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Abstract
In this study we proposed an iterative procedure for correct-

ing sampling bias in labeled datasets for supervised learning

applications. Given a much larger and unbiased unlabeled

dataset, our approach relies on training contrast classifiers

to iteratively select unlabeled examples most highly under-

represented in the labeled dataset. Once labeled, these ex-

amples could greatly reduce the sampling bias present in the

labeled dataset. Unlike active learning methods, the actual

labeling is not necessary in order to determine the most ap-

propriate sampling schedule. The proposed procedure was

applied on an important bioinformatics problem of priori-

tizing protein targets for structural genomics projects. We

show that the procedure is capable of identifying protein

targets that are underrepresented in current protein struc-

ture database, the Protein Data Bank (PDB). We argue that

these proteins should be given higher priorities for experi-

mental structural characterization to achieve faster sampling

bias reduction in current PDB and make it more represen-

tative of the protein space.

1 Introduction.
In data mining and machine learning it is commonly
assumed that the training, or labeled, dataset is unbi-
ased, i.e., a random sample from the same underlying
distribution as the data on which the learned model
will be applied. In real-life applications, however, this
assumption is often violated due to the sampling bias
or sample selection bias problem [4], and the labeled
dataset is no longer a representative of the whole popu-
lation. Consequently, a predictor model learned on such
data may be suboptimal and will not generalize well on
out-of-sample examples. Thus, it is crucial to be able
to detect and correct such bias, and bias detection and
correction should be considered an integral part of the
learning process.

The sampling bias can be quantified by the sample
selection probability p(s=1|x, y) [11], where x is feature
vector, y is target variable (label) and s is a binary
random variable. If s = 1, an example (x, y) is selected
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into the labeled dataset, while if s = 0, it is not selected.
Thus, if p(s=1|x, y) is constant for all (x, y), the
labeled dataset is unbiased; otherwise, it is biased. In
numerous real-life scenarios, a reasonable and realistic
assumption is that s is dependent on x but conditionally
independent of y given x, i.e. p(s=1|x, y) = p(s=1|x).

A suitable tool for detecting and characterizing the
sampling bias are contrast classifiers [9] that measure
the distributional difference between the labeled dataset
and an unlabeled dataset, which is a large, unbiased
example of the underlying distribution. The contrast
classifier is a 2-class classifier trained to discriminate
between examples of labeled and unlabeled datasets.
Its output is directly related to the sample selection
probability p(s=1|x) and thus could be a useful measure
of sampling bias, as illustrated on a synthetic dataset as
well as in real-life bioinformatics applications [9], [8].

This study was motivated by an important bioin-
formatics problem that is directly related to sampling
bias. It is well-known that three dimensional (3-D)
structure of a protein is a crucial determinant of its
biological function and biochemical properties. How-
ever, only a small fraction of known proteins has exper-
imentally determined 3-D structure; currently, there are
about 25,000 protein structures deposited in the main
protein structure database, Protein Data Bank (PDB)
[1], as compared to more than 1.5 million known pro-
teins. Furthermore, current content of PDB is highly
biased in the sense that it does not adequately sample
the protein sequence space, due to various issues related
to experimental structure determination [8].

The ongoing structural genomics projects [2] try
to address this problem by experimentally determining
structures of a carefully selected set of representative
protein targets which, along with those already in PDB,
could achieve maximal coverage of the protein sequence
space. However, most of the existing target selection
strategies [5] rely on sequence comparison methods
and, as a result, produce long lists of representative
proteins without structurally characterized homologues
(i.e. proteins evolved from the same ancestor that
typically have similar sequence and structure). It
is evident that, using the available technology, the



progress of these projects is likely to be slow. Thus, in
order to rapidly achieve a good coverage of the protein
space, novel computational methods for prioritization of
protein targets should be developed.

In such application, labeled examples are proteins
with experimentally determined 3-D structures. A
protein is also considered as labeled if at least one of its
homologues has known structure. Unlabeled examples
are defined as all known proteins. Thus stated, our
specific goal is developing methodologies to select the
most informative unlabeled proteins for labeling, i.e.
experimental structure characterization, as to rapidly
reduce the sampling bias existing in the labeled proteins
in PDB.

