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Abstract

In supervised learning, on data collected over space and time,
different relationships can be found over different spatio-
temporal regions. In such situations, an appropriate spatio-
temporal data partitioning followed by building specialized
predictors could often achieve higher overall prediction ac-
curacy than when learning a single predictor on all the data.
In practice, partitions are typically decided based on prior
knowledge. As an alternative to domain-based partition-
ing, we propose a method that automatically discovers a
spatio-temporal partitioning through the competition of re-
gression models. The method is evaluated on a challenging
problem using satellite observations to predict Aerosol Opti-
cal Depth (AOD), which represents the amount of depletion
that a beam of radiation undergoes as it passes through the
atmosphere. Our experiments used more than 20,000 labeled
data points collected during 3 years from more than 100 sites
worldwide. Our partitioning-based approach was compared
to the recently developed operational AOD prediction algo-
rithm, called C5, which uses domain knowledge for spatio-
temporal partitioning of the Earth and implements a region-
specific deterministic predictor that utilizes forward simula-
tions from the postulated physical models. Data partitioning
used in C5 divides the world into three spatio-temporal re-
gions that differ based on the location and the time of the
year as decided by domain experts. The results showed that
a neural network predictor trained on all the data has ac-
curacy comparable to C5. When specialized neural network
predictors were learned on Cbh-based partitions, the overall
prediction accuracy was not improved. On the other hand,
our competition-based spatio-temporal data partitioning ap-
proach resulted in large accuracy improvements. The most
accurate results were obtained when (1) the data from each
of the sites were split into two temporal subsets, one for
winter-spring months and another for summer-fall months;
and (2) two neural network predictors were competing for
each of the identified spatio-temporal subsets.
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1 Introduction.

Data collected at discrete points in space over time are
referred to as spatio-temporal data. In different spatio-
temporal regions, relations among the attributes can
be different. Therefore, a single global predictor con-
structed using the entire dataset could be biased to-
ward the dominant distribution while being less accu-
rate on data points that do not follow the dominant
distribution. If both space and time are partitioned in
such a way that the observed attributes in each spatio-
temporal subset have the same distribution, training
specialized predictors on the identified subsets can be
beneficial. Applying those local predictors on the cor-
responding spatio-temporal partitions would increase
overall prediction accuracy as compared to the accuracy
achieved by applying a single predictor on the entire
dataset.

When the data generating process changes as a
function of time and location, the same values of
observed attributes could result in very different target
values at various spatio-temporal regions. Therefore,
proximity in attribute space does not necessarily mean
the data points should belong to the same spatio-
temporal partition. In this situation, unsupervised
clustering algorithms are not suitable for discovering
spatio-temporal partitions.

The method for spatio-temporal partitioning ex-
plored in this study is inspired by our competition-based
algorithm for learning from spatial data generated by a
mixture of distributions [1]. In this approach multiple
regression models are learned on disjoint spatial parti-
tions, followed by repartitioning based on competition
between models where a data point is assigned to the
model, which has the highest prediction accuracy. The
competition process is iterated as long as it leads to
accuracy gains. The method was successfully applied
for discovering homogeneous regions in heterogeneous
spatial data. A similar idea was successfully exploited
for improving accuracy of nonstationary time series pre-
diction through competition based on time partitioning
[2]. The novel challenge addressed in the current study
is how to deal with the distributional change that occurs
over both spatial and temporal dimension.

In Section 2 we introduce the problem of remote
sensing of aerosols and prediction of Aerosol Optical



Depth (AOD). Our new method for learning from het-
erogeneous spatio-temporal data is described in Section
3. Evaluation of the approach on a large-scale problem
of remote sensing of aerosols is described in Section 4.

2 Background.

2.1 Ground-based and satellite observations of
aerosols. Our study is motivated by one of the main
challenges of current climate research consisting of us-
ing satellite observations to estimate Aerosol Optical
Depth (AOD). AOD is a dimensionless quantity that
represents the amount of depletion that a beam of ra-
diation undergoes as it passes through the atmosphere.
Large error in a global scale AOD prediction is one of
the major limiting factors influencing simulation-based
climate change studies [3].

