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ABSTRACT During the past few years we have
investigated methods to improve predictors of in-
trinsically disordered regions longer than 30 con-
secutive residues. Experimental evidence, however,
showed that these predictors were less successful
on short disordered regions, as observed two years
ago during the fifth Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP5). To
address this shortcoming, we developed a two-level
model called VSL1 (CASP6 id: 193-1). At the first
level, VSL1 consists of two specialized predictors,
one of which was optimized for long disordered
regions (>30 residues) and the other for short disor-
dered regions (<30 residues). At the second level, a
meta-predictor was built to assign weights for com-
bining the two first-level predictors. As the results
of the CASP6 experiment showed, this new pre-
dictor has achieved the highest accuracy yet and
significantly improved performance on short dis-
ordered regions, while maintaining high perfor-
mance on long disordered regions. Proteins 2005;
Suppl 7:176–182. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Intrinsically disordered proteins or protein regions are
characterized by their highly dynamic conformations un-
der putatively physiological conditions in which the atom
coordinates and backbone Ramachandran angles vary
significantly over time with no specific equilibrium val-
ues.1–5 Instead of folding into a fixed 3D structure, a
disordered protein or region exists as an ensemble of
noncooperatively interchanging structures. Several opera-
tional definitions for protein disorder exist, including
random coils,6,7 high C� atom B-factor regions,6,7 dynami-
cally flexible ensembles,8 absence of regular secondary
structure (NORS),9 and missing coordinates for backbone
atoms.6–8,10 These different definitions provide insight
into properties of flexible regions and their relationships to
disorder, and are consistent with the view that there are
several flavors of intrinsic protein disorder.

Although lacking specific 3D structures, intrinsically
disordered proteins or regions carry out, and are required
for, essential biological functions. These functions were
broadly categorized by Dunker et al.11 into molecular
recognition, molecular assembly, protein modification, and

entropic chain activities, while Tompa added scavenger4

and chaperone12 functions among others. Disordered pro-
teins or regions can be characterized by various experimen-
tal methods,13,14 but current technologies are still prohibi-
tive for genome-scale analyses. Thus, the ability to reliably
predict disordered regions from amino acid sequence is
important, and could have significant impact on a wide
range of biomedical research, for example, from the design
of protein structure–function experiments1,15 to the under-
standing of the roles of disorder in cell-signaling and
cancer-related proteins16 and also to the ongoing struc-
tural genomics projects.17–19 As of 2002, the prediction of
disordered regions has been externally evaluated as part
of CASP.10 Since the involvement of CASP, disorder
prediction has been attracting increased interest.6–8,20–22

In the CASP5 experiment we assessed six predictors of
intrinsically disordered regions23 and all of them achieved
greater than 70% overall accuracies. These predictors,
along with those developed by other groups, strongly
support the hypothesis that intrinsic disorder is encoded
by amino acid sequence.6–8,24–29 However, the CASP5
results also revealed that our predictors were significantly
less accurate on short disordered regions (�30 residues)
compared to long disordered regions (�30 residues), with
accuracies of 25–66% versus 75–95%, for short versus long
regions of disorder, respectively. One possible reason for
such a discrepancy was the use of large windows for
attribute construction (e.g., 41 residues) or output smooth-
ing (e.g., 61 residues), which improved prediction on long
disordered and ordered regions, but also filtered out many
predicted short regions. Another potential contributing
factor is the possibility of heterogeneous amino acid compo-
sitions between the short and long disordered regions.
Because all attributes were derived from the amino acid
sequence, a predictor trained exclusively on long disor-
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dered regions was unlikely to perform well on short
disordered regions, and vice versa.