In this study we propose an iterative procedure
for the prioritization based on the contrast classifier
framework. Starting from a biased labeled dataset and
an unbiased unlabeled dataset, the procedure iteratively
builds contrast classifiers to (a) determine if sampling
bias in current labeled dataset is significant, and (b)
select a certain number of underrepresented unlabeled
examples based on the contrast classifier output. The
selected examples are then assumed as labeled and
added into the current labeled data, thus reducing the
sampling bias.

The proposed procedure was applied on a com-
plete genome whose protein sequences are currently
used as structural genomics targets. We argue that
the proposed approach is highly suitable for prioritiz-
ing structural genomics protein targets since it empha-
sizes importance of the most underrepresented protein
sequences. Revealing structural properties of such pro-
teins is likely to produce highly significant biological
results.

2 Methodology.

2.1 Problem formulation. Given two datasets
sampled from the same unknown distribution, where DL

is labeled and biased, while DU is unlabeled and unbi-
ased, our objective is to identify a set of G most infor-
mative examples from DU which, once labeled, would
maximally reduce the labeled data bias. Here G is a
user-specified parameter that depends on total labeling
cost. We assume that labeling cost is uniform for all
examples.

2.2 Contrast classifier for detecting sampling
bias. As shown in [9] the contrast classifier is a 2-
class classifier trained to learn the distributional differ-
ence between labeled and unlabeled datasets. When
using classification algorithms that estimate poste-
rior conditional class probability and balanced train-
ing data, the contrast classifier output cc(x) approxi-

mates u(x)/(u(x)+l(x)), or, equivalently, l(x)/u(x) =
(1-cc(x))/cc(x), where l(x) and u(x) are probability
density functions (pdfs) for DL and DU respectively.

It is straightforward to show the connection be-
tween cc(x) and the sample selection probability
p(s=1|x) [11], where s is a binary random variable in-
dicating whether x is sampled into the labeled dataset
DL. If p(s=1|x) is constant for all x, there is no sam-
pling bias; otherwise, the labeled dataset is biased. Fol-
lowing Bayes theorem, p(s=1|x) = p(s=1)p(x|s=1)/
p(x), where p(x|s=1) and p(x) can be approximated
by l(x) and u(x), respectively. Thus, p(s=1|x) =
p(s=1)l(x)/u(x) = p(s=1)(1-cc(x))/cc(x).

The contrast classifier output could therefore be a
useful measure of sampling bias. If cc(x) < 0.5, then
l(x) > u(x) and x is overrepresented in DL. If cc(x) >
0.5, then l(x) < u(x) and x is underrepresented in DL.
Otherwise, l(x) = u(x) and x is equally represented
in DL and DU . Thus, the cc(x) distribution for DU

could reveal the overall level of sampling bias: the bias is
negligible if it is concentrated around 0.5, otherwise the
bias is significant. Alternatively, the difference between
the two cc(x) distributions for DL and DU could also
be used to measure the overall bias.

2.3 An iterative procedure for correcting sam-
pling bias. Based on the discussion above, we propose
to use contrast classifier output as criterion to select
underrepresented examples for labeling to correct sam-
pling bias. A one-step approach for this purpose would
be building a single contrast classifier from the initial
DL and DU and selecting G underrepresented examples
from DU . An open question is what G underrepresented
examples would be the most suitable for selection. A
one-step approach for selection may be too aggressive
and fail to properly correct the bias. Therefore, a chal-
lenging problem is how to determine an appropriate se-
lection schedule that would minimize bias of the result-
ing labeled dataset.

We propose a procedure (Figure 1) that iteratively
builds contrast classifiers and incrementally selects un-
derrepresented examples. At each iteration, a contrast
classifier is built from current DL and DU and then
applied to DU . If the cc(x) distribution for DU indi-
cates the overall bias is significant, a set of B underrep-
resented examples will be selected and added into DL

for building the contrast classifier at the next iteration.
Details about how to select the B examples will be dis-
cussed in the next section. The whole procedure iterates
until the required G examples have been selected or the
sampling bias becomes negligible.

It should be noted that the actual labeling is not
really necessary during the procedure since the label



Figure 1: The proposed iterative procedure.

information is not used. It can be done after the
procedure stops for all selected examples (DS), which is
the differential set between the final and initial DL. This
is one of the major differences between the proposed
procedure and active learning methods [3].

