correlation between the occurrence of 
the disease and the location of individuals from the affected 
population. It is an indispensable tool in modern epidemiology 
because location serves as a proxy for detailed lifestyle, 
environmental, and genetic factors that may be unobserved and 
unavailable for study. An understanding of the areas with 
increased disease risk, and the relative ranking of areas according 
to disease risk, can assist in hypothesis generation about disease 
etiology and allocation of public health resources.  

The origins of disease mapping can be traced back to Finke’s 
1792 map of indigenous diseases [1] and Snow’s cholera maps in 
the 1850s [2]. In 1854, one of Snow’s maps revealed a spatial 
cluster of cholera cases centered around London’s Broad Street 
pump well, and closing the well resulted in a reduced number of 
new cases. Further analysis led to the wider acceptance of the 
germ theory of disease at the end of the 19th century. In Snow’s 
study, geographical information in the form of residential data 
was used as a surrogate for information about the amount of 
exposure to contaminated well water. Since then, and especially 
during the last couple of decades, disease mapping has become a 
mature technology that has found numerous applications beyond 
epidemiology, in areas such as psychology, brain imaging, 
criminology, transportation, forestry, ecology, astronomy, and 
archeology [3].  

There are two major methods for disease mapping. The first, 
called disease clustering, attempts to find spatial regions whose 
population has significantly higher disease prevalence than the 
background population. This widely used approach stems from 
Kulldorff's work on the spatial scan statistics [4], and it has also 
received attention in the data mining community [5,6]. The 
second, more general, method for disease mapping aims to 
determine the actual spatial map of disease risk. To exploit spatial 
correlation in disease risk, this approach typically relies on 
computationally expensive Bayesian hierarchical modeling [7,8]. 
While the output of disease clustering and disease risk estimation 
differs, both methods require the same input – information about 
location and disease status of individuals from the population 
under study.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
KDD’11, August 21–24, 2011, San Diego, California, USA. 
Copyright 2011 ACM 978-1-4503-0813-7/11/08…$10.00. 
 

The standard approach in disease mapping is to use the place of 
residence as location information. In this case, individuals are 
modeled as being affected exclusively by the underlying risk at 
the place of their current residence. However, due to the ever 
increasing mobility of modern humans, it is not sufficient to 
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analyze residential data. The dependence of disease risk on 
movement and exposures outside the primary residence is obvious 
in infectious diseases; consider a case of food poisoning from a 
poorly sanitized restaurant in a business district. Similarly, in case 
of environmental diseases (e.g., cancer, asthma), the disease risk 
can be a cumulative effect of lifelong exposure to environmental 
factors (e.g. pesticides, air quality, groundwater pollution) that 
change over space and time. While residential information is 
useful as a proxy for an unmeasured aggregate of lifestyle, 
environmental, and genetic risk factors, it is evident that 
movement information can provide a more detailed description of 
these factors and, in many cases, is necessary for successful 
disease mapping. 

Interestingly, there has been limited research on the problem of 
disease mapping for moving populations. For example, past 
residences were considered in [9] in order to estimate exposure to 
chlorination byproducts and their relation to the individual’s risk 
of colon and rectal cancers. In [10], exposure to air pollution was 
recorded by personal measurement devices and used to provide 
spatial estimates of pollution.  In [11], a spatial scan statistic was 
applied to a data set of individuals with amyotrophic lateral 
sclerosis using both place of their current residence and place of 
birth and it was determined that the place of birth was a better 
predictor of disease occurrence than the current residence. In [12], 
a spatio-temporal data mining approach was proposed to analyze 
residential history information and understand induction and 
latency periods of individuals with environmental diseases such 
as cancer. 