In our initial study on the prediction of intrinsic disor-
der,28 four predictors were built on disordered regions:
three based on different length groups, that is, short (7–21
residues), medium (22–44 residues), and long (45 residues
or longer), respectively, and one based on all of the
disordered regions combined. All four predictors used the
same attributes based on amino acid compositions. All
three length-specific predictors outperformed the all-
length predictor, with 9–14% accuracy improvements, and
when any one of the three predictors was applied to
disordered regions from the other two groups, the predic-
tion accuracy dropped significantly, by 6–14%. These
experiments were the first indication of a length-depen-
dency of the amino acid compositions of disordered re-
gions. In a more recent study,30 a set of short disordered
regions of �10 residues was extracted from the Protein
Data Bank (PDB)31 and then compared to regions of long
disorder, high B-factor order and low B-factor order. This
study showed that short disordered regions exhibited
significantly different amino acid compositions compared
to long disordered regions and appeared to be more similar
to the high B-factor ordered regions.

Based on these findings, we developed a composite
predictor called VSL132 (Various Short Long, version 1),
which is applicable to disordered regions of arbitrary
length (The predictor naming convention can be found in
Obradovic et al.;23 in brief, “Various” indicates training
data characterized by different methods, while “Short” and
“Long” indicate the lengths of the disordered segments).
This predictor exploits the length dependent (heteroge-
neous) amino acid compositions and sequence properties of
disordered regions by using a two-level structure to inte-
grate two specialized predictors optimized for short (�30
residues) and long (�30 residues) disordered regions,
respectively. As results in the latest CASP6 experiment
showed, the VSL1 predictor significantly improved the
prediction on short disordered regions, while retaining
high accuracy on long disordered regions that character-
ized our previously developed predictors. In this report of
our results for the CASP6 experiment, we analyze the
performance of the new VSL1 predictor as well as four
other predictors of intrinsically disordered regions devel-
oped previously.

MATERIALS AND METHODS
Training Data

The dataset for training the VSL1 predictor contained
1,335 nonredundant protein sequences with maximal pair-
wise sequence identity limited to 25%. These proteins were
assembled from four other datasets: 153 sequences from
DisProt33 v1.2 with long disordered regions characterized
by various methods,23,27 511 PDB chains with short disor-
dered regions identified as missing backbone atom coordi-
nates,22 290 completely folded PDB chains,23,27,30,34 and
381 recent PDB chains with short disordered regions. In
total, the training proteins contain 230 long disordered

regions with 25,958 residues, 983 short disordered regions
with 9,632 residues, and 354,169 ordered residues.

VSL1 Predictor

The VSL1 predictor consists of three component predic-
tors, each as an ensemble of logistic regression models, in a
two-level architecture. At the first level are two specialized
predictors: a long disorder predictor, VSL1-L, for disor-
dered regions of �30 residues, and a short disorder
predictor, VSL1-S, for disordered regions of �30 residues.
At the second level is a meta-predictor, VSL1-M, whose
output can be interpreted as the likelihood that a 61-
residue subsequence centered at current sequence position
contains or overlaps a long disordered region. Thus, weights
are derived from the output of VSL1-M for combining the
two first-level predictors. For all three predictors, at-
tributes are constructed for each sequence position based
on an input window of length Win (odd number) centered at
that position. The window is extended outside the N- and C
termini by concatenating (Win�1)/2 special “spacer” char-
acters at each terminus. The attributes calculated include
amino acid frequencies, the “spacer” frequency, K2-
entropy,35 charge-hydrophobicity ratio,36 averaged flexibil-
ity index,37 averaged PSI-BLAST38 profiles, averaged
PHD39 and PSIPred40 secondary structure predictions.
Attribute selection and window length optimization were
performed independently for individual predictors. Fur-
ther details of the VSL1 predictor will be described else-
where.32

Previous Long Disorder Predictors

In the CASP6 experiment we also tested four previously
developed predictors of long disorder: VL-XT25 (id: 633-1),
VL3-BA23 (id: 633-2), VL226 (id: 193-3), and VL3-E27 (id:
193-2), which enabled us to estimate the progress over
time. The VL-XT predictor is a combination of three
feedforward neural network predictors specialized for N-
terminal, C-terminal and internal regions, respectively.
VL2 is a linear predictor built using ordinary least-squares
regression.41 As in CASP5, VL2 predictions were not
smoothed. VL3-BA uses a disorder/order boundary predic-
tor to correct the putative boundaries between predicted
disordered/ordered regions by the VL323,27 predictor. The
VL3-E predictor combines two neural network ensemble
predictors VL3-H and VL3-P,23,27 and is currently our best
predictor of long disordered regions with overall accuracy
higher than 86%.

