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Abstract. The objective of data reduction is to obtain a compact representation
of a large data set to facilitate repeated use of non-redundant information with
complex and slow learning algorithms and to allow efficient data transfer and
storage. For a user-controllable allowed accuracy loss we propose an effective
data reduction procedure based on guided sampling for identifying a minimal
size representative subset, followed by a model-sensitivity analysis for
determining an appropriate compression level for each attribute. Experiments
were performed on 3 large data sets and, depending on an allowed accuracy loss
margin ranging from 1% to 5% of the ideal generalization, the achieved
compression rates ranged between 95 and 12,500 times. These results indicate
that transferring reduced data sets from multiple locations to a centralized site
for an efficient and accurate knowledge discovery might often be possible in
practice.
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1   Introduction

An important knowledge discovery problem is to establish a reasonable upper
bound on the size of a data set needed for an accurate and efficient analysis. For
example, for many applications increasing the data set size 10 times for a possible
accuracy gain of 1% can not justify huge additional computational costs. Also, overly
large training data sets can result in increasingly complex models that do not
generalize well [8].

Reducing large data sets into more compact representative subsets while retaining
essentially the same extractable knowledge could speed up learning and reduce
storage requirements. In addition, it could allow application of more powerful but
slower modeling algorithms (e.g. neural networks) as attractive alternatives for
discovering more interesting knowledge from data.

Data reduction can be extremely helpful for data mining on large distributed data
sets where one of the more successful current approaches is learning local models at
each data site, and combining them in a meta-model [11]. The advantage of meta-
modeling is that learning local models and integrating them is computationally much
more efficient than moving large amounts of data into a centralized memory for



learning global models. However, this sub-optimal heuristic assumes similarity
between local data sets and it is not clear how to successfully combine local models
learned on data with different distributions and not identical sets of attributes.

A centralized approach of transferring all data to a common location escapes the
sub-optimality problems of local models combination, but is often infeasible in
practice due to a limited communication bandwidth among sites. Reducing data sets
by several orders of magnitude and without much loss of extractable information
could speed up the data transfer for a more efficient and a more accurate centralized
learning and knowledge extraction. Here, for user-specified allowed accuracy loss we
propose an effective data reduction procedure based on applying a guided sampling to
identify a minimal size representative sample followed by a model-sensitivity analysis
to determine an appropriate compression level for each attribute.

The problem addressed in this study is more formally defined in Section 2, the
proposed data reduction procedure is described in Sections 3-4 and an application to 3
large data sets is reported in Section 5.

2    Definitions and Problem Description

To properly describe the goal of data reduction and to explain the proposed approach,
some definitions will be given first. The definitions apply to regression and
classification problems solved by learning algorithms minimizing least square error,
including linear models and feedforward neural networks.

Definitions
Given a data set with N examples, each represented by a set of K attributes,

x={x1,…,xK}, and the corresponding target y, we denote the underlying relationship
as y = E[yx]+ε, where ε is an additive error term. For regression problems the target
is usually a single number, while for L-class classification problems it is usually an L-
dimensional vector. We define the reduced data set as any data set obtained from the
given one by (1) reduction of the number of examples called down-sampling, or/and
(2) quantization of its attributes and targets. The length of a data set is defined as the
number of bits needed for its representation. Compression rate C equals the ratio
between the bitwise length of the original data set and the bitwise length of the
reduced data set.

Assuming a parametric learning algorithm, by f(x; β(n)) we denote a predictor
learned on n examples and we measure its performance by the mean squared error
(MSE) defined as MSE(β)=E{[y− f(x; β)]2}, where β is the set of the model
parameters. If a predictor is learned on a reduced, instead of the original, data set
some increase in the MSE is to be expected. The total relative MSE increase,
MSE(βq(n))/MSE(β(N)), where βq(n) are estimators of parameters from a model
learned on a down-sampled data set with quantized attributes, is the product of
relative MSE increases due to down-sampling MSE(β(n))/MSE(β(N))  and
quantization MSE(βq(n))/MSE(β(n)). Throughout the text we denote the relative MSE
increase as (1+α), and call α the loss margin.



Problem Description
Our goal is to obtain a minimal length reduced data set that, using the same

learning algorithm, allows extraction of the same knowledge reduced for at most a
loss margin α. To achieve this goal we propose two successive phases: (1) reduce the
sample size from N to nmin allowing loss margin αD and achieving compression
CD=N/nmin, and (2) perform proper quantization of attributes of a down-sampled data
set allowing loss margin αQ, followed by Huffman coding [5] of discretized attributes
and achieving compression CQ. Assuming that total loss margin α is close to zero, it
follows that α ≈ αD+αC with an achieved total compression C = CDCQ. To keep the
presentation simple, we will assume that αD = αC = α/2, and will skip the optimization
of αD and αC for the maximum achievable total compression.