Historically, a major obstacle towards using movement 
information in disease mapping was the difficulty in collecting 
sufficiently detailed movement information about individuals 
from a population. Recent technological advances, however, 
make it possible to obtain low-cost and rich information about the 
movement of people, animals, and goods. This provides an 
opportunity to improve disease monitoring and to advance 
knowledge about both infectious and non-infectious diseases. 
There are two remaining obstacles in achieving this promise: one 
is the development of novel methods for analysis of movement 
data, and the other is dealing with privacy issues that could 
severely restrict access to such data. This paper is a step toward 
addressing both of these issues.  

In this paper we assume that the individual’s disease risk is a 
weighted average of the risks accumulated at visited locations. 
Given the information about movement of the individuals and 
their health status, our goal is to uncover the spatial distribution of 
disease risk within a region of interest. We intend to show that 
disease mapping can be interpreted as logistic regression from 
high-dimensional data, where the number of dimensions equals 
the number of locations. This is an interesting problem because it 
is characterized by significant sparsity in attributes, but not in the 
parameters. In contrast, many high-dimensional classification 
problems, such as text mining and image analysis, are 
characterized by sparsity of the parameter space. Regardless of 
this challenge, we demonstrate that disease mapping can be 
performed efficiently by utilizing the tools of sparse algebra. 
Spatial regularization, which exploits the spatial correlation in 
disease risk, is a critical component for the success of disease 
mapping over large spatial grids. The result is a spatially-
regularized logistic regression approach that can be used to 
perform disease mapping over large or high-resolution spatial 

regions with thousands of locations from moving populations 
larger than one million in a matter of minutes. 

Privacy is an important aspect of every epidemiological study on 
human populations. In the case of traditional disease mapping that 
uses residential information, data are typically aggregated over 
small areas such that each area has at least some minimum 
number of residents. Such approaches provide privacy with 
respect to the popular k-anonymity measure [13]. For movement 
data, the situation dramatically changes; even for a very coarse 
spatial aggregation, there might be a significant probability that a 
large number of individuals have unique moving trajectories 
[14,15]. Moreover, spatial resolution that is too coarse could 
negatively influence or completely prohibit accurate disease 
mapping.  

As a step towards addressing the privacy preservation problem in 
disease mapping on a moving population, we propose a setup that 
we believe might be acceptable in practice. We assume that exact 
movement trajectories of healthy individuals are not known, but 
that the aggregate statistics about total time spent by people at 
different locations are available. Such statistics are being 
regularly collected by cell phone companies and shared with their 
business partners, and they are considered to be sufficiently 
sanitized to preserve privacy. On the other hand, we assume that 
precise movement information is available for individuals with 
disease under a trusted-server setup. In practice, this setup can be 
achieved by software installed on mobile devices that collects 
movement information and stores it in an encrypted format on the 
device. Upon request, the individuals with a disease might be 
willing to share their movement information with the trusted 
server maintained by a public health department, under the 
confidentiality agreement. We will explore experimentally if 
accurate disease mapping could be achieved under this privacy 
preserving setup using the modified spatially regularized logistic 
regression. 

2. METHODOLOGY 
2.1 Problem Statement 
Let us assume we are given a spatial region inhabited by N 
individuals and consisting of L areas, or locations. For each 
individual, we have information about the time spent at each of 
the L locations. In particular, we summarize the movement of the 
i-th individual with vector xi = [xi1, xi2 … xiL], where xij is the 
fraction of time the i-th individual spent at the j-th location 
( j xij = 1). Typically, it is reasonable to assume that an average 
person visits only a few of the L locations, thus allowing a sparse 
representation of movement data. Let us denote the disease status 
of the i-th individual as yi = 1 if he or she is sick, and yi = 0 
otherwise. Let us also assume that the underlying disease risk can 
be represented with a vector r = [r1, r2 … rL], where rj is the 
measure of risk at the j-th location. It is reasonable to assume that 
risks are spatially correlated, such that neighboring locations are 
likely to have a similar risk. For simplicity, in this study we 
restrict our interest to the static scenario where location risk does 
not change over time. We also assume that the probability that the 
i-th individual has a disease is expressed through the weighted 
average of risks at visited locations, 

,
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where  is the logistic sigmoid function. Given a data set D = 
{(xi , yi), i = 1, …, N} of N individuals from the population, the 
objective is to estimate the underlying disease risk vector r.  