Evaluation Criteria

The predictors were evaluated on the 63 CASP-curated
target structures released on November 18, 2004. These
targets have the following CASP identifications: T0196–
T0206, T0208, T0209, T0211–T0216, T0222–T0224,
T0226 –T0235, T0238 –T0244, T0246 –T0249, T0251,
T0262–T0269, T0271–T0277, and T0279–T0282. Among
these targets, T0222 (PDB id: 1VLI) is a theoretical model,
T0213–T0215, T0224, and T0230 are NMR structures,
while the remaining examples are X-ray structures.
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Two criteria were used for predictor evaluation. The
overall accuracy (ACC) was calculated as the average of
true positive rate (sensitivity), or percentage of disordered
residues correctly predicted, and true negative rate (speci-
ficity), or percentage of ordered residues correctly pre-
dicted, using a decision threshold of 0.5. A random predic-
tor or a trivial predictor that assigns all examples to one
class will have an overall accuracy of 50%. The receiver
operating characteristic (ROC) curve is a plot of true
positive rate against false positive rate (or 1 � specificity),
usually calculated at different decision thresholds. The
area under the ROC curve (AUC) is known to be a useful
measure of overall predictor quality, with a value of 100 for
a perfect predictor and 50 for a random predictor.42

RESULTS
CASP6 Targets

A total of 90 disordered regions with 931 residues were
identified as missing backbone atom coordinates from 48 of
the 63 targets used in our evaluation (Table I). None of the
48 targets was a wholly disordered protein, while of the 90
disordered regions, only 5 were longer than 30 residues
and came from T0206, T0235, T0238, T0249, and T0262.
The longest disordered region contained the 102 N-
terminal residues of T0235. In total, the long disordered
regions contained about 40% (368) of all disordered resi-
dues. Of the 85 disordered regions of �30 residues, 33/25
were at N-/C-termini containing 205/125 residues in total.
Finally, the 63 targets also contained 90 ordered regions
with 12,520 residues.

Prediction Accuracies

Figure 1 shows the ROC curves plotted by varying the
decision threshold from 0 to 1 in increments of 0.005. Table
II compares the AUC approximated using the trapezoid
rule, and the per-residue prediction accuracies calculated
with the default threshold of 0.5. The standard errors were
calculated with 1000 bootstrap samples using a procedure
described in Obradovic et al.23 Among the five predictors
tested in CASP6, VSL1 achieved the highest overall accu-
racy (ACC � 79.4%) and the greatest area under the ROC
curve (AUC � 88.3). In addition, VSL1 was clearly better
than either one of its two component predictors alone. This
indicates that the meta-predictor VSL1-M was effective in
combining the two specialized predictors.

As illustrated in Table II, VSL1 was significantly better
than all other predictors on short disordered regions (�30

residues), but considerably less accurate than VL3-E on
long disordered regions (�30 residues). To better character-
ize the differences, we further divided the disordered
regions into several length groups and examined the
accuracy on each group separately. As evident in Figure 2,
the improvement of VSL1 mainly came from the short
disordered regions of 1–3 and 4–15 residues, but it was
just slightly better than VL2 on short disordered regions of
16–30 residues. On the four long disordered regions of
31–100 residues, VL3-E was nearly perfect (98.5%) while
VSL1 also achieved a high accuracy of 82.7%. However, all
predictors were less successful on the longest disordered
region (102 residues) from T0235, with VL3-E being the
most accurate.

