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Abstract.    Advances in data collection technologies allow 
accumulation of large and high dimensional datasets and provide 
opportunities for learning high quality classification and 
regression models. However, supervised learning from such data 
raises significant computational challenges including inability to 
preserve the data in computer main memory and the need for 
optimizing model parameters within given time constraints. For 
certain types of prediction models techniques have been 
developed for learning from large datasets, but few of them 
address efficient learning of neural networks. Towards this 
objective, in this study we proposed a procedure that 
automatically learns a series of neural networks of different 
complexities on smaller data chunks and then properly combines 
them into an ensemble predictor through averaging. Based on the 
idea of progressive sampling the proposed approach starts with a 
very simple network trained on a very small sample and then 
progressively increases the model complexity and the sample size 
until the learning performance no longer improves. Our empirical 
study on a synthetic and two real-life large datasets suggests that 
the proposed method is successful in learning complex concepts 
from large datasets with low computational effort. 

1   INTRODUCTION1 

For a long time the machine learning community has focused on 
learning from datasets of moderate size ranging from less than a 
hundred to several thousand. In this scenario, the amount of 
available data is often not sufficient for optimal learning of the 
underlying relationships. Consequently, a major research 
challenge is to design a learning process that gains the most from 
the available data in terms of model selection, learning, and 
accuracy estimation. More recently, advances in data collection 
techniques allowed accumulation of large and high dimensional 
datasets in domains such as geosciences, bioinformatics, network 
intrusion detection, and credit card fraud detection. While the 
abundance of data provides an opportunity to learn high-quality 
classification and regression models, it also creates significant 
computational difficulties related to storage, processing, and 
learning from such large datasets. In such data-rich scenarios, the 
emphasis thus shifts to development of procedures for cost-
effective learning from arbitrarily large datasets.  

As one of the most powerful machine learning algorithms, 
neural networks are suitable for learning highly complex concepts 
given sufficiently large data using the back-propagation algorithm 
(and its variants) in training time that scales linearly with data size 
[1]. A common problem in learning neural networks is how to 
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determine appropriate model architecture that fits the complexity 
of the dataset at hand. In the case of single-layer feedforward 
neural networks, the problem is reduced to determining the 
number of hidden nodes. Networks with small number of hidden 
nodes may not have sufficient representational power to model the 
complexity and diversity inherent in the data, while networks with 
too many hidden neurons are very costly to train and could overfit 
the data. As reviewed in [2], this model selection problem can be 
formulated as searching for the maximum on a performance 
surface defined over all possible network architectures. This 
complex surface can be very large, nondifferentiable, noisy and 
multimodal, which makes such search ineffective and inefficient. 
Existing solutions include manual trial-and-error procedures and 
more advanced automatic methods such as constructive learning 
[3], network pruning [4], and evolutionary learning [2, 5]. 
However, although successful in learning from moderate-sized 
data, these methods were not designed to address issues related to 
learning from arbitrarily large datasets. 

When a dataset is too large to fit into computer main memory 
learning a single neural network model on all available data 
becomes extremely inefficient due to the need for accessing the 
data from secondary memory. This problem can be often avoided 
by reducing redundancies common in real-life data, i.e. selecting a 
data sample that is as small as possible but still sufficient for 
learning high-quality predictor. However, in practice determining 
such a minimal sample size nmin is not trivial. A common strategy 
for this purpose is progressive sampling [6], which was originally 
proposed for learning of decision trees. It builds a series of models 
on progressively larger samples until prediction performance no 
longer improves. The worst case efficiency of progressive 
sampling with geometric schedule is about the same as learning 
on the entire data set, while major efficiency improvements were 
reported on large scale experiments where the learning accuracy 
on progressively increasing samples reached a plateau quickly. 

However, progressive sampling alone is often insufficient 
while using neural networks to learn highly complex concepts 
from arbitrarily large datasets. As samples become much larger it 
might be appropriate to increase the model complexity to achieve 
better representation abilities. This issue is automatically dealt 
with if using learning algorithms such as decision trees. But for 
neural networks the model complexity (e.g. the number of hidden 
neurons) cannot be adjusted by the back-propagation algorithm. 
For example, the learning curve [6] of single-layer feedforward 
neural networks with 5 hidden neurons may saturate earlier (i.e. 
resulting in a smaller nmin) at a significantly lower level than those 
with 10 hidden neurons. At the same time neural networks with 10 
hidden neurons might be able to learn more accurate models for 
complex concepts. 



