
Towards Efficient Learning of Neural Network Ensembles
from Arbitrarily Large Datasets

Kang Peng, Zoran Obradovic and Slobodan Vucetic1

Abstract. Advances in data collection technologies allow
accumulation of large and high dimensional datasets and provide
opportunities for learning high quality classification and
regression models. However, supervised learning from such data
raises significant computational challenges including inability to
preserve the data in computer main memory and the need for
optimizing model parameters within given time constraints. For
certain types of prediction models techniques have been
developed for learning from large datasets, but few of them
address efficient learning of neural networks. Towards this
objective, in this study we proposed a procedure that
automatically learns a series of neural networks of different
complexities on smaller data chunks and then properly combines
them into an ensemble predictor through averaging. Based on the
idea of progressive sampling the proposed approach starts with a
very simple network trained on a very small sample and then
progressively increases the model complexity and the sample size
until the learning performance no longer improves. Our empirical
study on a synthetic and two real-life large datasets suggests that
the proposed method is successful in learning complex concepts
from large datasets with low computational effort.

1 INTRODUCTION1

For a long time the machine learning community has focused on
learning from datasets of moderate size ranging from less than a
hundred to several thousand. In this scenario, the amount of
available data is often not sufficient for optimal learning of the
underlying relationships. Consequently, a major research
challenge is to design a learning process that gains the most from
the available data in terms of model selection, learning, and
accuracy estimation. More recently, advances in data collection
techniques allowed accumulation of large and high dimensional
datasets in domains such as geosciences, bioinformatics, network
intrusion detection, and credit card fraud detection. While the
abundance of data provides an opportunity to learn high-quality
classification and regression models, it also creates significant
computational difficulties related to storage, processing, and
learning from such large datasets. In such data-rich scenarios, the
emphasis thus shifts to development of procedures for cost-
effective learning from arbitrarily large datasets.

As one of the most powerful machine learning algorithms,
neural networks are suitable for learning highly complex concepts
given sufficiently large data using the back-propagation algorithm
(and its variants) in training time that scales linearly with data size
[1]. A common problem in learning neural networks is how to

1 Center for Information Science and Technology, Temple University,

Philadelphia, PA, USA, {kangpeng, zoran, vucetic}@ist.temple.edu

determine appropriate model architecture that fits the complexity
of the dataset at hand. In the case of single-layer feedforward
neural networks, the problem is reduced to determining the
number of hidden nodes. Networks with small number of hidden
nodes may not have sufficient representational power to model the
complexity and diversity inherent in the data, while networks with
too many hidden neurons are very costly to train and could overfit
the data. As reviewed in [2], this model selection problem can be
formulated as searching for the maximum on a performance
surface defined over all possible network architectures. This
complex surface can be very large, nondifferentiable, noisy and
multimodal, which makes such search ineffective and inefficient.
Existing solutions include manual trial-and-error procedures and
more advanced automatic methods such as constructive learning
[3], network pruning [4], and evolutionary learning [2, 5].
However, although successful in learning from moderate-sized
data, these methods were not designed to address issues related to
learning from arbitrarily large datasets.

When a dataset is too large to fit into computer main memory
learning a single neural network model on all available data
becomes extremely inefficient due to the need for accessing the
data from secondary memory. This problem can be often avoided
by reducing redundancies common in real-life data, i.e. selecting a
data sample that is as small as possible but still sufficient for
learning high-quality predictor. However, in practice determining
such a minimal sample size nmin is not trivial. A common strategy
for this purpose is progressive sampling [6], which was originally
proposed for learning of decision trees. It builds a series of models
on progressively larger samples until prediction performance no
longer improves. The worst case efficiency of progressive
sampling with geometric schedule is about the same as learning
on the entire data set, while major efficiency improvements were
reported on large scale experiments where the learning accuracy
on progressively increasing samples reached a plateau quickly.