 The motivation for data reduction is obtaining the compact representation of a data
set that would facilitate its efficient repeated use with complex learning algorithms
and allow its efficient transfer and storage. All these features are highly desirable for
data mining on distributed databases. In this framework, local computing time needed
for data reduction would not be a critical requirement, since this effort would be
rewarded multifold.  Nevertheless, for large data sets, the whole data reduction effort
has comparable or even lower computational time as compared to building a single
model on a whole data set. In the following two sections we separately describe
procedures for down-sampling and quantization and compression.

3    Identifying a Minimum Representative Sample

3.1 Down-Sampling for Fast and Stable Algorithms

The learning curve for least squares estimators shows the average MSE
dependence on the size n of a sample used for designing estimators. This curve can be
divided into an initial region characterized by the fast drop of the MSE with
increasing sample size and a convergence region where addition of new samples is
not likely to significantly improve prediction (see Fig. 1). The learning curve is the
result of complex relationships between data characteristics and a learning algorithm.
Therefore its shape needs to be determined by experimentation with an objective of
identifying size nmin of a minimum representative sample needed to achieve an
approximation of the optimal average MSE within a specific loss margin αD.

An asymptotic analysis based on the law of large numbers and the central limit
theorem [4] can help in successful modeling of a learning curve. According to the
asymptotic normality theorem for nonlinear least squares, estimation error is
asymptotically normal under certain fairly general conditions. Asymptotic normality
means that n1/2(β(n)−β*) tends in distribution to a normal distribution with mean zero
and finite covariance matrix, where β(n) is an n-sample based estimate of the true
parameter vector β*. The consequence is that for large n, residuals ε’ of  the nonlinear
estimator ))(;( nxf β  consistently estimate the actual disturbances as

)(’ 2/1−+= nOεε . Therefore,



MSE(β(n)) = MSE(β*) + u,   u ~ N(O(1/n), O(1/n)), (1)

meaning that MSE(β(n)) asymptotically tends to the optimum MSE(β*) as O(1/n),
with variance decreasing as O(1/n). Assuming that N corresponds to the convergence
region and using (1), modeling of a learning curve to estimate a minimum
representative sample size nmin can be fairly straightforward.

Fig. 1. Learning Curve

A recently proposed progressive sampling procedure [9] can efficiently span the
available range of sampling sizes in search for the nmin. The technique was developed
with an objective of increasing the speed of inductive learning by providing
approximately the same accuracy and using significantly smaller sample sizes than
available. It was shown that geometrical progressive sampling that starts with a small
sample and uses geometrically larger sample sizes until exceeding nmin (model
accuracy no longer improves) is an asymptotically optimal sampling schedule. We
use the idea of progressive sampling with a somewhat different motivation of guiding
an efficient search for a minimal sample size needed for achieving an approximation
of the optimal average MSE within a specific loss margin αD.

In regression statistical theory it is well known that linear least squares algorithms
are the optimal estimators for linear problem solving. They are characterized by fast
learning with time complexity O(n) and well-known statistical properties including
small variance. The following DS1 procedure is proposed for identifying nmin value
for fast and stable models:
• Estimate model on the whole available data set of size N and calculate MSE(N);
• Estimate model on a small sample of size n0 and calculate MSE(n0);
• Increase the sampling size from ni to ni⋅ai until a sample size nmin is reached

satisfying MSE(nmin) < (1+αD)MSE(N).
A direct consequence of the progressive sampling results [9] for models with time

complexity O(n) is that the time complexity of this procedure for a=2 is at most twice
the time of learning on the whole data set. This procedure might also be used for
simple nonlinear algorithms with small variance (e.g. the feedforward neural
networks without hidden nodes).
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3.2 Down-Sampling Extension for Slower and Unstable Algorithms

Complex nonlinear learning algorithms such as feedforward neural networks with a
number of hidden nodes typically have a large variance meaning that their MSE(β(n))
can largely differ over different weight’s initial conditions and choice of training data.
Using explained DS1 down-sampling procedure for such learning algorithms could
cause significant errors in the estimation of nmin. Also, with these algorithms learning
time for large N can be so long that the cost of obtaining a benchmark value of
MSE(N) is unacceptable.