2.2 ML and MAP Approaches for Disease 
Mapping 
The Maximum Likelihood (ML) approach for disease mapping 
consists of maximizing the log-likelihood of training data, 
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This approach leads to logistic regression. The problem with 
using logistic regression for disease mapping is that the 
dimensionality of the risk vector r can be very large. For 
example, in our experiments we used a regular spatial grid of size 
256 256, which resulted in L = 65,536 locations. In this case, the 
risk estimates based on ML can be highly unreliable.  

To address this issue, we consider a maximum a posteriori (MAP) 
approach that allows us to exploit spatial correlation in disease 
risk, under the reasonable assumption that disease risk is a 
relatively smooth spatial process. The MAP approach is based on 
maximizing the posterior probability p(r | D), which can be 
expressed using Bayes Theorem as p(r | D) = p(D | r) p(r )  / p(D). 
By observing that p(D) is constant with respect to r, the MAP 
estimate of risk can be expressed as  

),()(maxarg)()|(maxargMAP rrrrr
rr

PD llPDP  (3) 

where  is the logarithm of the prior probability of 
risk. To exploit spatial correlation, we use the Gaussian prior, r ~ 
N(r|μ,A 1), where μ is a mean vector, typically set to zero, and A 
is a precision matrix encoding the neighborhood structure. 
Typically, A is sparse and its nondiagonal (k,l)-th element Akl is 
nonzero only if locations k and l are spatial neighbors. In addition, 
the diagonal elements of A are chosen such that each row sums to 
zero. If this is the case, the prior is called the Gaussian Markov 
Random Field (GMRF) and  can be conveniently 
represented as 
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where l ~ k denotes that l and k are spatial neighbors. Using  
has the effect of spatial regularization which smoothes the 
estimated risk, because it encourages neighboring locations to 
have similar risks. The MAP approach thus leads to spatially-
regularized logistic regression. 

)(rPl

There are two important questions when implementing this 
approach: (1) how to choose A and (2) how to calculate rMAP 
efficiently. Choosing A consists of defining the spatial 
neighborhood N(l) of the l-th location and selecting values Akl for 
k  N(l). As for the neighborhood, it typically contains only the 
nearest neighbors (when locations are on a regular grid, these 
could be the 4 or 8 nearest neighbors), although larger 

neighborhoods are also possible. A standard way to assign Akl is 
to set all nonzero non-diagonal elements to the same value . In 
this case,  obtains the familiar form  )(rPl

.
2
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~

2
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lkP rrl r  (4) 

As an alternative, if there is strong prior knowledge about spatial 
covariance  (= A 1) of disease risk, one could fit GMRF A from 

 using recently proposed techniques in [16]. However, we did 
not pursue this direction further in this study because our 
preliminary results showed that GMRF fitting is very sensitive 
and that it does not lead to noticeable improvements in disease 
mapping accuracy.  

Using representation (4),  has a single hyperparameter  
that should be determined from training data. In this study, we use 
a cross-validation (CV) approach to find the best value of 
hyperparameter  among a range of possible values. In this case, 
the training data set is split into several subsets and every subset 
is used in turn as validation data set to check the accuracy of 
disease mapping trained on the remaining data for a given choice 
of . We should note that a popular alternative to CV is empirical 
Bayes, which consists of finding  as the value that maximizes 
the likelihood P(D | ). A very nice overview of this approach that 
corresponds to regularized logistic regression is given in [17]. 
However, we did not pursue this approach in our study because 
the preliminary results suggest that CV is a more robust approach.  