Ensemble methods [7, 8] provide another solution for learning 
from arbitrarily large datasets. Typically individual models are 
built on small samples or subsets of the original data, which can 
be fit into available main memory, and then combined as the final 
model. It was shown that such ensembles could achieve 
performance comparable to a single predictor built on all available 
data [8]. In addition they can readily benefit from parallel and 
distributed computing environment. However, similar problem 
remains for efficient learning: one still has to determine the 
sample size and number of hidden neurons for individual 
networks, and furthermore, the ensemble size; finding the best 
combination of these three parameters is still a non-trivial 
problem.  

In this work the objective is to address the difficulties involved 
in learning neural networks with a single hidden layer of 
sigmoidal units from arbitrarily large datasets. We proposed an 
iterative procedure based on integration of progressive sampling 
and ensemble methods. The proposed approach starts with a very 
simple network trained on a very small sample and then 
progressively increases model complexities and sample sizes until 
the learning performance no longer improves. Our empirical study 
on three real life large datasets suggests that the proposed method 
is successful in learning complex concepts from large datasets 
with low computational effort. 
 

2   METHODOLOGY 

Given an arbitrarily large dataset, our goal is to develop a cost-
effective procedure to learn an ensemble of neural networks of 
close-to-optimal accuracy with close-to-minimum computational 
cost. We describe an ensemble using three parameters: E as the 
ensemble size, H as the number of hidden neurons, and N as the 
training sample size of individual networks. Our basic assumption 
is that the accuracy of such ensembles increase with each of the 
three parameters but saturates after a certain point. Since the 
ensemble learning time using the back-propagation algorithm 
scales linearly with E, H, and N, we can use their product H*N*E 

as a good estimate of the required computational cost.  
In the space of all possible triples (H, N, E) there should exist 

an optimal combination of H = HO, N = NO and E = EO that 
results in an ensemble with the highest possible accuracy and 
minimal H*N*E. However, searching for such an optimal 
combination cannot be done efficiently since it is at least as 
difficult as searching for optimal architecture and training sample 
size for a single neural network. Thus, we approximate this 
optimal solution through an iterative procedure (Figure 1) that 
learns a series of neural networks with possibly different H and N. 
Starting with a simple network (H = 1) trained on a small sample 
(N  = 40), it gradually includes more complex networks trained on 
larger samples. In this way it greedily explores the space of H-N 
in a cost-effective fashion.   

The inputs for the proposed procedure are a large dataset D 
and certain computational constraints such as maximal allowed 
sample size (main memory) Nmax and execution time Tmax. Its 
output is an ensemble of neural networks when it converges or the 
specified computational constraints are met. The dataset D is 
initially divided into 3 disjointed sets DTR, DVS and DTS. The 
samples for training are drawn from DTR only, DVS is used for 
model evaluation and selection during the learning process, while 
DTS is used for evaluation of the final ensemble predictor. For 

simplicity, we assume that examples are stored in a random order 
in D. To draw a sample of size N, the procedure reads N examples 
sequentially from the current file pointer. If the end of file is 
encountered the file is rewinded. Note that if D is large, only a 
fraction of data would be used by the procedure.  

Procedure in Figure 1 is not restrictive to the type of learning 
problem and can be applied to both classification and regression 
problems. The only difference is in the performance measure used: 
percentage of correct classification for classification and 
coefficient of determination R2 for regression. The R2 is defined as 
1 - MSE/VAR(y), where VAR(y) is variance of the target variable y 
and MSE is the estimated mean squared error. Other measures are 
also possible, e.g. cost-based measures for classification problems.  
 

Input:   A large dataset D, upper limit for sample size (main memory) 
Nmax , upper limit for execution time Tmax 

Output: A neural network ensemble 
Divide D into 3 disjoint sets: DTR, DVS, DTS 
H1 := 1, N1:= 40, i := 0  
Repeat 

• i := i + 1 
• Draw a sample Si of size Ni  from DTR 
• Build neural network NNi of Hi hidden neurons on Si 
• Identify the best ensemble out of networks NN1, NN2, …, NNi, 

and store its accuracy on DVS in ACCi 
• if ACCi is significantly higher than ACCi-1 then  

     Hi+1 := Hi, Ni+1 := Ni 
    else 
           Hi+1 := Hi + IH  if Ni-1 = Ni 

                 Ni+1 := Ni * FA  if Hi-1 = Hi 
    end 

until convergence or  Ni ≥ Nmax  (or execution time ≥ Tmax) 
Identify the best ensemble out of the available networks 

Figure 1. The procedure for learning from large dataset given certain 
computational constraints. 