The AOD can be predicted using ground [3] or
satellite [4] based observations. Ground-based obser-
vations are mostly obtained by AEROsol robotic NET-
work (AERONET), which is the global remote sensing
network of about 540 radiometers that measure AOD
several times an hour at specific locations. AERONET
AOD prediction is considered very accurate and is of-
ten taken as the ground truth for validation of various
satellite-based AOD prediction algorithms aimed at pro-
viding global coverage [5]. Satellite-based observations
considered in our study are obtained by the MODer-
ate resolution Imaging Spectrometer (MODIS), aboard
NASAs Terra and Aqua satellites. This instrument ob-
serves reflected solar radiation from the Earth over a
large spectral range with a high spatial resolution and
has almost daily coverage of the entire planet. Design-
ing accurate AOD predictors from satellite observations
is a very challenging problem. In the following we out-
line two major approaches for AOD prediction.

2.2 Knowledge-driven AOD predictors. Opera-
tional algorithms used to predict AOD from MODIS ob-
servations are based on matching the atmospheric com-
ponent of the observed reflected radiation to the simu-
lated values stored in lookup tables. The atmospheric
component is obtained by removing the effect of the
surface and is dominantly influenced by aerosol optical
properties.

Since aerosol properties and abundance change
through time and over space, using a single model would
not be able to fully describe the aerosol optical proper-
ties over a global scale. A recently developed opera-
tional AOD prediction algorithm, called C5, utilizes do-
main knowledge for spatio-temporal partitioning of the
Earth. For each spatio-temporal partition, C5 consults
the look-up table constructed by forward simulations of
the physical model of aerosol optical properties.

(d) September, October, November

Figure 1: Aeronet sites assigned to the spatio-temporal
models of operational C5 AOD prediction algorithm.
Three models are represented by white, gray and black
colors.



C5 defines four aerosol models corresponding to
prevalent atmospheric conditions over several charac-
teristic spatio-temporal regions of Earth [6]. The par-
titioning was obtained by studying observations from
AERONET ground-based instruments and combining
this information with the climatology domain knowl-
edge. One of those four models is invariant through
time and can be applied globally while the other three
models, used to adjust the global model, depend on the
location and time. When defining aerosol models as
a function of location and time, the assumption was
that aerosol properties would not change a lot during a
three-month season. For each AERONET site and each
season, the percentage of data points best described by
each of three models was determined. This was used
to assign the dominant aerosol type to each AERONET
site during each season. The resulting data partitioning
used in C5 divides the world into three spatio-temporal
regions that differ based on the location and the time
of the year as summarized at Figure 1.

2.3 Data-driven AOD predictors. An alternative
and a complement to knowledge-driven AOD predictors
developed by aerosol experts, such as C5, is a data-
driven statistical approach based on learning a regres-
sion model on fusion satellite- and ground-based data
[7, 8,9, 10]. In our previous study [11], neural networks
trained to predict AERONET AOD over continental
U.S. using attributes derived from MODIS observations
were significantly more accurate than when using the
C4 AOD prediction algorithm (C4 algorithm was the
operational MODIS retrieval algorithm until 2007 when
the C5 algorithm became operational.) This study sug-
gested that the ability of a single predictor to explain
the complex aerosol spatio-temporal variability was lim-
ited while an integration of global and local data-driven
aerosol predictors was less subject to these limitations.
In the related work [12], improved AOD prediction re-
sults were obtained by combining a global neural net-
work trained to predict AERONET AOD over the con-
tinental U.S. with region-specific neural networks.

In our recent work [13], we developed an ensemble
of neural networks to predict AOD over a global scale.
We observed that Mean Squared Error (MSE) and other
standard cost functions are not completely suitable for
AOD prediction because (1) error variance increases
with AOD, (2) the distribution of AOD is skewed toward
small values and, (3) there are usually many outliers due
to measurement imperfections. To reduce the influence
of larger prediction errors at large AOD values, we
employed the Mean Squared Relative Error instead of
the MSE as the optimization criterion for training of
AOD predictor.