However, progressive sampling alone is often insufficient
while using neural networks to learn highly complex concepts
from arbitrarily large datasets. As samples become much larger it
might be appropriate to increase the model complexity to achieve
better representation abilities. This issue is automatically dealt
with if using learning algorithms such as decision trees. But for
neural networks the model complexity (e.g. the number of hidden
neurons) cannot be adjusted by the back-propagation algorithm.
For example, the learning curve [6] of single-layer feedforward
neural networks with 5 hidden neurons may saturate earlier (i.e.
resulting in a smaller nmin) at a significantly lower level than those
with 10 hidden neurons. At the same time neural networks with 10
hidden neurons might be able to learn more accurate models for
complex concepts.

Ensemble methods [7, 8] provide another solution for learning
from arbitrarily large datasets. Typically individual models are
built on small samples or subsets of the original data, which can
be fit into available main memory, and then combined as the final
model. It was shown that such ensembles could achieve
performance comparable to a single predictor built on all available
data [8]. In addition they can readily benefit from parallel and
distributed computing environment. However, similar problem
remains for efficient learning: one still has to determine the
sample size and number of hidden neurons for individual
networks, and furthermore, the ensemble size; finding the best
combination of these three parameters is still a non-trivial
problem.

In this work the objective is to address the difficulties involved
in learning neural networks with a single hidden layer of
sigmoidal units from arbitrarily large datasets. We proposed an
iterative procedure based on integration of progressive sampling
and ensemble methods. The proposed approach starts with a very
simple network trained on a very small sample and then
progressively increases model complexities and sample sizes until
the learning performance no longer improves. Our empirical study
on three real life large datasets suggests that the proposed method
is successful in learning complex concepts from large datasets
with low computational effort.

2 METHODOLOGY

Given an arbitrarily large dataset, our goal is to develop a cost-
effective procedure to learn an ensemble of neural networks of
close-to-optimal accuracy with close-to-minimum computational
cost. We describe an ensemble using three parameters: E as the
ensemble size, H as the number of hidden neurons, and N as the
training sample size of individual networks. Our basic assumption
is that the accuracy of such ensembles increase with each of the
three parameters but saturates after a certain point. Since the
ensemble learning time using the back-propagation algorithm
scales linearly with E, H, and N, we can use their product H*N*E

as a good estimate of the required computational cost.
In the space of all possible triples (H, N, E) there should exist

an optimal combination of H = HO, N = NO and E = EO that
results in an ensemble with the highest possible accuracy and
minimal H*N*E. However, searching for such an optimal
combination cannot be done efficiently since it is at least as
difficult as searching for optimal architecture and training sample
size for a single neural network. Thus, we approximate this
optimal solution through an iterative procedure (Figure 1) that
learns a series of neural networks with possibly different H and N.
Starting with a simple network (H = 1) trained on a small sample
(N = 40), it gradually includes more complex networks trained on
larger samples. In this way it greedily explores the space of H-N
in a cost-effective fashion.

The inputs for the proposed procedure are a large dataset D
and certain computational constraints such as maximal allowed
sample size (main memory) Nmax and execution time Tmax. Its
output is an ensemble of neural networks when it converges or the
specified computational constraints are met. The dataset D is
initially divided into 3 disjointed sets DTR, DVS and DTS. The
samples for training are drawn from DTR only, DVS is used for
model evaluation and selection during the learning process, while
DTS is used for evaluation of the final ensemble predictor. For

simplicity, we assume that examples are stored in a random order
in D. To draw a sample of size N, the procedure reads N examples
sequentially from the current file pointer. If the end of file is
encountered the file is rewinded. Note that if D is large, only a
fraction of data would be used by the procedure.

Procedure in Figure 1 is not restrictive to the type of learning
problem and can be applied to both classification and regression
problems. The only difference is in the performance measure used:
percentage of correct classification for classification and
coefficient of determination R2 for regression. The R2 is defined as
1 - MSE/VAR(y), where VAR(y) is variance of the target variable y
and MSE is the estimated mean squared error. Other measures are
also possible, e.g. cost-based measures for classification problems.