After network NNi is built at the i-th iteration, a total of 2i-1 
ensembles (including individual networks) can be constructed out 
of the available i networks through averging or majority voting. 
The ensemble with the highest accuracy on Dvs is selected and its 
accuracy stored in ACCi as the performance for this iteration. 
However, to prevent examination of the exponentially increasing 
number of ensembles after each iteration we use the assumption 
that a network trained with more examples (note that such a 
network is of the same size or larger than any network trained 
previously) should result in a more accurate ensemble. Based on 
the assumption, we evaluate only i ensembles consisting of 
networks NNj, NNj+1, …, NNi for j ranging between 1 and i.  

The values of H and N are automatically adjusted for the i+1-
th network (iteration) based on the learning performance in the 
previous 3 iterations: ACCi-2, ACCi-1 and ACCi. If the 
improvement from ACCi-1 to ACCi is statistically significant, the 
current values of H and N will be used in the next iteration. The 
reasoning is that as long as the accuracy is improving the network 
complexity and training size should be kept at the minimum. 
However, the improvement from ACCi-1 to ACCi may be 
insignificant or even negative. In this case the procedure explores 
networks with higher complexity trained on larger number of 
examples. We distinguish two different scenarios: (1) If the 
improvement from ACCi-2 to ACCi-1 was insignificant or negative 
and N was increased in the previous iteration, since it is likely that 
increasing N further may not help, number of hidden neurons H is 
increased in the following iteration; Conversely, (2) if H was 
increased in the previous iteration and the accuracy is not 
improved significantly, the training size N is increased in the 
following iteration. In our current implementation, H is always 



increased by a fixed amount of IH (IH > 0), while N is multiplied 
by a constant factor of FA (FA > 1). Although it might be more 
efficient to progressively increase H by multiplying it with a 
constant factor, we found it difficult to select an appropriate factor 
that prevents too fast increase in network complexity. 

To decide if ACCi is significantly improved over ACCi-1, we 
examine if their 90% confidence intervals (CIs) overlap. For 
classification problems the 90% CI for ACCi is calculated as 
ACCi±1.645⋅sqrt(ACCi⋅(1-ACCi)/|DVS|) [9]. For regression 
problems it is calculated as ACCi±1.645⋅SE(ACCi), where 
SE(ACCi) is the standard error estimated by bootstrapping [10]. A 
total of 1000 bootstrap replicated samples were drawn from DVS, 
accuracies (R2) were calculated on each of them, and one standard 
deviation of the observed accuracies was used as SE(ACCi). 

To detect convergence, we measure the ratio between the 
standard deviation and mean of the accuracies during the latest NC 
iterations. If this ratio is smaller than a pre-specified small 
threshold θC (θC > 0), i.e. the accuracy variation is sufficiently 
small during the last NC iterations, the procedure stops. It also 
terminates if the current training sample size Ni is larger than the 
pre-specified upper limit Nmax, or if the cumulative execution time 
exceeds Tmax.  

According to our assumption, a network built on a sample 

should have higher accuracy than those trained on smaller 
samples. In practice, this does not always hold due to the 
instability of back-propagation algorithms that produce solutions 
at different local minima. Thus, it is in general hard to estimate 
the expected performance given a certain combination of H and N 
if only a single network is built. Consequently, the decisions for 
adjusting H and N by the procedure might be misleading. An 
intuitive but effective method was used to alleviate this problem. 
If the accuracy of a network is significantly less accurate than the 
networks trained previously with comparable N and H, the 
procedure will discard it and train another one with different 
initial weights on the same sample. Here the significance of 
accuracy comparison is also estimated based on their 90% 
confidence interval overlap. However, if the re-training is 
repeated 3 times and the problem remains, the procedure proceeds 
by incrementing N and training a new network. Although in the 
worst case, we have to repeat training 3 times for each 
combination of H and N, in practice it occurs infrequently when H 
and N are fairly large. Therefore, the re-training is not likely to 
consume too much computational time. 
 