Using (1) and assuming that N is within a learning curve convergence region
down-sampling can be performed by fitting learning curve samples obtained through
guided sampling as
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where γ0 corresponds to an estimate of MSE for an infinitely large dataset, γ1 to
O(1/n) part of (1), and γ2 to the initial region of a learning curve.

The error variance of the learning curve samples decreases as O(1/n), and so larger
confidence should be given to MSE’s of estimators learned on larger data samples.
Therefore, we apply a weighted least squares algorithm [6] to fit the learning curve by
multiplying (2) by n1/2 and learning γ’s on transformed learning curve samples.

For slower and unstable algorithms we propose the following down-sampling
procedure that we will call DS2:

• Starting from a sample of size n0, at iteration i increase sample size to ni=n0⋅ai

until t-statistics for γ0 and γ1 do not exceed tθ,n-3 for some tolerant confidence
level θ;

• Repeat until the difference in estimating nmin over several successive iterations
is sufficiently small:
• According to estimated γ’s and predetermined loss margin, αD, estimate

nmin using (2);
• Select the next sample size ni+1 larger then nmin. Larger ni+1 results in a

larger improvement in the estimation of nmin, but at increased
computational cost. Our heuristic of randomly selecting ni+1 within an
interval [nmin, 2nmin] has proven to be a good compromise;

• Learn a new model on ni+1 samples and calculate its MSE(β(ni+1));
• Output the last estimated nmin as the minimum representative sample size.
If neural networks are used in the down-sampling procedure, the minimum sample

size is selected larger than the estimated value since part of the data should be
reserved to validation subset. Our heuristic determines the total representative size as
1.5nmin such that in all iterations of down-sampling algorithm, 0.5ni samples are being
used as a validation set for an early stopping of neural network training.



4 Compression of a Minimum Representative Sample

Storing continuous attributes usually assumes double precision (8 bytes) for an
accurate representation. Performing quantization of a continuous variable into a
number of bins allows its representation with a finite alphabet of symbols. This allows
the use of known compression algorithms [10] to decrease the number of bits needed
to represent a given attribute at the price of introducing a certain level of distortion.
We employ uniform quantization where the range of a continuous attribute x is
partitioned into Q equal subintervals, and all numbers falling in a given interval are
represented by its midpoint. Denoting quantizer operation as xq=Q(x), the
quantization error, εq=xq−x, can be considered as uniformly distributed in a range
[−q/2, q/2], where q = (xmax− xmin)/Q is the quantization interval. Therefore,
quantization error variance equals q2/12.

Given a data vector {x1, …,xn} over a finite Q-ary alphabet � ={a1, …,aQ}
(obtained by quantization), we apply Huffman coding where more frequent symbols
are assigned shorter encoding lengths [5]. This provides the optimal binary
representation of each symbol of � without any loss of information, such that the
output bitstring length ∑ iilf  is minimized, where fi is frequency of ai and li is length

of its binary representation.

4.1 Model Sensitivity Analysis for Attributes Quantization

In data reduction for knowledge discovery, preserving fidelity of all the attributes
is not important by itself. A better goal is preserving the fidelity of the prediction
model learned using these attributes as measured by a loss margin αQ. With this goal,
less sensitive attributes can be allowed higher distortion and, therefore, be quantized
to lower resolution by using larger quantization intervals. To estimate the influence of
attribute’s quantization on model predictions we propose the following sensitivity
analysis of a model obtained on the down-sampled data set. The outcome of this
analysis allows deducing proper relative quantization levels for all attributes resulting
in an efficient quantization procedure.

For a small quantization interval qi the function f(xqi,β(nmin)) can be approximated
as
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where εqi is quantization error with a uniform distribution over [−qi/2, qi/2] and xqi

denotes an input vector with quantized attribute Xi,.
From (3) the relative MSE increase due to quantization of attribute Xi is
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where p(xi) is the distribution of attribute Xi.
The integral in (4) could be approximated as
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where δxi is a small number (we used δxi = std(xi)/1000).
By Xj we denote the most important attribute with the largest RMSEQ(δxi),

i =1,…,K. Let us quantize attribute Xj such that the number of quantization intervals
inside a standard deviation of Xj is Mj where the constant Mj is called the quantization
density. Quantization densities of other attributes are selected such that losses of all
the attributes are the same. These densities can be computed from (4) as
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where ξi ≤1 is a correction factor that measures the relative importance of the
attributes and is the key parameter allowing an efficient quantization.