Input: A large dataset D, upper limit for sample size (main memory)
Nmax , upper limit for execution time Tmax

Output: A neural network ensemble
Divide D into 3 disjoint sets: DTR, DVS, DTS
H1 := 1, N1:= 40, i := 0
Repeat

• i := i + 1
• Draw a sample Si of size Ni from DTR
• Build neural network NNi of Hi hidden neurons on Si
• Identify the best ensemble out of networks NN1, NN2, …, NNi,

and store its accuracy on DVS in ACCi
• if ACCi is significantly higher than ACCi-1 then

 Hi+1 := Hi, Ni+1 := Ni
 else
 Hi+1 := Hi + IH if Ni-1 = Ni

 Ni+1 := Ni * FA if Hi-1 = Hi
 end

until convergence or Ni ≥ Nmax (or execution time ≥ Tmax)
Identify the best ensemble out of the available networks

Figure 1. The procedure for learning from large dataset given certain
computational constraints.

After network NNi is built at the i-th iteration, a total of 2i-1
ensembles (including individual networks) can be constructed out
of the available i networks through averging or majority voting.
The ensemble with the highest accuracy on Dvs is selected and its
accuracy stored in ACCi as the performance for this iteration.
However, to prevent examination of the exponentially increasing
number of ensembles after each iteration we use the assumption
that a network trained with more examples (note that such a
network is of the same size or larger than any network trained
previously) should result in a more accurate ensemble. Based on
the assumption, we evaluate only i ensembles consisting of
networks NNj, NNj+1, …, NNi for j ranging between 1 and i.

The values of H and N are automatically adjusted for the i+1-
th network (iteration) based on the learning performance in the
previous 3 iterations: ACCi-2, ACCi-1 and ACCi. If the
improvement from ACCi-1 to ACCi is statistically significant, the
current values of H and N will be used in the next iteration. The
reasoning is that as long as the accuracy is improving the network
complexity and training size should be kept at the minimum.
However, the improvement from ACCi-1 to ACCi may be
insignificant or even negative. In this case the procedure explores
networks with higher complexity trained on larger number of
examples. We distinguish two different scenarios: (1) If the
improvement from ACCi-2 to ACCi-1 was insignificant or negative
and N was increased in the previous iteration, since it is likely that
increasing N further may not help, number of hidden neurons H is
increased in the following iteration; Conversely, (2) if H was
increased in the previous iteration and the accuracy is not
improved significantly, the training size N is increased in the
following iteration. In our current implementation, H is always

increased by a fixed amount of IH (IH > 0), while N is multiplied
by a constant factor of FA (FA > 1). Although it might be more
efficient to progressively increase H by multiplying it with a
constant factor, we found it difficult to select an appropriate factor
that prevents too fast increase in network complexity.

To decide if ACCi is significantly improved over ACCi-1, we
examine if their 90% confidence intervals (CIs) overlap. For
classification problems the 90% CI for ACCi is calculated as
ACCi±1.645⋅sqrt(ACCi⋅(1-ACCi)/|DVS|) [9]. For regression
problems it is calculated as ACCi±1.645⋅SE(ACCi), where
SE(ACCi) is the standard error estimated by bootstrapping [10]. A
total of 1000 bootstrap replicated samples were drawn from DVS,
accuracies (R2) were calculated on each of them, and one standard
deviation of the observed accuracies was used as SE(ACCi).

To detect convergence, we measure the ratio between the
standard deviation and mean of the accuracies during the latest NC
iterations. If this ratio is smaller than a pre-specified small
threshold θC (θC > 0), i.e. the accuracy variation is sufficiently
small during the last NC iterations, the procedure stops. It also
terminates if the current training sample size Ni is larger than the
pre-specified upper limit Nmax, or if the cumulative execution time
exceeds Tmax.

According to our assumption, a network built on a sample

should have higher accuracy than those trained on smaller
samples. In practice, this does not always hold due to the
instability of back-propagation algorithms that produce solutions
at different local minima. Thus, it is in general hard to estimate
the expected performance given a certain combination of H and N
if only a single network is built. Consequently, the decisions for
adjusting H and N by the procedure might be misleading. An
intuitive but effective method was used to alleviate this problem.
If the accuracy of a network is significantly less accurate than the
networks trained previously with comparable N and H, the
procedure will discard it and train another one with different
initial weights on the same sample. Here the significance of
accuracy comparison is also estimated based on their 90%
confidence interval overlap. However, if the re-training is
repeated 3 times and the problem remains, the procedure proceeds
by incrementing N and training a new network. Although in the
worst case, we have to repeat training 3 times for each
combination of H and N, in practice it occurs infrequently when H
and N are fairly large. Therefore, the re-training is not likely to
consume too much computational time.