Predictions on Individual Targets

Representative predictions by VL-XT (dashed), VL3-E
(dashed-dotted), and VSL1 (solid) for targets T0233 and
T0201 are shown in Figure 3. Although VSL1 successfully
identified all four disordered regions (thick line segments)
from T0233 except residue 106, VL-XT predicted part of
the second region and completely missed the third one, and
VL3-E detected only the first region. In addition, VSL1 had
significantly fewer false positives than VL-XT on ordered
regions.

For the fully folded T0201 (PDB id: 1S12, 4 chains),
VL-XT achieved the highest accuracy of 80.8%, while both
VSL1 and VL3-E predicted it to be mostly disordered from
residue 38 to 94. The significant enrichment of disorder-
promoting residues24 in this region, namely 11 Lysines, 9
Glutamic Acids, 1 Proline, 4 Serines, 2 Glutamines, 2
Arginines, and 4 Alanines, might have contributed to the
large error rates of VSL1 and VL3-E. However, it is also
possible that this region does have a flexible structure
under physiological conditions, but became stabilized due
to the high-salt (1.4 M NaCitrate) crystallization condi-
tions used and/or the multimer formation.

Predictions on High B-Factor Regions

After excluding residues from disordered regions, the
five NMR target structures, and T0227 with constant
B-factors over its entire sequence, a total of 11,980 resi-
dues remained with valid B-factors. The B-factors, aver-
aged over the backbone atoms for each residue, were first
normalized to zero mean and unit variance, chain by
chain, using a procedure by Smith et al.34 The residues
were then assigned to two groups as high-B-factor (1,014
residues) and low-B-factor (10,966 residues) depending on
whether their normalized B-factor values were higher
than 2.0.34 Interestingly, VSL1 had significantly higher
false positive error rate on high-B-factor than low-B-factor
regions (39.8% versus 14.7%).

Predictions on Terminal Short Disordered Regions

On the 33 N-terminal and 25 C-terminal short disor-
dered regions, the VSL1 predictor achieved high accura-
cies of 94.4 � 1.6% and 82.4 � 3.4%, respectively, but was
less successful on the 27 internal short disordered regions
with an accuracy of 63.9 � 3.1%. Although the terminal

TABLE I. Summary of the 63 CASP6 Targets

Length
range

Number of
regions

Number of
residues

Disordered regions 1–3 35 58
4–15 41 304

16–30 9 201
31–100 4 266
�100 1 102

Total 90 931

Ordered regions 90 12,520
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short disordered regions came from 45 targets with a total
of 330 residues, VSL1 predicted disordered regions on
almost all 63 targets at 59 N- and 57 C-termini with a total
of 1,307 residues.

DISCUSSION
VSL1 Predictor

The success of VSL1 model can be attributed to both the
enlarged training data and its two-level architecture that
exploits the length dependent (heterogeneous) amino acid
compositions and sequence properties of disordered re-
gions. Not only was the data size increased substantially,

but more importantly, it included a considerable number
of short disordered regions that were not used in the
training of previous predictors. Under the two-level archi-
tecture, the specialized predictors, VSL1-S and VSL1-L,
could be optimized separately on more homogeneous data,
in terms of attribute selection, model selection, and win-
dow optimization. On the other hand, the meta predictor
VSL1-M proved to be effective in combining the two
specialized predictors and its success further confirmed
the previously observed differences between short and
long disordered regions.

The threshold of 30 for partitioning disordered regions
into short and long is artificial11 and may not necessarily
be optimal. A better approach might be to identify differ-
ent length groups on the basis of maximizing the Kullback-
Leibler distance of amino acid compositions between the
different groups. It is also possible that certain short
disordered regions may share similar properties to long
disordered regions and vice versa. Therefore, the initial
partitioning obtained by the length threshold might be

Fig. 1. Comparison of ROC curves for five models tested in CASP6
experiment. ROC curves were plotted by varying threshold from 0 to 1 in
increments of 0.005.

Fig. 2. Length-dependent per-residue prediction accuracies for the
five models tested in CASP6 experiment. The standard errors were
estimated over 1000 bootstrap samples.