)(rPl

Let us now discuss how to obtain rMAP. The optimization problem 
(3) is concave and it can be solved using standard tools of convex 
optimization. In this study we use the Newton-Raphson algorithm 
due to its ease of implementation and impressive convergence on 
high dimensional problems. At each iteration of the algorithm, 
given the current estimate of risk vector rold, it calculates the new 
estimate rnew as  

gHrr 1oldnew  

where the step size parameter  is often set to 1, g is the gradient 
and H is the Hessian of the MAP function from (3). Specifically, 

 and , where X = [x1 x2 … 
xN]T, y = [y1 y2 … yN]T,  and R is a 
diagonal matrix with elements . We should 
observe that although the size L L of Hessian H can be extremely 
large, if H is sparse H  can be evaluated efficiently by 
solving a sparse system of linear equations 

AryyXg )ˆ(T ARXXH T

(...)([ˆ 1
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gHz . Since the 
precision matrix A is by design very sparse (it only has few 
nonzero diagonals encoding the neighborhood) and R is a 
diagonal matrix, the sparsity of H depends only on the sparsity of 

. The (k,l)-th element of  is nonzero only if there is a 
person from the population that visited both the k-th and the l-th 
locations. When working with high resolution spatial grids, most 
elements of  remain zero, which leads to the sparsity of H.  

XXT

XXT

XXT

2.3 Special Case: Disease Mapping on Static 
Populations 
Let us now consider the special case in which the population is 
static. We show that logistic regression reduces to the standard 
disease mapping approach. In the case of a static population, each 
individual from the population is assumed to be affected by the 
underlying risk of only one location, his or her residence. Let us 
denote h(i) as the location of the home of the i-th person. In the 
static scenario, all elements of the movement vector xi are zero 
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except xi,h(i) which equals 1. The disease risk of the i-th person 
equals ph(i) = (rh(i)) and the log-likelihood (2) can be expressed as 
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where pl = (rl), and N1l and N0l are the numbers of sick and 
healthy people living at the l-th location. The ML estimation of pl 
is obtained from (5) in closed form as the simple ratio 
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which is the ML estimate for the binary distribution. As a 
consequence, in static populations, counts of the numbers of 
healthy and sick individuals at a given location are the sufficient 
statistics for that location. In practice, the ML solution can 
produce severe overfitting and the MAP approach using the 
spatial smoothing prior described in Section 2.2 is preferable. 
Calculating the MAP estimates of risk can be very efficient, as 
can be seen by observing that  becomes a diagonal matrix, 
which results in an extremely sparse Hessian . 

XXT
ARXXH T

2.4 Disease Mapping with Privacy 
While movement data could certainly increase the quality of 
disease mapping, privacy concerns are the biggest limiting factor 
to applying the proposed approach in practice. To address the 
privacy issue, we will consider a specific privacy scenario that we 
believe can be practically acceptable. In this scenario, information 
about movement of the overall population is privacy protected, 
while the movement information of individuals with disease is 
available at the trusted server which performs the disease 
mapping. Our objective is to study how to learn from such data, 
and to determine what the quality of the resulting disease 
mapping is.  

As a first step, let us rewrite the log-likelihood from (2) as  
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where the first term l1(r) is the log likelihood of N1 individuals 
with disease and the second term l0(r) is log-likelihood of N0 
healthy individuals.  

In our privacy-preserving scenario, instead of collecting detailed 
movement information about healthy individuals, we collect 
information about the fraction of time tl the whole population 
spends at location l, l = 1, …, L, and create a vector t = [t1 … tL]. 
Using training data D, tl can be calculated simply as  

N

i
ill x

N
t

1

1 . 

Time tl is the first order statistic that can be collected 
anonymously, without a need to consult training data. For 
example, cell phone companies are routinely collecting similar 
data to optimize their operations or to share data with business 
partners. By assuming that the majority of the population consists 

of healthy individuals, statistics t accurately summarize the 
spatial distribution of the healthy population.  