4.2 Quantization Procedure for Attributes and Target

If an attribute is nominal or already has discrete values it can be directly
compressed by Huffman coding. If it is continuous, its quantization can greatly
improve compression without loss of relevant knowledge.

Using correction factors ξi, a proper Mj needs to be estimated to satisfy a
quantization loss margin αQ. For a given Mj we calculate Mi, i=1,…,K, to quantize all
K attributes. We denote a quantized version of an example x as xq.

Starting from a small Mj we should estimate true loss as MSE(βq(nmin))/
MSE(β(nmin)) and should gradually increase Mj until this ratio drops below αQ. At
each iteration of Mj this requires training a new model f(x,βq(nmin)) with quantized
attributes which could be computationally expensive. However, our experience
indicates that estimating E{[y-f(xq,β(nmin))]

2} leads to a slightly pessimistic estimation
of MSE(βq(nmin)) which can be done by using an already existing model f(x,β(nmin))
from a down-sampling phase. Hence, to improve speed without much loss of accuracy
we use E{[y-f(xq,β(nmin))]

2} in the quantization procedure. When a proper size Mj is
found, quantization densities for all continuous attributes Mi are calculated from (6)
and quantized accordingly.

For classification, target compression can be very successful. If a target is
continuous, we propose a representation with single or double precision, since for
knowledge discovery the accuracy of target is usually more important then the
accuracy of attributes. Finally, after a proper quantization of continuous attributes
Huffman coding is applied to obtain an optimally compressed data set. Along with the
compressed data set, a small table containing the key for Huffman decoding is saved.



5 Experimental Results

To illustrate the potential of the proposed data reduction procedure we performed
experiments on 3 large data sets.  The first data set corresponds to a simple regression
problem, while the remaining two are well-known benchmark classification problems
for knowledge discovery algorithms [7].

Normal Distribution Set
We generated a data set consisting of N=100,000 examples with 10 normally

distributed attributes, xi, i=1,…,10, and target y generated as a linear function,
y=Σβixi+ε for randomly chosen parameters βi and the error term being normally
distributed and containing 50% of the total variance of y. Assuming standard double
precision representation, the total size of this data set is 8.8MB. We chose this set to
test our down-sampling procedure DS1, and we used an optimal linear estimator with
n0=10, a=1.5, and loss margin set to α={0.01, 0.02, 0.05}. An extremely large
compression rate of up to 1,100 times to only 8KB, with minimal model accuracy
loss, was achieved as reported in Table 1. It is interesting to observe that almost 1/3
of the reduced data set length was used for the target representation since we
intentionally decided not to compress targets due to their importance.

Table 1. Data reduction results for normal distribution data set. Here α is the prespecified loss
margin, Mj is the quantization density for the most relevant attribute, loss is an actual accuracy
loss when using reduced data for modeling, RDS is the reduced dataset size and C achieved
compression rate. The original double precision representation was 8.8 MB

Linear Estimator Neural Network
α

nmin Mj loss RDS C 1.5nmin Mj RDS C
0.01 1900 10 0.007 13 KB 680 4220 8 25 KB 350
0.02 1120 8 0.009 10 KB 880 2250 6 19 KB 460
0.05 420 5 0.033 8 KB 1100 1020 4 14 KB 630

Fig. 2. Correction factors from sensitivity analysis for (a) normal distribution set (left
bars are correct and right estimated correction factors), (b) WAVEFORM data set, and
(c) COVERTYPE data set

We also used a neural network with 3 hidden nodes in a down-sampling procedure
DS2 to estimate the consequences of a non-optimal choice of the learning algorithm.
For small sample sizes, neural networks tend to overfit the data, and hence, computed
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nmin is significantly larger than for linear estimators. Therefore, the compression rate
was slightly smaller than for a linear estimator, but still very large. It could also be
noted that in both cases the quantization interval is fairly large, as could be concluded
from small value of relative quantization density Mj. The experimentally estimated
correction factors for 10 attributes obtained through a sensitivity analysis (right bars
at Fig. 2a) were compared to the true values (left bars at Fig. 2a) and it was evident
that the sensitivity analysis was extremely successful in proper estimation of attributes
importance.