The hypothesis investigated in our current study is
that, due to the variability of aerosol, AOD predictors
specialized to specific spatio-temporal regions should
result in the increased AOD prediction accuracy. We
argue that the existing domain-based spatio-temporal
partitioning used in the C5 algorithm is not necessar-
ily the best choice because of the fundamental differ-
ences in the nature of data-driven and knowledge-based
AOD prediction approaches. For example, while the
knowledge-based algorithms such as C5 eliminate sur-
face effects from the satellite observations as a prepro-
cessing step, data-driven algorithms use the observa-
tions directly as the input attributes. The goal of this
study is to develop a method that automatically discov-
ers a successful spatio-temporal partitioning for AOD
prediction through the competition of regression mod-
els as an alternative to the domain based partitioning
of space and time.

3 Methodology.

3.1 Statistical foundation. When the data gen-
erating process changes over time and space, predic-
tion accuracy can be significantly improved by learn-
ing a number of regression models specialized for cer-
tain spatio-temporal partitions as compared to a single
(global) model learned on whole dataset. Let us assume
that a spatio-temporal dataset is a union of K disjoint
partitions P;, i = 1...K, where the number of parti-
tions and their spatio-temporal locations are not known
in advance. The data generating process for P; can be
represented as:

(31) Yst = fi(xst) + €st, Est ~ N(O,O'Q),St € PR

where fi is the regression function of partition Pi, xst
and est are the attribute vector and the error term
of observation at location s and time t. Domains of
the observed attributes at different partitions generally
overlap, which means that the same vector x can
produce quite different outputs at different partitions.

Without any prior knowledge about the spatio-
temporal partitions, learning a global prediction model
over the entire dataset would result in learning the
global regression function defined as:

(3.2) h*(x) = argmin Ey|,[(Y — h(x)’]

h(z)

for any given x. The MSE of the global prediction model
h* on the data from partition P;, mse;, can be expressed
as [1]:

mse; = noise; + bias;

noise; = Ep,[€?]

bias; = Ep,[(h*(x) — £i(x))?]

(3.3)



over the domain D; that corresponds to the partition P;.
The term noise; corresponds to an unavoidable error
which would be obtained by a local predictor specialized
for partition P; and the term bias; corresponds to the
bias of the global prediction model on the data from
partition P;. If spatio-temporal partitions were already
known, the bias; from the previous equation would be
eliminated by learning a local model on each partition.

3.2 Spatio-temporal partitioning method. Since
we know that introducing local prediction models can
improve prediction accuracy when data generating pro-
cess is heterogeneous, we propose a method that discov-
ers the appropriate spatio-temporal partitions.

We first describe an algorithm by ignoring infor-
mation about location and time of data points. The
algorithm relies on the competition among specialized
predictors for each point in the dataset S. It starts
by randomly dividing the entire dataset into K disjoint
subsets S;, @ = 1...K, where K is the number of the
specialized prediction models. A specialized predictor
M; is trained on each subset S;, i = 1... K. The result-
ing predictors are competing for points from dataset S
such that all the points that are best predicted with pre-
dictor M; are assigned to subset S;. The competition
procedure is repeated until convergence.

The described competition algorithm is noise-
sensitive because it can easily lead to assignment of
points near in space and time to different subsets. This
is clearly an undesirable behavior and we need a mech-
anism that prevents this from happening.

Our solution is to group the data into spatio-
temporal cells that contain multiple data points close in
space and time and to run the competition procedure
over the cells instead of the individual points. Similar
to the original algorithm, the cell is assigned to the
prediction model that achieves the smallest average
prediction error over the data points in the cell. After
reassigning all cells, competition procedure is iteratively
repeated until there is no improvement in prediction
accuracy.

The choice of the cell size is important because the
small cells are sensitive to noise while the large cells
could be heterogeneous. In the first case, the parti-
tioning procedure would be unstable and the resulting
specialized predictors would be just the artifacts of the
procedure. In the second case, the partitioning would
be too constrained and would result in highly similar
specialized predictors. To achieve the best possible par-
titioning several choices for time period length should
be considered. An outline of the partitioning method is
presented in the Algorithm 1.