The learning problem then becomes how to combine statistics t 
with detailed movement information about individuals with the 
disease, represented by a subset D1 of D, defined as D1 = {(xi , 1), 
i = 1, …, N1}, where N1 is the size of the subpopulation with the 
disease. We propose two strategies as described in the following. 

Stationary representation. In this approach, we approximate N0 
healthy individuals with a surrogate population of the same size 
whose individuals spend all time at a single location (e.g. their 
home), such that there are N0 tl healthy surrogate individuals 
residing at l-th location. As a result, the aggregated time statistics 
of the surrogate population equals t. The log-likelihood of the 
stationary surrogate population is 

.))(1log()(
1

00
L

l
ll

Stationary rtNl r  

An interesting property of the surrogate log-likelihood is that it is 
a lower bound on l0(r). This can be seen by using Jensen’s 
inequality and the composition rule as follows. Let us make a 
reasonable assumption that disease risk is low enough that the 
probability of disease (rl) < 0.5 at any location, l = 1, …, L. 
Then, 1 (rTx) is a monotonically decreasing concave function. 
Since log(x) is monotonically increasing and concave, 
log(1 (rTx)) is concave, and so is the log-likelihood l0. Thus,  
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Dispersed representation. In this approach, we approximate 
each healthy individual with the average individual from a 
healthy population. In this case, the surrogate population consists 
of N0 individuals, each with the moving pattern xi = t/N0. The log-
likelihood of the dispersed surrogate population is 

))(log()(
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An interesting property of the dispersed log-likelihood is that it is 
an upper bound on l0(r). Using the same assumptions and 
reasoning as for the stationary representation case, we can see that 
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3. EXPERIMENTAL RESULTS 
3.1 Data Set 
In order to compare the usefulness of residential and movement 
data in disease mapping, we used the EpiSims data set from 
Network Dynamics and Simulation Science Laboratory [18]. This 
synthetic data set contains information about daily activities of 
1.6 million proto-entities as they move around a city with 240 
thousand locations. It has been designed to realistically simulate 
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behavior of the population of Portland, OR, at the level of 
individual people.  

The EpiSims data set contains information about movement of 
individuals, the types of their activities, and social contacts. 
Previously, we used this information to evaluate a predictor of 
infection spread [19]. In the present study, we use only movement 
information for two reasons. First, while today’s technology 
allows seamless collection of movement information, recording 
activity types and social contacts would require a significant 
effort and would further complicate the privacy issues. Second, 
from the perspective of evaluation of the proposed approach for 
disease mapping, activity types and social contacts are not 
particularly important.  

 
Figure 1. Density of movement (left) and residential (right) 
data for EpiSims Portland, OR, proto-population 

We processed the original EpiSims data such that the Portland, 
OR, metropolitan region was partitioned into a regular grid of size 
256 256. In the resulting data set, each location was visited by an 
average of 25 people and each person visited 3 locations on 
average. In addition to the 256 256 resolution, we also studied 
coarser grids with 64 64 and 16 16 locations. Each individual 
was represented by vector x, summarizing the fraction of time 
spent on each of the locations, as defined in Section 2.1. This 
representation of movement is a sufficient statistic under our 
assumption that disease risk does not change in time.  

To generate targets y, we started by specifying the underlying 
disease risk map, r. Then, for the i-th individual, we calculated 
the risk p (yi | xi, r) using (1) and generated yi  {0,1} based on this 
probability. We call the resulting data set the movement data set. 
In addition to this data set, we generated another one, called the 
residential data set, which contained only residence information 
(see Section 2.3). This allowed us to examine the benefits of 
movement data for disease mapping. 

In Figure 1, we illustrate the total number of hours (in the log10 
scale) the individuals spent at each location according to the 
movement and residential data sets. As can be seen, the two 
distributions in the EpiSims data are very similar and there are no 
obvious regions with significant discrepancies (e.g. regions where 
few reside, but are visited by many). The only significant 
discrepancy exists around the Portland airport (see Figure 4).  