3   EXPERIMENTAL RESULTS 

Three large datasets were used in this study. The Waveform 
dataset is artificially generated benchmark dataset with 21 
continuous attributes and 3 target classes [11]. The highest 
achievable accuracy on this dataset using a Bayes optimal 
classifier is 86.8%. For this study, we generated 100,000 
examples from each of the 3 classes. The Covertype dataset [12] 
has 54 attributes and 7 target classes, and consists of 581,012 
examples. Out of the 54 attributes, 40 are binary representing soil 
type, another 4 binary ones represent wilderness area, and the 
remaining 10 are continuous topographical attributes. Seven 
classes represent forest cover types. We transformed the first 40 
binary attributes into 7 new real value attributes as in [13] to 
reduce the dimensionality. Thus the transformed dataset had 21 
attributes. The originally reported neural network accuracy was 

around 70% [12]. The MISR dataset [14] has 36 continuous 
attributes representing radiance values measured by MISR satellite 
and one continuous target variable representing retrieved aerosol 
optical depth. For this study we used MISR data consisting of 
45,449 examples retrieved over land for the 48 contiguous United 
States during a 15-day period of summer 2002.  

Each dataset was divided into 3 disjointed subsets DTR for 
training, DVS for model selection, and DTS for testing. For 
Waveform and Covertype datasets, the number of model selection 
and testing examples |DVS| and |DTS| were 10,000; while for MISR 
datasets |DVS| and |DTS| were 5,000 due to somewhat smaller size 
of the dataset. Samples for training of individual neural networks 
were randomly drawn from DTR without replacement. 75% of each 
sample was used for neural network training and the remaining 
25% as the early stopping set. The resilient back-propagation 
algorithm [15] was used with default learning parameters and for 
maximum of 300 epochs. The reported accuracy measure for 
MISR experiments is coefficient of determination R2. 

We first examined the effect of number of hidden neurons (H) 
and sample sizes (N) on learning individual neural networks and 
their ensembles. For each combination of H and N, we trained 20 
neural networks on randomly sampled data from DTR and tested 
their accuracy on DTS. For each pair (H, N) in Table 1 we report (1) 
accuracy (mean and standard deviation) of individual networks; 
and (2) accuracy of an ensemble of the 20 networks (E = 20).  

Several interesting conclusions could be made from the 
obtained results. First, ensemble accuracy was higher than that of 
the individual neural networks over the whole range of pairs (H, N) 
with the difference being more pronounced at small sample sizes. 
An interesting phenomenon occurs on MISR data where 
ensembles of worse-than trivial but complex predictors resulted in 
considerably higher accuracy. Second, it was evident that problem 
complexity has a major influence on the needed training data size 
and model complexity; while an ensemble of neural networks 
with 10 hidden nodes each trained on 400 examples seems to be 
sufficient for achieving optimal accuracy on Waveform data, 
accuracy on Covertype and MISR data continually increased over 
the whole range of data sizes and numbers of hidden neurons. It is 
worth observing that on Covertype data the ensemble with H = 40 
and N = 12,800 achieved 7% higher accuracy than originally 
reported at [12]. 

Probably the most interesting result is that, given a fixed 
computational effort measured as H*N*E, neural network 
ensembles with E = 20 components appear to be inferior to 
individual neural networks. For example, on Covertype and MISR 
data single networks with 10 hidden nodes trained on 12,800 
examples had significantly higher accuracy than ensembles of 20 
networks each trained with 800 examples for any choice of H. 
Additional study of this phenomenon (data not shown) confirmed 
that, for fixed H*N*E, individual neural networks are surprisingly 
competitive to neural network ensembles with any E > 1. 

The cost-efficient learning procedure described in Figure 1 has 
several parameters that should be selected prior to the 
experimental evaluation. We performed a preliminary exploratory 
study over the Waveform dataset to decide on the appropriate 
parameter choice. Based on this study, for all datasets we used 4 
as the increment amount IH for H and 1.5 as the multiplication 
factor FA for N. The two parameters for convergence detection 
were fixed to NC = 5 and θC = 0.0025. It is worth noting that the 
exploratory study indicated that performance of the proposed 
procedure was fairly robust to the parameter choice. In all 



experiments, only the sample size (main memory) upper limit of 
Nmax = 20,000 was used.  