WAVEFORM Data Set
As originally proposed by Breiman [2, 7], we generated 100,000 examples of a data
set with 21 continuous attributes and with 3 equally represented classes generated
from a combination of 2 of 3 "base" waves. The total size of this data set with double
precision was 17.8 MB. In a down-sampling procedure with n0=100, a=1.5, and loss
margin set to α={0.01, 0.02, 0.05} we used neural networks with 5 hidden nodes, 21
inputs and 3 outputs. Observe that the number of examples needed for successful
knowledge extraction was significantly higher than in the normal distribution problem
as expected for a higher complexity concept. However, for all loss margins the
obtained data reduction was still very high (see Table 2) while estimated attributes
correction factors ξi recovered the structure of 3 waveforms hidden in the data (see
Figure 2b). Our neural network models trained on a reduced data set of length 186KB
achieved an average generalization accuracy of 86%, which is identical to the
previously reported accuracy using all 17.6 MB of training data.

Table 2. Data reduction results for WAVEFORM data set (notation is same as in Table 1)

α 1.5nmin M RDS C

0.01 19670 8 186 KB 95
0.02 10640 6 89 KB 200
0.05 4580 4 33 KB 530

COVERTYPE Data Set
This is currently one of the largest databases in the UCI Database Repository [7]
containing 581,012 examples with 54 attributes and 7 target classes and representing
the forest cover type for 30 x 30 meter cells obtained from US Forest Service (USFS)
Region 2 Resource Information System [1]. In its raw form it has 75.2 MB, and in the
compressed 11.2 MB. Out of 54 attributes, 40 are binary columns representing soil
type, 4 are binary columns representing wilderness area, and the remaining 10 are
continuous topographical attributes. Seven classes represent forest cover type. Since
40 attributes for just one variable seemed too much for neural network training, we
transformed them into 7 new ordered attributes by the following simple “trick”. For
each of 40 soil types we calculated the relative frequency of each of 7 classes from
the available examples. In that way each soil type value was represented as a 7-
dimensional vector with values that could be considered continuous and were fit for
use with neural networks. The transformed data set had 21 attributes and in the down-
sampling procedure DS2 with n0=100, a=1.5, for loss margin set to α={0.01, 0.02,



0.05} we used neural networks with 5 hidden nodes, 21 inputs and 7 outputs. In the
quantization procedure we quantized only 10 continuous attributes, while nominal soil
type and wilderness area attributes were, together with the target variable, compressed
by Huffman coding directly. Data reduction results presented in Table 3 show that
surprisingly large data reduction of several thousands times can be performed without
significant knowledge loss and achieving about 70% accuracy as consistent with
previous reported results [1].

Table 3. Data reduction results for COVERTYPE data set (notation is same as in Table 1)

α 1.5nmin M RDS C

0.01 6860 8 26 KB 2890
0.02 3690 6 14 KB 5370
0.05 1680 4 6 KB 12500

It should be noted that approximately 1 KB of reduced data set size is used to
represent a very informative 40×7 table of relative frequencies for 7 classes on 40 soil
types. The estimated attribute correction factors are shown in Fig. 2c. One of the by-
products of this sensitivity analysis indicates that the most important attributes for this
problem are elevation and soil type, followed by wilderness area attribute.

One of the reasons for such successful reduction of this data set is possibly in its
spatial component, and a relatively dense spatial grid (30×30 meters). To better
exploit the spatial component of the COVERTYPE data set it would be desirable if
positions of examples were also included in the form of x and y coordinates. This
would allow the use of the elements of spatial statistics [3] and adjusted learning
algorithms [12] for better knowledge extraction.

5 Conclusions

In this paper we proposed a set of procedures aimed at performance-controlled
reduction of a given data set by: (1) elimination of redundant training examples, and
(2) attributes quantization and compression. The data reduction goal was to obtain a
minimal length reduced data set that, using the same learning algorithm, allows
extraction of the same knowledge reduced for at most a predetermined loss margin.

Experiments were performed on a large regression and two large classification data
sets. An ordinary least squares algorithm and neural networks were used to guide data
reduction. Depending on prespecified loss margins of 1% to 5% of full accuracy, the
achieved compression rates ranged between 95 and 12,500 times, indicating possible
huge benefits for centralized knowledge discovery in distributed databases.

We obtained few other results worth mentioning. The proposed sensitivity analysis
proved very successful in ranking the attributes and allowed an efficient compression
of continuous attributes. This analysis can be considered separately as a method for
soft feature reduction and feature selection that is based directly on their importance
for a given learning model. Our results also show that a proper choice of learning



model is important for data reduction and that a reduced data set can be used as a
good indicator of the complexity of a learning problem.

The proposed procedure is suited for learning algorithms based on least squares
minimization, and could be applied to a range of classification and regression
problems. Further work is needed to extend the technique to other learning
algorithms.
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