3.2 Accuracy Measure and Mean Predictor 
To calculate the accuracy of disease mapping we used the mean 
squared error of personal risk prediction, 
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where r is the true risk,  is the estimated risk, and N is the 
number of individuals.  

r̂

In our experiments, in addition to spatially regularized logistic 
regression using movement and residential data, we also used the 
baseline mean predictor. This predictor sets the risk at all 
locations to be constant, with pl obtained using the ML estimate 
as  
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from which the risk rl can be calculated as .  ),1/(log lppr lll

3.3 Experiments: Scenario 1 
In Scenario 1 we explore the case where individuals from the 
studied population reside in a small region, while they visit a 
significantly larger region. This scenario might be interesting in 
controlled studies where participants are recruited from a limited 
geographical region. For this experiment, we sampled N = 10,000 
people living in the Rockcreek and Oak Hills neighborhoods. 
Figure 2 (left) shows the location of these two neighborhoods and 
Figure 2 (right) shows the movement density of these people that 
covers a much larger area.  

In our simulations, we placed sources of increased risk at five 
locations: Reedville, West Heave-Sylvan, Kings Heights, 
Markham and King City (see Figure 3). We set the background 
risk to 1% and the peak risk at the 5 sources to 20% in one set of 
experiments, and to 50% in another. Risk around each of the 5 
sources was modeled as Gaussian kernel with width . The 
smallest width (  = 2) represented a case of abruptly changing 
risk where spatial regularization is expected to be less helpful. 
The largest width (   = 16) represented the case with slowly 
changing risk where even the mean predictor should do well. 

In Table 1 we show MSE accuracies for 8 different risk maps, as 
well as the best value of the regularization parameter  obtained 
by cross-validation. We compared accuracies of spatially-
regularized logistic regression using movement and residential 
data, as well as the mean predictor. The results show that using 
movement data resulted in the highest accuracy in all cases. As 
expected, the differences were relatively small for estimation of 
risks generated with the largest and the smallest kernel widths. 
Interestingly, the accuracies of the mean predictor and spatially-
regularized logistic regression based on residential data were 
almost identical, indicating that, in Scenario 1, the residential data 
are not very informative. The regularization parameter  for 
movement data increased with kernel width, as was expected. It 
behaved quite erratically with residential data, indicating again 
the low information content of residential data for disease 
mapping. 

Figure 2. Rockcreek and Oak Hills residential (left) and 
movement (right) data density 
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Table 1. Accuracies for Scenario 1 

Mean Residential data Movement data  
Range  

MSE MSE  MSE  

2 0.0087 0.0087 500 0.0071 0.02 

4 0.0148 0.0148 200 0.0079 0.05 

8 0.0337 0.0327 0.2 0.0173 0.1 

50
%

 - 
1%

 

16 0.0290 0.0270 2 0.0202 0.5 

2 0.0044 0.0044 200 0.0043 0.5 

4 0.0074 0.0074 100 0.0061 0.1 

8 0.0126 0.0124 1 0.0086 0.05 

20
%

 - 
1%

 

16 0.0133 0.0132 20 0.0130 5 

 

 
Figure 3. Disease risks in Scenario 1 for different kernel 
widths 

3.4 Experiments: Scenario 2 
In Scenario 2, we focus on the case where increased risk existed 
within a region in which very few people resided but which was 
visited by many people. There are many locations such as 
airports, workplaces, and schools that are visited by a large 
number of people but are usually not residential zones. In 
EpiSims data, there is one such region in the vicinity of the 
Portland International Airport (see Figure 4). For this experiment, 
we used the whole population (N = 1.6 million). The background 
risk was set to 1% and the source of increased risk was at the 
location of airport with maximum of 20% and with small kernel 
width  (   = 1.6). 