This is a simple example of how the proposed

Algorithm 1 Spatio-temporal partitioning method

Input: S - set of spatio-temporal data points
Output: Sq1,S,, ..., S - spatio-temporal partitions
of S

Set number of models M = 2
Set length of time period T = maximal possible value
repeat

repeat
Divide S randomly into M equal sized subsets
S1,S2,...,SMm
repeat

Train model M; on the subset S;
Obtain predictions of all M;
Divide time into consecutive parts of length T
and group the points into spatio-temporal cells
for each spatio-temporal cell do
Select dominant model based on the smallest
prediction error
Assign all points from the cell to the domi-
nant model
end for
until there is no further increase in the accuracy
Decrease T
until there is no further increase in the accuracy
Increase M
until there is no further increase in the accuracy
return the best partition S1,Ss3,...,SMm

method operates. In the Figure 2, in the top picture,
all spatio-temporal data points from three locations are
assigned to one of the two models gray or white. In our
example the entire time interval is divided into three
parts. Therefore, there are nine spatio-temporal cells.
Models are trained and predictions for all data points
are obtained. Data points in a cell are assigned to
the model achieving better accuracy. This partitioning
results in a temporally more homogeneous partitioning.
The competition procedure iterates until stable solution
is found.

4 Spatio-Temporal Partitioning of Aerosol
Remote Sensing Data.

4.1 Accuracy measures for AOD prediction.
Regardless of the approach used for AOD prediction,
the resulting predictor has to be evaluated and its ac-
curacy adequately quantified. Considering AOD pre-
diction as a regression problem, there are many pos-
sible measures that could be used to assess predictor
performance. Given a target vector t of AERONET
AOD measurements and vector y of the AOD predic-
tions based on the satellite observations, the appropri-
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Figure 2: The simple example of partitioning procedure.
Top picture three spatial locations, data points are
assigned to two models gray and white. Bottom picture
reassigned models.

ate measure of prediction accuracy could be coefficient
of determination (R?) defined as:

Zilil(yi —t;)?
YL (ti — )2

where f represents the mean value of vector t, and
summations are over all N points. In the regression
analysis, R? is preferred to simple quadratic distance
measure mean square error (MSE) defined as:

(4.4) R*=1-

(4.5) ¥

because it takes into account variance in the target data.
The fraction of the variance that a predictor successfully
models is described by R? value. The highest R?
accuracy is 1, while R? accuracy of the predictor that
simply predicts the mean of the population is 0.

Another measure that is often used is correlation
coefficient (CORR):

S (i — )t~ D)
VEL - 92T (4 - D2

where 7 represents the mean value of prediction vector
y, while other parameters were defined previously.
CORR measure is insensitive to the prediction bias that
is easily correctable [11].

We also consider several domain-specific measures
of AOD prediction accuracy. Due to the inherent

(4.6) CORR =

measurement, errors of the MODIS instrument, the
acceptable boundaries for AOD prediction error were
proposed in [5]. Boundaries were defined as a linear
function of the ground truth AOD value #; measured
as:

(47) |yi - ti| S 0.05 + 015t,

Relation (4.7) directly implies that errors in AOD
prediction are much more tolerable at large AOD than
at small AOD values. Consequently, the AOD predictor
should be much more accurate in predicting small AOD.
In this sense, a new accuracy measure can be defined as
mean squared relative error (MSRE):

1 yi — i 2
(48) MSRE = N ; (0.05 + 0.15ti)
where the sum is over all V data points. If MSRE is
closer to 0 the AOD predictor has better performance.
However, keeping in mind the MODIS instrument un-
certainty, it can be said that predictor performance is
acceptable if MSRE is not much larger than 1. In addi-
tion, we measure FRAC defined as the fraction (FRAC)
of predictions that are between the domain-expected
boundaries:

(4.9) FRAC = % x 100%

where [ is the number of predictions that satisfy relation
(4.7) and N is the total number of predictions.

In order to demonstrate the need for using various
kinds of measures for AOD predictor evaluation, let
us analyze the accuracy of C5 AOD prediction. A
scatter plot of AOD prediction vs. true AOD during
the 2005 over whole globe is depicted in Figure 3 while
the values of the proposed accuracy measures are shown
in Table 1. In Figure 3, a solid line represents an ideal,
desirable AOD prediction, while dashed lines represent
boundaries of an area containing predictions whose
quality is deemed acceptable by domain scientists. In
Figure 3a, the whole range of AOD values is plotted,
while the zoomed-in portion of Figure 3a for small values
of AOD (defined as AOD<0.5 [5]) is presented in Figure
3b.