3 EXPERIMENTAL RESULTS

Three large datasets were used in this study. The Waveform
dataset is artificially generated benchmark dataset with 21
continuous attributes and 3 target classes [11]. The highest
achievable accuracy on this dataset using a Bayes optimal
classifier is 86.8%. For this study, we generated 100,000
examples from each of the 3 classes. The Covertype dataset [12]
has 54 attributes and 7 target classes, and consists of 581,012
examples. Out of the 54 attributes, 40 are binary representing soil
type, another 4 binary ones represent wilderness area, and the
remaining 10 are continuous topographical attributes. Seven
classes represent forest cover types. We transformed the first 40
binary attributes into 7 new real value attributes as in [13] to
reduce the dimensionality. Thus the transformed dataset had 21
attributes. The originally reported neural network accuracy was

around 70% [12]. The MISR dataset [14] has 36 continuous
attributes representing radiance values measured by MISR satellite
and one continuous target variable representing retrieved aerosol
optical depth. For this study we used MISR data consisting of
45,449 examples retrieved over land for the 48 contiguous United
States during a 15-day period of summer 2002.

Each dataset was divided into 3 disjointed subsets DTR for
training, DVS for model selection, and DTS for testing. For
Waveform and Covertype datasets, the number of model selection
and testing examples |DVS| and |DTS| were 10,000; while for MISR
datasets |DVS| and |DTS| were 5,000 due to somewhat smaller size
of the dataset. Samples for training of individual neural networks
were randomly drawn from DTR without replacement. 75% of each
sample was used for neural network training and the remaining
25% as the early stopping set. The resilient back-propagation
algorithm [15] was used with default learning parameters and for
maximum of 300 epochs. The reported accuracy measure for
MISR experiments is coefficient of determination R2.

We first examined the effect of number of hidden neurons (H)
and sample sizes (N) on learning individual neural networks and
their ensembles. For each combination of H and N, we trained 20
neural networks on randomly sampled data from DTR and tested
their accuracy on DTS. For each pair (H, N) in Table 1 we report (1)
accuracy (mean and standard deviation) of individual networks;
and (2) accuracy of an ensemble of the 20 networks (E = 20).

Several interesting conclusions could be made from the
obtained results. First, ensemble accuracy was higher than that of
the individual neural networks over the whole range of pairs (H, N)
with the difference being more pronounced at small sample sizes.
An interesting phenomenon occurs on MISR data where
ensembles of worse-than trivial but complex predictors resulted in
considerably higher accuracy. Second, it was evident that problem
complexity has a major influence on the needed training data size
and model complexity; while an ensemble of neural networks
with 10 hidden nodes each trained on 400 examples seems to be
sufficient for achieving optimal accuracy on Waveform data,
accuracy on Covertype and MISR data continually increased over
the whole range of data sizes and numbers of hidden neurons. It is
worth observing that on Covertype data the ensemble with H = 40
and N = 12,800 achieved 7% higher accuracy than originally
reported at [12].

Probably the most interesting result is that, given a fixed
computational effort measured as H*N*E, neural network
ensembles with E = 20 components appear to be inferior to
individual neural networks. For example, on Covertype and MISR
data single networks with 10 hidden nodes trained on 12,800
examples had significantly higher accuracy than ensembles of 20
networks each trained with 800 examples for any choice of H.
Additional study of this phenomenon (data not shown) confirmed
that, for fixed H*N*E, individual neural networks are surprisingly
competitive to neural network ensembles with any E > 1.

The cost-efficient learning procedure described in Figure 1 has
several parameters that should be selected prior to the
experimental evaluation. We performed a preliminary exploratory
study over the Waveform dataset to decide on the appropriate
parameter choice. Based on this study, for all datasets we used 4
as the increment amount IH for H and 1.5 as the multiplication
factor FA for N. The two parameters for convergence detection
were fixed to NC = 5 and θC = 0.0025. It is worth noting that the
exploratory study indicated that performance of the proposed
procedure was fairly robust to the parameter choice. In all

experiments, only the sample size (main memory) upper limit of
Nmax = 20,000 was used.