Table 1.    The effect of number of hidden nodes H and sample size N for 
single neural networks and ensembles of 20 components. The accuracy (%) 

is reported for Waveform and Covertype and,  R2  for MISR dataset. 
H 

       N 1 10 40 
50 51.5±8.1 / 75.3 75.7±3.3 / 84.8 77.2±2.9 / 85.5 

100 49.9±9.8 / 81.6 79.3±1.9 / 86.2 80.9±1.6 / 86.3 
200 52.9±7.4 / 83.9 81.9±1.0 / 86.4 83.0±1.0 / 86.3 
400 56.1±4.5 / 83.9 83.9±0.5 / 86.7 84.3±0.4 / 86.6 
800 57.7±3.1 / 83.6 85.0±0.5 / 86.9 85.2±0.6 / 86.8 

1600 59.8±2.4 / 84.4 85.6±0.3 / 86.8 85.9±0.2 / 86.7 
3200 59.2±1.5 / 83.9 86.2±0.3 / 87.0 86.2±0.2 / 86.8 
6400 59.6±1.6 / 83.9 86.4±0.2 / 87.1 86.4±0.2 / 86.9 

12800 60.1±1.2 / 84.1 86.3±0.2 / 87.1 86.5±0.2 / 86.9 
(a) Waveform 

H 
      N 1 10 40 

50 29.3±18.7 / 43.1 51.2±4.0 / 62.6 51.5±3.9 / 62.7 
100 38.7±15.2 / 55.6 57.6±3.4 / 67.4 56.7±2.7 / 66.6 
200 49.0±09.9 / 63.3 61.2±2.1 / 69.0 61.1±2.5 / 68.8 
400 41.4±19.7 / 66.0 64.5±2.0 / 70.3 64.9±2.0 / 70.4 
800 46.7±20.4 / 68.1 66.9±1.7 / 70.6 67.9±0.9 / 71.1 

1600 46.2±20.4 / 65.0 69.2±0.8 / 71.4 69.7±0.6 / 72.3 
3200 53.6±13.7 / 67.0 70.8±0.7 / 72.6 71.3±0.4 / 73.5 
6400 53.7±14.9 / 68.7 72.1±0.6 / 73.3 72.8±0.6 / 74.8 

12800 52.2±15.0 / 68.5 73.1±0.4 / 74.0 74.9±0.6 / 77.1 
(b) Covertype 

H 
      N 1 10 40 

50 0.40±0.15 / 0.54 -0.12±0.41/0.35 -3.39±2.02/-0.08 
100 0.43±0.11 / 0.59 0.23±0.21/0.53 -0.60±0.63/0.31 
200 0.56±0.05 / 0.63 0.38±0.14/0.64 -0.07±0.18/0.53 
400 0.61±0.08 / 0.65 0.57±0.08/0.66 0.23±0.13/0.63 
800 0.63±0.06 / 0.67 0.59±0.04/0.65 0.30±0.30/0.64 

1600 0.66±0.05 / 0.70 0.65±0.08/0.73 0.60±0.16/0.72 
3200 0.68±0.04 / 0.71 0.75±0.04/0.80 0.64±0.16/0.78 
6400 0.71±0.01 / 0.73 0.79±0.02/0.82 0.77±0.06/0.83 

12800 0.72±0.01 / 0.74 0.82±0.03/0.84 0.80±0.03/0.85 
(c) MISR 

The procedure was repeated 50 times on each dataset until its  
convergence or until the training sample size exceeded the upper 
limit Nmax. For comparison, we also trained ensemble predictors of 
size E ∈ {1, 5, 10} using neural networks with H ∈ {1, 5, 10, 20, 
40, 80} trained with N ∈ {200, 400, 800, 1600, …, 204800} 
examples. Since training an ensemble of neural networks based on 
the resilient backpropagation algorithm has time complexity of 
O(H*N*E), the product H*N*E provides a good estimate of the 
total computation effort. In Figure 2 we show the scatter plot of 
prediction accuracy (percent correct or R2) vs. H*N*E for each 
triple (H, N, E); each ensemble predictor is represented as a single 
point on the figure. For ensembles constructed by our approach, 
we summed products H*N for all the networks trained during the 
learning process, and represented the resulting accuracy vs. 
sum(H*N) as a circle at the same figure. 