2.4 Selection of underrepresented examples.
After a contrast classifier is built and significant bias
is detected, potentially underrepresented examples can
be selected from DU . A straightforward method (named
Top-B) is to simply select B examples with the highest
cc(x) from DU . However, this approach might not be
efficient in reducing sampling bias, since these examples
may be redundant. They may come from a same under-
represented region that produces similarly high cc(x)
values.

An alternative method (named Random-B) first
determines a threshold θp such that only 100p% of
labeled examples have cc(x) values higher than it, where
p is a small constant in (0, 1). Then, all unlabeled
examples that satisfy cc(x) > θp are considered as
underrepresented, i.e. Up = {x | cc(x) > θp ∧ x ∈ DU}.
Finally, B examples are randomly drawn from Up

according to the uniform distribution. In this way
the selected examples could cover the underrepresented
regions more evenly.

2.5 Quantitative measure of overall bias. As dis-
cussed in § 2.2, the sampling bias can be assessed qual-
itatively by visual inspection of the cc(x) distributions
for DL and DU , i.e. whether the distribution for DU is
concentrated around 0.5, or whether the two distribu-
tions are largely overlapped. We also defined a quanti-
tative measure of overall bias ∆ = sqrt(

∑|DU |
i=1 (cc(xi)−

0.5)2/ |DU |), where cc(xi) is contrast classifier output
for the i-th example in DU . The value of ∆ will ap-
proach 0 when bias is negligible since all cc(xi) should

be close to 0.5. It will be large if the bias is significant
and many cc(xi) are far away from 0.5. In the extreme
case when all cc(x) = 1, ∆ = 0.5.

3 Bioinformatics Application in Structural
Genomics.

In this section we applied the proposed procedure to
prioritizing structural genomics targets from a model
organism. We show that the proposed iterative proce-
dure is more effective than simple random sampling and
a one-step approach discussed in § 2.3.

3.1 Datasets. Since the number of known proteins
is large, we limited our study to the 28,334 pro-
tein sequences (40 amino acids or longer) from a
model organism called Arabidopsis thaliana (ATH)
extensively studied in plant biology. It is also a
major source of structural genomics targets for the
Center for Eukaryotic Structural Genomics (CESG,
http://www.uwstructuralgenomics.org/).By now CESG
has selected about 4,000 target proteins from this
genome and finished structure determination for 19 of
them.

The amino acid sequences were obtained from web-
site of the Arabidopsis Information Resource (TAIR,
http://www.arabidopsis.org/). As in a previous study
[8], a non-redundant representative subset of 14,988 se-
quences was selected, with no two sequences having
pairwise identity higher than 40%. Out of these se-
quences 838 were identified to have known structures
and thus formed DL, while all of the 14,988 proteins
were assigned to DU . We assume that at most 500 pro-
teins, i.e. G = 500, can be selected from DU for labeling
due to available resources for experimental structure de-
termination.

3.2 Knowledge representation and contrast
classifier training. A similar knowledge representa-
tion was adopted as in the previous study [8], i.e. con-
structing one example per sequence position instead of
one example per sequence. Each example consisted of
30 attributes and a class label of 0 or 1 indicating if it
was from DL or DU . In addition to the 25 attributes
used in the previous study [8], 3 transmembrane helix
predictions by PHDHtm predictor [10], 1 disorder pre-
diction by VL3 predictor [7] and 1 coiled-coils prediction
by COILS predictor [6] were also included.

The contrast classifiers were built as an ensemble
of 20 neural networks each having 10 hidden neurons
and 1 output neuron with sigmoid activation function.
A two-stage sampling procedure [8] was employed to
construct balanced training sets (12,000 examples) for
training component networks. The contrast classifiers



Figure 2: Application of the proposed procedure on structural genomics data. Upper row - plots of ∆ vs. Number
of examples selected for (a) Top-B, (b) Random-B and (c) Comparison to Simple-Random. Lower row - cc(s)
distributions for DL and DU (d) at the beginning, after 500 proteins selected using (e) Top-B(B = 50), and (f)
Simple-Random. The distributions for Random-B are similar to those of Top-B and thus not shown.

were applied to each sequence s in DU to obtain
cc(x) for each sequence position. These per-position
predictions were then averaged over the sequence as the
per-sequence prediction cc(s), which was used to select
underrepresented sequences.