Fig. 3. Representative predictions by VL-XT (dashed), VL3-E (dashed-
dotted), and VSL1 (solid) for two targets: (A) T0233, with four short
disordered regions at residues 1–13, 81–92, 106–108, and 137–138; (B)
T0201, a completely ordered protein. Disordered regions are marked in
thick line segments. The threshold for predicting disorder is 0.5.
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further improved using a competition procedure developed
previously.26

False Positives and High B-factors

Quite often residues near a disorder/order boundary
have very high B-factors and exhibit a trend of sharp
increase toward the disordered region. This suggests that
residues within the disordered region might have even
higher B-factors if their coordinates could actually be
determined. Consistent with this observation, a previous
study showed that high-B-factor (flexible) ordered regions
share similar amino acid compositions and sequence prop-
erties with short disordered regions, and could be pre-
dicted fairly accurately from amino acid sequence using
attributes similar to those developed for disorder predic-
tion.30 On the other hand, the independent assessor’s
report revealed the high correlation (coefficient � 0.92)
between averaged VSL1 predictions and experimental
B-factors.43 The overall trend was that the higher the
B-factors, the higher the predictions, with values approach-
ing or even exceeding the threshold of 0.5 for declaring
disorder. Therefore, it is not surprising to observe that
VSL1 had significantly higher percentage of false positives
on high-B-factor regions than low-B-factor regions.

Terminal Short Disordered Regions

The significantly higher accuracies on terminal short
disordered regions could be attributed to a large propor-
tion (about 60%) of short terminal disordered regions
present in the training data. The use of a “spacer” charac-
ter for extending the input windows might have further led
the predictor to memorize “disordered region at terminus”
as a rule, which is not necessarily true for most natural
proteins. A better approach would likely be to build a
predictor optimized for internal short disordered regions
and integrate it with VSL1-S using a method similar to the
VL-XT predictor.25

Missing Sequence Segments

The disordered regions in our evaluation were labeled as
missing residues in the atom coordinate files released by
the CASP organizers. However, not all of the regions

labeled as disordered corresponded to regions shown experi-
mentally to lack organized 3D structure. Included among
the experimentally characterized regions of disorder were
regions encoded by DNA that was simply omitted from the
cloning/expression constructs. The DNA encoding these
regions could have been omitted for various regions, such
as for convenience, in attempts to characterize an autono-
mous domain of higher interest, or even to remove a region
of predicted nonglobularity (e.g., predicted to be disor-
dered, to be a transmembrane segment, to be a signal
sequence, or to be low complexity). Thus, assuming such
omitted regions to be disordered could be problematic. As
an example, only the first 145 residues of T0234 are
present in the corresponding PDB entry 1VL7:A, while as
described in the REMARK 999 record, “RESIDUES 146–
165 WERE OMITTED FROM THE CONSTRUCT TO
ELIMINATE A REGION PREDICTED TO BE DISOR-
DERED.” Thus, the missing 20-residue C-terminal region
may not be really disordered. On the other hand, only
three and five residues were predicted to be disordered in
this region by VL-XT and VSL1, respectively.

Another example is the 102-residue N-terminal region of
T0235 on which most of the predictors performed poorly.
According to the PDB entry (1VJV:A), only a fragment
(residues 97–499) of T0235 is present, along with a
12-residue purification tag at its N-terminus, while the
target information from the Joint Center for Structural
Genomics Web site (http://www1.jcsg.org/cgi-bin/psat/
targetinfo.cgi?acc�YFR010W&uid�1314960) indicates the
full sequence was included in the construct. The first 18
residues of 1VJV:A, that is, the purification tag and
residues 97–102 of T0235, have missing electron densities
for their backbone atoms. Furthermore, searching the
T0235 sequence against the NCBI Conserved Domain
Database (CDD)44 identified a globular ubiquitin-like do-
main (UBQ, CDD id: cd00196.1) at residues 6–76, with an
E-value of 7e-6, and sequence identity of 26.4% and
similarity of 47.2% to the domain consensus sequence.
Thus, labeling all of the first 102 residues as disordered
might be incorrect, and the putative ubiquitin-like domain
might account for the low prediction accuracy on this
region for several of the predictors.