As Table 2 shows, the accuracy of disease mapping using 
movement data is significantly higher than when using residential 
data or the mean predictor. Similarly to Scenario 1, residential 
data were not informative, as the mean predictor had the same 
accuracy. In Figure 4 we illustrate the estimated risk in the 
vicinity of the airport obtained from movement and residential 
data. To gain further insight, in Figure 5 we show the scatter plots 
comparing true risk and estimated risk when movement data 
(Figure 5.a) and residential data (Figure 5.b) are used. It can be 
seen that while correlation between actual and estimated risk 
obtained from movement data is significant, the residential data 
was not sufficient to uncover the source of increased risk. 
Therefore, if only residential data are considered, the true source 

of risk remains hidden and the model reacts by raising the 
background risk. On the contrary, when using movement data, a 
more realistic reconstruction of underlying risk can be made. 

Table 2. Accuracies for Scenario 2 

Mean Residential data  Movement data  
 

MSE MSE  MSE  

1.6 0.0041 0.0041 20 0.0019 0.5 

 

 
Figure 4. True risk around airport (box on right) and 
reconstructed risks from movement (top left) and residential 
(bottom left) data 
 

 
 
 
 
 
 
 
  
 
 

Figure 5. Scatter plots of true risk and risk estimated from 
movement (top) and residential (bottom) data 

3.5 Experiments: Scenario 3 
In Scenario 3, we generated spatial risk with 10 sources with 
kernel width   = 3 whose peak risks ranged from 10% to 50% 
(see Figure 6). The background risk was set to 1%. We considered 
the whole population (N = 1.6 million).  

Our first objective was to compare the accuracy of disease 
mapping when the whole population or only a subset of the whole 
population (ranging from 0.1% to 50% of the whole population) is 
observed. From the results in Figure 7, it could be seen that the 
accuracy when using movement data is consistently higher than 
when using residential data for all sample sizes. As expected, the 
MSE decreases with the sample size for both data sets.  

Our second objective was to compare accuracy of disease 
mapping from movement data for different spatial resolutions. In 
addition to the 256 256 resolution used in Scenarios 1 and 2, we 
also studied the case when the resolution decreased to 64 64 and 
16 16. As could be seen from Figure 8, accuracies using the 
reduced resolution of 64 64 were comparable to those of the 
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original 256 256 resolution for all sample sizes. On the other 
hand, the MSE significantly deteriorated when 16 16 was used. 
In fact, by comparing Figures 7 and 8, it could be seen that for 
sample sizes of 50% and 100%, the MSE from movement data 
with 16 16 resolution was higher than that of the residential data 
with 256 256 resolution.  

In Figure 9, we show the time needed to perform disease mapping 
from movement data for different sample sizes and different data 
resolutions. As expected, the time increases with sample size and 
resolution. However, even in the most challenging case with 1.6 
million individuals and 2562 = 65,536 locations, the time needed 
to estimate disease risk was only 10 minutes. Taken together, the 
results from Figures 7, 8, and 9 indicate that there is an interesting 
tradeoff between accuracy and runtime that depends on sample 
size and spatial resolution. 

 
Figure 6. Generated risk for Scenario 3  

 
Figure 7. MSE of disease mapping using movement and 
residential data 

 
Figure 8. MSE on movement data at varying resolutions 

 
Figure 9: Runtime [in seconds] for different resolutions  

 
3.6 Experiments: Privacy–Preserving Disease 
Mapping 
In the final round of experiments, we evaluated the privacy-
preserving strategy proposed in Section 2.4. Using only the 
aggregated statistics about movement of the whole population and 
actual movements from individuals with disease, we repeated 
experiments on data generated in Scenarios 1 and 2. In Tables 3 
and 4 we show results only for the stationary representation 
proposed in 2.4, because in our preliminary results it was 
observed that using the dispersed representation, the accuracy 
often dropped below the accuracy obtained using residential data.  