3.3 Application of the proposed procedure. We
examined different values of B = {50, 100, 250, 500} for
the proposed procedure. Note that B = 500 corre-
sponds to the one-step approach of selecting all 500 pro-
teins at one time (§ 2.3). The two methods Top-B and
Random-B (p = 0.05) for selecting underrepresented ex-
amples were compared. The performance was assessed
using the ∆ measure of overall bias (§ 2.5) calculated in
each iteration. A successful bias correction procedure
should result in a rapid decrease in ∆ measure as more
proteins are selected. In Figure 2a and 2b we show the
plots of ∆ measure vs. number of selected proteins for
the two methods.

As evident from the plots, the proposed iterative
procedure (B = 50) performed better than the one-
step approach (B = 500) in the sense that it achieved

much lower ∆ value, or lower level of overall bias, after
selected 500 proteins. However, the difference is smaller
for Random-B than for Top-B. It is worth noting that
smaller B typically leads to better bias reduction but
with larger computational efforts. However, the small
difference between the plots for B = 50 and B = 100
indicates that the gain of using even smaller B may be
marginal.

In addition to the proposed procedure, we also
examined the simple approach (Simple-Random) of
randomly selecting M unlabeled proteins in a single
step. For each M = {50, 100, 150, . . . , 500}, a contrast
classifier was built to calculate the ∆ measure of overall
level of bias after the M proteins were added into
DL. The plot of ∆ measure vs. number (M) of
selected proteins is shown in Figure 2c, along with those
for the proposed procedure (B = 50). As expected,
the Simple-Random method was less effective in bias
reduction, with the final ∆ = 0.0243, as compared to
0.0060 for Top-B and 0.0067 for Random-B. This is
further confirmed by the cc(s) distributions in Figure 2.
The two resulting distributions are almost completely



overlapped for Top-B with B = 50 (Figure 2e), but still
clearly separated for Simple-Random (Figure 2f), after
500 proteins were selected.

Out of the 500 proteins selected using Top-B
(Random-B) method, only 68 (79) are currently selected
as structural genomics targets by the Center for Eukary-
otic Structural Genomics and none of them have been
solved. We argue that the remaining 432 (421) proteins
should also be selected as structural genomics targets
and should be given higher priorities. Along with pro-
teins with known structures, these proteins should be
very helpful in achieving maximal coverage of the pro-
tein space for Arabidopsis thaliana genome.

4 Conclusions.

In this study we proposed an iterative procedure for cor-
recting sampling bias in labeled data. This approach is
applicable if an unbiased unlabeled dataset is available.
It iteratively builds contrast classifiers to detect sam-
pling bias and selects underrepresented examples which,
once labeled, can be very effective in correcting the sam-
pling bias in labeled data. As illustrated on an im-
portant bioinformatics problem of prioritizing protein
targets for structural genomics projects, the proposed
procedure is more effective than randomly choosing un-
labeled proteins for labeling in reducing sampling bias,
and can rapidly achieve a good coverage of the protein
space.

The ultimate solution for correcting sampling bias
is to add new labeled examples. A simple approach
is to randomly select examples for labeling. As more
examples are labeled, the bias in the resulting labeled
dataset would be gradually reduced. This is especially
good if the total number of new labeled examples could
be relatively large. However, in real-life problems like
protein structure determination it is often the case that
the costs for labeling even a single example could be
very high. Consequently, only a small number of exam-
ples can be allowed and thus the selected ones should
be the most informative. In such scenarios, our proce-
dure could be very appropriate since it emphasizes the
underrepresented examples based on contrast classifier
output directly related to the sample selection proba-
bility p(s=1|x).

More work is needed to fully characterize the pro-
posed procedure. An improved performance measure is
needed since the ∆ measure may depend on the learn-
ing algorithms used in learning contrast classifiers. As
shown in § 3.3, smaller B might be desirable for better
bias reduction but would require more computational
efforts. Thus, additional analytical and experimental
work needs to be done to determine the optimal trade-
off between the computational effort and the level of

bias reduction, given a fixed total number G of allowed
examples for labeling. Finally, if G is very small, it is
likely that more elaborate procedure would be needed
than the proposed Top-B and Random-B procedures.
These issues are the subjects of our ongoing research.
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