Table 1. The effect of number of hidden nodes H and sample size N for
single neural networks and ensembles of 20 components. The accuracy (%)

is reported for Waveform and Covertype and, R2 for MISR dataset.
H

 N 1 10 40
50 51.5±8.1 / 75.3 75.7±3.3 / 84.8 77.2±2.9 / 85.5

100 49.9±9.8 / 81.6 79.3±1.9 / 86.2 80.9±1.6 / 86.3
200 52.9±7.4 / 83.9 81.9±1.0 / 86.4 83.0±1.0 / 86.3
400 56.1±4.5 / 83.9 83.9±0.5 / 86.7 84.3±0.4 / 86.6
800 57.7±3.1 / 83.6 85.0±0.5 / 86.9 85.2±0.6 / 86.8

1600 59.8±2.4 / 84.4 85.6±0.3 / 86.8 85.9±0.2 / 86.7
3200 59.2±1.5 / 83.9 86.2±0.3 / 87.0 86.2±0.2 / 86.8
6400 59.6±1.6 / 83.9 86.4±0.2 / 87.1 86.4±0.2 / 86.9

12800 60.1±1.2 / 84.1 86.3±0.2 / 87.1 86.5±0.2 / 86.9
(a) Waveform

H
 N 1 10 40

50 29.3±18.7 / 43.1 51.2±4.0 / 62.6 51.5±3.9 / 62.7
100 38.7±15.2 / 55.6 57.6±3.4 / 67.4 56.7±2.7 / 66.6
200 49.0±09.9 / 63.3 61.2±2.1 / 69.0 61.1±2.5 / 68.8
400 41.4±19.7 / 66.0 64.5±2.0 / 70.3 64.9±2.0 / 70.4
800 46.7±20.4 / 68.1 66.9±1.7 / 70.6 67.9±0.9 / 71.1

1600 46.2±20.4 / 65.0 69.2±0.8 / 71.4 69.7±0.6 / 72.3
3200 53.6±13.7 / 67.0 70.8±0.7 / 72.6 71.3±0.4 / 73.5
6400 53.7±14.9 / 68.7 72.1±0.6 / 73.3 72.8±0.6 / 74.8

12800 52.2±15.0 / 68.5 73.1±0.4 / 74.0 74.9±0.6 / 77.1
(b) Covertype

H
 N 1 10 40

50 0.40±0.15 / 0.54 -0.12±0.41/0.35 -3.39±2.02/-0.08
100 0.43±0.11 / 0.59 0.23±0.21/0.53 -0.60±0.63/0.31
200 0.56±0.05 / 0.63 0.38±0.14/0.64 -0.07±0.18/0.53
400 0.61±0.08 / 0.65 0.57±0.08/0.66 0.23±0.13/0.63
800 0.63±0.06 / 0.67 0.59±0.04/0.65 0.30±0.30/0.64

1600 0.66±0.05 / 0.70 0.65±0.08/0.73 0.60±0.16/0.72
3200 0.68±0.04 / 0.71 0.75±0.04/0.80 0.64±0.16/0.78
6400 0.71±0.01 / 0.73 0.79±0.02/0.82 0.77±0.06/0.83

12800 0.72±0.01 / 0.74 0.82±0.03/0.84 0.80±0.03/0.85
(c) MISR

The procedure was repeated 50 times on each dataset until its
convergence or until the training sample size exceeded the upper
limit Nmax. For comparison, we also trained ensemble predictors of
size E ∈ {1, 5, 10} using neural networks with H ∈ {1, 5, 10, 20,
40, 80} trained with N ∈ {200, 400, 800, 1600, …, 204800}
examples. Since training an ensemble of neural networks based on
the resilient backpropagation algorithm has time complexity of
O(H*N*E), the product H*N*E provides a good estimate of the
total computation effort. In Figure 2 we show the scatter plot of
prediction accuracy (percent correct or R2) vs. H*N*E for each
triple (H, N, E); each ensemble predictor is represented as a single
point on the figure. For ensembles constructed by our approach,
we summed products H*N for all the networks trained during the
learning process, and represented the resulting accuracy vs.
sum(H*N) as a circle at the same figure.