From Figure 2, a similar behavior can be observed for all three 
datasets, i.e. the ensembles occupy an area that resembles the 
shape of a learning curve [6]. At relatively small values of H*N*E, 
the highest achievable accuracy is gradually improved with 
increase in H*N*E. Starting from a certain critical value of 
H*N*E that is largely dependent on the dataset properties, a 
saturation region is reached where only marginal accuracy 
improvements are possible with increase in H*N*E. This critical 

value and the corresponding triple (H, N, E) that results in an 
ensemble with maximum accuracy can be considered as the 
optimal tradeoff between accuracy and computational costs of 
learning. We refer to the optimal choice of (H, N, E) as the oracle 
solution. Successful cost-effective learning procedure should be 

Figure 2. Evaluation of the proposed procedure. 
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able to produce an accurate ensemble with a comparable 
computational effort. 

As can be seen from Figure 2, most circles representing the 
ensembles constructed using our procedure are located close to 
the upper boundary of the learning curve area near the critical 
H*N*E region. More specifically, all 50 runs of our procedure 
achieved near-optimal accuracy on Waveform and MISR datasets 
after the computational effort that is of the same order of 
magnitude as the oracle solution. In the case of Covertype data, 
the proposed procedure resulted in ensembles slightly inferior to 
the oracle solution (that exceeded 80%), but with near one order 
of magnitude smaller computational effort. This behavior could be 
explained by the sample size limit of Nmax = 20,000 set as the 
procedure termination criterion. We note that oracle solution 
corresponded to an ensemble of 10 neural networks with 80 
hidden nodes trained with 204,800 examples. We also observe 
that in several runs for Covertype data the procedure converged 
too early with the resulting accuracy below 75%. This result 
indicates that additional improvements of the proposed procedure 
might be necessary. 

In Table 2 we show the summary information based on the 50 
runs of the proposed procedure. Ntotal is the total number of 
examples used for training all individual networks including those 
that are not selected for the resulting ensemble predictor. Note 
that for MISR data Ntotal is much larger than its small original size 
(|DTR| = 35,449) since it was scanned 3 times during learning. 
Accuracy is the prediction accuracy estimated on DTS (R

2 is used 
for MISR dataset). For Waveform data the achieved accuracy 
reached previously reported 86.8% score of the optimal Bayes 
classifier. For Covertype data the obtained accuracy was much 
higher than the previously reported 70%, and in most cases 
exceeds 77%. The remaining 3 columns provide description of the 
component networks included in the resulting ensemble. This 
confirms that our procedure successfully adapted to the inherent 
data complexity by constructing relatively simple neural networks 
on small training datasets for Waveform data, and relatively 
complex networks on much larger training datasets for more 
difficult Covertype and MISR datasets.  

Table 2.    Summary of 50 runs of the proposed procedure on 3 datasets. 
Dataset Ntotal Accuracy E N H 

waveform 12753 86.1±0.1% 6-12 649-2950 10-24 
covertype 86309 78.0±1.5% 2-6 9983-14022 31-37 

MISR 100815 0.85±0.01 4-8 7854-14187 18-26 
Ntotal – total number of examples used, Accuracy – prediction accuracy on DTS, E – final ensemble 
size   N – individual sample size, H – number of hidden neurons for single NN 

4   CONCLUSIONS 

In this study we proposed a procedure for cost-effective learning 
of an ensemble of single-layer feedforward neural network 
predictors from arbitrary large datasets. It builds a series of 
networks on samples much smaller than the original data and thus 
avoids the computational overhead associated with learning a 
complex network using all available data. The differences 
between our procedure and progressive sampling are in 
automatically adjusting model complexity and utilizing the 
previously built networks to guide the learning process. As our 
experimental study suggested, the proposed approach could learn 
predictors with near-optimal accuracy with high probability while 
requiring only modest computational effort that is a function of 
the inherent complexity of the learning task at hand.  

We are currently exploring several avenues of research aimed 
at achieving more robust and computationally cheaper procedures 
for learning from very large datasets. The procedure reported in 
this study has a number of free parameters that need to be 
appropriately selected prior to its application. Our next task is to 
avoid parameter selection process by determining the default 
values that work over a large range of domains, and by developing 
parameter selection techniques adaptable to the specific 
application. As an example, it would be beneficial if model 
complexity and training data size increments could be decreased 
when the learning process is close to convergence. While the 
current procedure corresponds to the static learning scenarios, we 
are exploring extensions that would allow its use to data mining 
applications over data streams with concept drifts. 
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