From Table 1, we can conclude that C5 AOD
predictor has a good performance based on the CORR
accuracy. However, R? accuracy tells us that there is
a significant portion of variance that the C5 algorithm
was unable to model. MSE accuracy is difficult to judge
when the accuracy of some simpler competing predictors
is not available. Furthermore, the domain specific
MSRE accuracy is higher than 1, which indicates lower
than expected accuracy. Finally, the FRAC measure
shows that almost 40% of predictions are of insufficient
accuracy.
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Figure 3: Scatter plot of operational C5 satellite based
AOD vs. AERONET AOD.

Table 1: Operational AOD vs. AERONET AOD

accuracy for Jan-Aug 2005

# Deterministic AOD prediction
points MSE R? CORR MSRE FRAC
3224 0.020 0.66 0.87 2.02 63%

4.2 Relative error as a neural network cost
function. Since AERONET AOD predictions are con-
sidered highly accurate [2], they can be used as target
values in data-driven approaches for AOD prediction.
Construction of the neural network AERONET AOD
predictor based on the MODIS observations will be ex-
plored here.

The standard approach in building neural networks
uses the MSE minimization as the optimization objec-
tive. This kind of cost function treats all errors equally
regardless of the level of target value. Based on the
domain knowledge, we know that large values of AOD
can often be considered outliers. Hence, in this applica-
tion, using an MSE function as the cost function for the
neural network training is not the most appropriate.

To address this issue, we use an alternative neu-
ral network cost function defined as MSRE in (4.8).
When using MSRE as the optimization criterion, the
backpropagation algorithm for neural network training
should be modified by replacing

OMSE 2

(4.10) o N(yi —ti)

with OMSRE 2 (yi—1)
_“ Yi — Ui

(4.11) dy; N (0.05+0.15¢;)2

By analyzing equation (4.11), we can conclude that the
influence of prediction error on the backpropagation
is large when ti is small and vice versa. The MSRE
criterion also provides the solution for the problem with
potential outliers in the training set, as influence of the
errors made on large AOD during the training procedure
weakens.

4.3 Fusion of satellite and ground based obser-
vations. Although MODIS instrument has high spa-
tial resolution (one pixel is as small as 250 x 250m? at
nadir), operational MODIS algorithms do not predict
AOD for single pixels due to the low signal to noise ratio
[5]. Instead, single pixels are aggregated to larger areas.
Based on the assumption that AOD has small spatial
variability, the operational C5 algorithm predicts AOD
in 10 x 10km? blocks. After discarding cloud, snow, ice
and water pixels along with 20% of the darkest and 50%
of the brightest ones, the average of remaining pixels is
taken as representative of the corresponding 10 x 10km?
block.

Validation of satellite based AOD predictions is
usually performed using AERONET AOD predictions
as ground truth [4]. Whereas MODIS achieves an al-
most complete global coverage daily, AERONET pre-
dictions are provided many times every day but only
over selected locations. Validation studies showed that



it would be inappropriate to compare AOD from a sin-
gle MODIS block directly to an AERONET point mea-
surement [14]. Hence, the method of fusion of the
AERONET and the MODIS data has been proposed
[14] (Figure 4). Essentially, this method involves ag-
gregating initial MODIS blocks of 10 x 10km? size into
blocks of size 50 x 50km? around each AERONET site,
called spatial merging.

Because MODIS and AERONET AOD predictions
may occur at different times, temporal data merging
is necessary. AERONET AOD data are acquired on
average at intervals of 15 min. Assuming slow AOD
variation over short time periods, the MODIS AOD
predictions are said to be temporally collocated with the
corresponding AERONET AOD predictions if there is a
valid AERONET AOD prediction within 30 minutes of
the satellite flyover. The data collocated in this way
can be obtained from the official MODIS website of
NASA [5]. Each collocated data point is represented
with time, date, average AERONET AOD, average
MODIS observations, and ancillary attributes. In our
experiments, we attached a collocated data point to the
data set if we have at least one valid out of possible
25 MODIS AOD predictions in 50 x 50km? spatial
block and at least one valid AERONET AOD prediction
within the 30 minutes from the satellite overpass.