From Figure 2, a similar behavior can be observed for all three
datasets, i.e. the ensembles occupy an area that resembles the
shape of a learning curve [6]. At relatively small values of H*N*E,
the highest achievable accuracy is gradually improved with
increase in H*N*E. Starting from a certain critical value of
H*N*E that is largely dependent on the dataset properties, a
saturation region is reached where only marginal accuracy
improvements are possible with increase in H*N*E. This critical

value and the corresponding triple (H, N, E) that results in an
ensemble with maximum accuracy can be considered as the
optimal tradeoff between accuracy and computational costs of
learning. We refer to the optimal choice of (H, N, E) as the oracle
solution. Successful cost-effective learning procedure should be

Figure 2. Evaluation of the proposed procedure.

(c) MISR

10
3

10
4

10
5

10
6

10
7

10
8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H*N
S
*N

E

R
2

proposed procedure
single NN
ensemble of 5 NN
ensemble of 10 NN

H*N*E

(b) Covertype

10
3

10
4

10
5

10
6

10
7

10
8

60

65

70

75

80

H*N
S
*N

E

ac
cu

ra
cy

 (%
)

proposed procedure
single NN
ensemble of 5 NN
ensemble of 10 NN

H*N*E

(a) Waveform

10
3

10
4

10
5

10
6

10
7

10
8

81

82

83

84

85

86

87

H*N
S
*N

E

ac
cu

ra
cy

 (%
)

proposed procedure
single NN
ensemble of 5 NN
ensemble of 10 NN

H*N*E

able to produce an accurate ensemble with a comparable
computational effort.

As can be seen from Figure 2, most circles representing the
ensembles constructed using our procedure are located close to
the upper boundary of the learning curve area near the critical
H*N*E region. More specifically, all 50 runs of our procedure
achieved near-optimal accuracy on Waveform and MISR datasets
after the computational effort that is of the same order of
magnitude as the oracle solution. In the case of Covertype data,
the proposed procedure resulted in ensembles slightly inferior to
the oracle solution (that exceeded 80%), but with near one order
of magnitude smaller computational effort. This behavior could be
explained by the sample size limit of Nmax = 20,000 set as the
procedure termination criterion. We note that oracle solution
corresponded to an ensemble of 10 neural networks with 80
hidden nodes trained with 204,800 examples. We also observe
that in several runs for Covertype data the procedure converged
too early with the resulting accuracy below 75%. This result
indicates that additional improvements of the proposed procedure
might be necessary.

In Table 2 we show the summary information based on the 50
runs of the proposed procedure. Ntotal is the total number of
examples used for training all individual networks including those
that are not selected for the resulting ensemble predictor. Note
that for MISR data Ntotal is much larger than its small original size
(|DTR| = 35,449) since it was scanned 3 times during learning.
Accuracy is the prediction accuracy estimated on DTS (R

2 is used
for MISR dataset). For Waveform data the achieved accuracy
reached previously reported 86.8% score of the optimal Bayes
classifier. For Covertype data the obtained accuracy was much
higher than the previously reported 70%, and in most cases
exceeds 77%. The remaining 3 columns provide description of the
component networks included in the resulting ensemble. This
confirms that our procedure successfully adapted to the inherent
data complexity by constructing relatively simple neural networks
on small training datasets for Waveform data, and relatively
complex networks on much larger training datasets for more
difficult Covertype and MISR datasets.

Table 2. Summary of 50 runs of the proposed procedure on 3 datasets.
Dataset Ntotal Accuracy E N H

waveform 12753 86.1±0.1% 6-12 649-2950 10-24
covertype 86309 78.0±1.5% 2-6 9983-14022 31-37

MISR 100815 0.85±0.01 4-8 7854-14187 18-26
Ntotal – total number of examples used, Accuracy – prediction accuracy on DTS, E – final ensemble
size N – individual sample size, H – number of hidden neurons for single NN

4 CONCLUSIONS

In this study we proposed a procedure for cost-effective learning
of an ensemble of single-layer feedforward neural network
predictors from arbitrary large datasets. It builds a series of
networks on samples much smaller than the original data and thus
avoids the computational overhead associated with learning a
complex network using all available data. The differences
between our procedure and progressive sampling are in
automatically adjusting model complexity and utilizing the
previously built networks to guide the learning process. As our
experimental study suggested, the proposed approach could learn
predictors with near-optimal accuracy with high probability while
requiring only modest computational effort that is a function of
the inherent complexity of the learning task at hand.