For Scenario 1 data, the results shown in Table 3 are directly 
comparable to the results from Table 1. As can be seen, the 
stationary representation resulted in accuracy somewhere between 
the non-sanitized movement data and residential data. We 
consider this to be a very promising result, as it indicates that the 
accuracy of traditional disease mapping from residential data can 
be increased using movement information without seriously 
infringing on the privacy of individuals. Table 4 shows results for 
Scenario 2 under the privacy preserving setup. Compared with the 
results from Table 2, the accuracy (MSE = 0.0030) is just between 
those obtained using non-sanitized movement data (MSE = 
0.0019) and residential data (MSE = 0.0019). It is evident that the 
difference in accuracy between non-sanitized and sanitized 
movement data is relatively large. It is an open question if an 
alternative privacy-preserving approach could be designed that 
would further improve accuracy of disease mapping and privacy. 

  

Table 3. Accuracies for Scenario 1 – privacy-preserving data  

Stationary data 
Range  

MSE  

2 0.0083 0.05 

4 0.0126 0.02 

8 0.0265 0.05 

50
%

 - 
1%

 

16 0.0241 0.5 

2 0.0043 0.5 

4 0.0069 0.2 

8 0.0109 0.1 

20
%

 - 
1%

 

16 0.0130 5 

M
S

E
 

M
S

E
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Table 4. Accuracy for Scenario 2 – privacy-preserving data 

Stationary data  
 

MSE  

1.6 0.0030 0.5 

 
Finally, in Figure 10 we illustrate how accuracy changes as a 
function of hyperparameter  in Scenario 2. It can be observed 
that the accuracy is a well-behaved smooth function of  that 
indicates that the search for the best  should be easy. It is also 
interesting to observe that the best  for sanitized and non-
sanitized movement data is very similar, while large  appears to 
be a good choice for residential data.  

 
Figure 10. MSE as a function of  for Scenario 2 data 

4. CONCLUDING REMARKS 
In this paper we have illustrated that movement data can be very 
useful for disease mapping as an alternative to the traditional 
residence data. Under the assumption that the personal risk is a 
weighted average of risks at visited locations, we showed that 
disease mapping from movement data can be solved by spatially 
regularized logistic regression. We also showed that traditional 
disease mapping is a special case of our approach, where each 
individual is assumed to be static and spending all of his or her 
time at the place of residence. By acknowledging privacy issues 
related to collecting movement information from the whole 
population, we proposed a privacy-preserving alternative that 
only requires knowledge of the movement of individuals with 
disease. The results showed that this setup still allows more 
accurate disease mapping than when using residential data.  

Our study should be considered a step toward exploiting 
movement data for improving disease mapping. There are 
numerous open questions to be addressed in future research, of 
which we mention some. First, our assumption that the personal 
risk is a weighted average of risks from visited locations from eq. 
(1) is just one of the possible scenarios. For example, in some 
cases it might be more reasonable to assume that the personal risk 
is the maximum risk from the visited locations. In other scenarios, 
it could be more appropriate to consider the total time spent at 
different locations instead of the fractional time. Second, our 
assumption that spatial risk is static may be unrealistic in many 
disease mapping scenarios. If the risk is allowed to change in 
time, disease mapping would require estimating the evolving risk 
map. Third, in some cases, demographic information might be 
available in addition to the movement data. Integrating the two 

sources of information for disease mapping is an interesting open 
problem. Fourth, there is an open question of what is the best 
choice of the spatial prior, with respect to accuracy of disease 
mapping, prevention of overfitting, and computational costs. 
Fifth, our results indicate that spatial variation of disease risk is 
closely tied with the choice of the spatial prior and spatial grid 
resolution. It would be interesting to consider how to exploit this 
relationship to improve both accuracy and computational costs. 
Sixth, while we believe that the proposed privacy preserving 
scheme is reasonable, the privacy issue is evidently the main 
limiting factor in using movement data for disease mapping. 
There is more space to design improved solutions, both with 
respect to accuracy and maintaining privacy.  
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