TABLE II. Prediction Accuracies (%) and Areas under ROC Curves (AUC) on 63 CASP6 Targets

Model TPa TNb TPS
c TPL

d ACCe AUCf

VL-XT 59.1 � 1.7 71.3 � 0.4 61.3 � 2.1 55.7 � 2.7 65.2 � 0.9 72.4 � 0.85
VL2 64.6 � 1.6 76.2 � 0.4 63.1 � 2.1 66.8 � 2.4 70.4 � 0.8 79.2 � 0.85
VL3-E 58.8 � 1.6 83.9 � 0.3 40.7 � 2.1 86.4 � 1.7 71.3 � 0.8 76.7 � 0.92
VL3-BA 51.3 � 1.7 84.4 � 0.3 41.4 � 2.1 66.6 � 2.5 67.9 � 0.9 76.6 � 0.89
VSL1 75.9 � 1.4 82.9 � 0.3 80.5 � 1.7 69.0 � 2.3 79.4 � 0.7 88.3 � 0.57
VSL1-S 73.3 � 1.5 84.2 � 0.3 80.6 � 1.6 62.0 � 2.5 78.7 � 0.7 86.6 � 0.70
VSL1-L 60.8 � 1.6 81.8 � 0.3 54.4 � 2.2 70.7 � 2.3 71.3 � 0.8 78.9 � 0.82
aTP — true positive rate, or, percentage of correctly predicted disordered residues.
bTN — true negative rate, or, percentage of correctly predicted ordered residues.
cTPS — percentage of correctly predicted residues from short disordered regions (�30 residues).
dTPL — percentage of correctly predicted residues from long disordered regions (�30 residues).
eACC — overall accuracy, as (TP�TN)/2.
fAUC — area under ROC curve, approximated using the trapezoid rule.
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Multimeric Proteins

Many structures in PDB exist as multimers, that is,
complexes of two or more chains or subunits. Even if the
chains from the same multimer share identical sequences,
they do not necessarily have identical tertiary structures,
and can have different regions of missing coordinates,
probably due to oligomer interfaces or crystal contacts. As
one possible scenario, a sequence region that is intrinsi-
cally disordered as a monomer could become ordered upon
complexation. Clearly, such protein complexes raise a
unique question in data labeling.

For example, only the first residues in 1WDJ:A (target
T0273) and 1WDJ:C are disordered, while 1WDJ:B has 35
disordered residues at its N-terminus. On the other hand,
all our models predicted most (60–100%) of the first 35
residues to be disordered. Visual inspection reveals that
the folded 35-residue N-terminal regions of chains A and C
are where the two chains interact, while the missing
corresponding part of chain B seems to be pointing outside
the molecule if judging from the direction of its residues
36–46. Many examples of protein–protein interactions
that very likely involve disorder-to-order transitions upon
complex formation have been found and subjected to
detailed analysis with quite interesting results.45

CONCLUSION

We evaluated our latest predictor VSL1 of intrinsically
disordered regions on the 63 CASP6 targets and compared
its performance to four predictors VL-XT, VL2, VL3-BA,
and VL3-E previously developed by our group. The results
suggest that progress is being made, especially in predict-
ing disordered regions of 30 residues or shorter, which
could be attributed to (a) the utilization of length-
dependency of the statistical properties of the disordered
regions, and (b) the substantial increase in the training
data.

Additional work is needed to investigate the relation-
ships between short disordered regions and high B-factor
ordered regions, oligomer interfaces, and crystal contacts.
The treatment of terminal disordered regions needs to be
further examined, while techniques of denoising the train-
ing data and improved data representation should also be
employed. New approaches that would include long-range
residue interactions and other types of information will
soon become necessary to continue the progress in this
area.
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