4.4 Data Description. There are several types of
AERONET AOD ground-truth data that differ in
amount and quality [2] and several versions of MODIS
AOD predictions [5]. Although AERONET Level 1.5
data were cleaned and cloud contaminated measure-
ments were removed, outliers are still present. To avoid
a potential problem with outliers in ground-truth data,
AERONET Level 2.0 observations were considered since
they are both cloud screened and manually verified. The
primary benchmark AOD predictor for comparison with
our approach is the most recent version of the MODIS
operational algorithm, C5, as validation studies show
that version C5 is significantly more accurate than the
previous version C4 [5]. However, at the time of this
study, both AERONET Level 2.0 measurements and C5
predictions were available only for the first eight months
of 2005. In order to give a more complete evaluation
of our partitioning algorithm, we also compared with
C4 predictions that were available during the longer
period, between April 2003 and November 2005. The
C4 data set consisted of 23,903 data points containing
MODIS observations, C4 AOD prediction, and collo-
cated AERONET Level 1.5 AOD measurements from
129 AERONET sites over the globe (Figure 5).

To compare data-driven AOD prediction to both C4
and C) algorithms, we also collected 3,234 data points

time axis

>
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@ AERONET ACD retricval

D MODIS AOD retrieval

Figure 4: Spatio-temporal fusion of MODIS observa-
tions and AERONET AOD predictions.

Table 2: List of attributes collected from the data
Attribute

index Description
Mean of reflected radiation in 50 x 50km?
1-4 blocks at three wavelengths
Std. deviation of reflected radiation in 50 x 50km>
5-8 blocks at three wavelengths
Solar zentih, Solar azimuth, Sensor zenith,
9-12 Sensor azimuth angles
13 Surface elevation

with MODIS observations where both C4 and C5 AOD
predictions were available together with AERONET
Level 2.0 AOD measurements. These data corresponded
to the first eight months of 2005 collected at 110
AERONET sites.

As shown in Figure 5, AERONET sites are not
uniformly distributed. The highest density is within the
U.S. On the other hand, continental Asia, Africa, and
Australia are poorly covered. Hence, as a cautionary
note, global applicability of data-driven AOD prediction
methods are somewhat limited. During the studied time
period, measurements from the 129 AERONET sites
were not uniformly distributed. For example, the data
were undersampled during rainy seasons.

In order to make fair comparison between the
deterministic and data-driven methods, we extracted
only the satellite-based attributes that were used as
inputs to both C4 and C5 algorithms. The attributes
used are listed in Table 2. The four wavelengths were
taken from the MODIS range between 440nm - 2100nm,
as these are sufficient to describe aerosol properties [5].

By convention, AOD is reported at the 550nm
wavelength. As AERONET instruments do not provide
AOD at that wavelength, based on domain knowledge,
we performed log-linear interpolation of AERONET



Figure 5: Location of 129 AERONET sites used in competition procedure.

AOD measurements at 440nm and 670nm to estimate
AOD at 550nm [5].

4.5 AOD predictions by a single neural network
predictor. We evaluated the performance of neural
networks as AOD predictors from the MODIS attributes
listed in Table 2. Neural networks were trained on
16,328 collocated data points, collected between April
2003 and November 2004. The remaining 7,575 data
points, from December 2004 to November 2005, were
used as test set for accuracy estimation. It should
be noted that the test data covered the consecutive
four seasons that were not seen during training. By
dividing dataset in this way, we avoided the problem of
memorizing training data, which would have occurred
if the training-test split was performed randomly. The
memorization would occur because of the temporal
correlation in AOD values that can remain significant
over periods of up to a few weeks.

Neural networks with one hidden layer and one
neuron in the output layer were used throughout all
experiments. Inputs to neural networks are listed in
Table 2. The sigmoid activation function has been
used for all hidden neurons while the linear activation
function was used for the output neuron. The neural
networks were trained using MSE function as a cost
function. We note that the MSRE function (4.8) should
be used if we wanted to avoid the problem with outliers
and we are especially interested in high accuracy at low
AOD values.