We are currently exploring several avenues of research aimed
at achieving more robust and computationally cheaper procedures
for learning from very large datasets. The procedure reported in
this study has a number of free parameters that need to be
appropriately selected prior to its application. Our next task is to
avoid parameter selection process by determining the default
values that work over a large range of domains, and by developing
parameter selection techniques adaptable to the specific
application. As an example, it would be beneficial if model
complexity and training data size increments could be decreased
when the learning process is close to convergence. While the
current procedure corresponds to the static learning scenarios, we
are exploring extensions that would allow its use to data mining
applications over data streams with concept drifts.

ACKNOWLEDGEMENTS

This research was supported in part by the NSF grant IIS-0219736
to Z. Obradovic and S. Vucetic and Temple University New
Directions Studies grant to Z. Obradovic. We thank Dr. Amy
Braverman for help with obtaining MISR data.

REFERENCES
[1] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, Oxford, 1995.
[2] G.F. Miller, P.M. Todd and S.U. Hegde, ‘Designing Neural

Networks Using Genetic Algorithms’, Proc. 3rd Int’l Conf. on
Genetic Algorithms and Their Applications, J. D. Schaffer, Ed. San
Mateo, CA, Morgan Kaufmann, 379–384, 1989.

[3] S.E. Fahlman and C. Lebiere, ‘The Cascade-Correlation Learning
Architecture’, Advances in Neural Information Processing Systems 2,
Morgan Kaufmann, San Mateo, CA, 524-532, 1990.

[4] B. Hassibi, D.G. Stork and G.J. Wolff, ‘Optimal Brain Surgeon and
General Network Pruning’, Proc. IEEE Int’l Conf. on Neural
Networks, San Francisco, 1, 293-299,1993.

[5] X. Yao, ‘Evolving Artificial Neural Networks’, Proc. of the IEEE,
IEEE Press, 87(9),1423-1447,1999.

[6] F. Provost, D. Jensen and T. Oates, ‘Efficient Progressive Sampling’,
Proc. 5th Int'l Conf. on Knowledge Discovery and Data Mining, 23-
32, 1999.

[7] L. Breiman, ‘Pasting Small Votes for Classification in large
databases and on-line’, Machine Learning, 36, 85-103, 1999.

[8] N.V. Chawla, T.E. Moore, K.W. Bowyer, L.O. Hall, C. Springer and
W.P. Kegelmeyer, ‘Bagging is a Small Dataset Phenomenon’, Proc.
Int'l Conf. of Computer Vision and Pattern Recognition (CVPR),
684-689, 2000.

[9] T. Mitchell, Machine Learning, McGraw Hill, 1997.
[10] B. Efron, and R.J. Tibshirani, An Introduction to the Bootstrap,

Chapman & Hall, New York, 1993.
[11] L. Breiman, Classification and Regression Trees, Wadsworth

International Group, Belmont, CA, 1984.
[12] J. Blackard, Comparison of Neural Networks and Discriminant

Analysis in Predicting Forest Cover Types, PhD dissertation,
Colorado State University, Fort Collins, 1998.

[13] S. Vucetic and Z. Obradovic, ‘Performance Controlled Data
Reduction for Knowledge Discovery in Distributed Databases’, Proc.
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 29-39,
2000.

[14] A. Braverman, and L. DiGirolamok, ‘MISR Global Data Products: A
New Approach’, IEEE Trans. Geoscience and Remote Sensing,
40(7), 1626-1636, 2002.

[15] M. Riedmiller and H. Braun, ‘A Direct Adaptive Method for Faster
Backpropogation Learning: the RPROP Algorithm’, Proc. IEEE Int'l.
Conf. on Neural Networks, 1, 586-591, 1993.