The results obtained by using a different number

Table 3: Single neural network vs. AERONET AOD
accuracy

# neurons in Neural Network AOD prediction

hidden layer MSE R? CORR MSRE FRAC
O(linear output) 0.034 0.46 0.69 3.08 49%
5 0.024 0.62 0.79 2.27 56%
10 0.021 0.67 0.82 1.95 60%
20 0.020 0.68 0.82 1.90 61%

of neurons in the hidden layer are presented in Table
3. The values in the table represent averages from
10 repeated experiments. Compared to the results
obtained by C4 algorithm on the same dataset presented
in Table 4, we can conclude that neural networks
were more accurate in predicting AOD than the C4
algorithm for all 5 accuracy measures. It should be
noted that a simple linear predictor achieved AOD
prediction accuracy comparable to the accuracy of C4
algorithm.

Since there was no significant difference between
neural networks with 10 and 20 hidden nodes, we used
neural networks with 10 hidden neurons in all of the
remaining experiments.

4.6 Experiments using predictors specialized
for C5 spatio-temporal partitions. To test whether
spatio-temporal partitions defined in operational C5
algorithm could be used in data-driven AOD prediction



Table 4: C4 AOD vs. AERONET AOD accuracy for
Dec 2004 - Nov 2005

Table 6: Neural networks specialized for partitions dis-
covered by competition vs. AERONET AOD accuracy

# Deterministic AOD prediction
points MSE R? CORR MSRE FRAC
7575 0.034 0.46 0.79 5.36 52%

Table 5: Neural networks specialized for C5 partitions
vs. AERONET AOD accuracy for Dec 2004 - Nov 2005

# Neural Networks AOD prediction
points MSE RZ CORR MSRE FRAC
7575 0.023 0.63 0.80 2.40 61%

approach, we trained neural networks specialized for the
three regions presented in Figure 1. Each of the three
neural networks was trained on data belonging to one of
the partitions (white, gray, or black) depicted in Figure
1. Similar to training-test partition in Section 4.5, we
used data between April 2003 and November 2004 for
training, while the test set was taken between December
2004 and November 2005. The results are presented in
Table 5.

While the achieved accuracy was better than the
accuracy of C4 algorithm (Table 4), considering all
measures, the specialized predictor was worse than using
a single predictor (Table 3).

4.7 Experiments using predictors specialized
for spatio-temporal partitions discovered by
competition. The results in Table 5 indicate that
domain-based partitioning is not suitable for learning
specialized AOD predictors. Instead, we applied the
proposed competition method from Section 3 to find
spatio-temporal partitions.

To run the procedure, we have to choose an ap-
propriate size of spatio-temporal cells. Each cell is de-
fined as a time interval for a specific AERONET site.
We evaluated several cell size choices, empirically. The
largest temporal size we considered was 7' = 12 months
as the aerosol concentration is periodic with yearly cy-
cles. In addition, we considered smaller temporal sizes
of T=6,T =4 and T = 1 months. Cell temporal size
is fixed during the competition procedure. The compe-
tition starts with K = 2 models. In the first step, the
entire dataset is divided randomly into K equal sized
subsets. Next, neural network predictors were trained
on each of the K subsets. Data from each AERONET
site were partitioned into the consecutive, disjoint tem-
poral cells of size T'. Given predictions of the competing
predictors on all examples within a cell, the cell is as-

# T Neural Networks AOD prediction
models  (months) MSE R? CORR MSRE FRAC

12 0.017 0.73 0.85 1.80 65%

2 6 0.015 0.75 0.87 1.55 68%
3 0.019 0.70 0.84 1.76 64%
1 0.017 0.73 0.85 1.82 65%
12 0.019 0.70 0.84 1.83 65%

3 6 0.018 0.72 0.85 1.77 67%
3 0.018 0.72 0.85 1.70 66%
1 0.022 0.65 0.82 2.23 67%

signed to the model achieving the smallest prediction
error. The competition iterated until a stable solution
was found. The experiment was repeated for various
parameter values K and T'. Finally, all possible parti-
tionings were evaluated on the independent test set and
the best one was chosen as the final solution.

There were several additional issues that had to be
addressed. First, we wanted to avoid making evalua-
tions of the competing predictors on the training data.
Instead of training competing neural networks on the
complete training data set, we applied 4-cross-validation
procedure. Data from each month were partitioned into
4 weekly intervals; one week was used for validation,
while the remaining three weeks were merged and used
for training.

Second, the cost function for training the neural
networks in the competition procedure had to be deter-
mined. Due to an abundance of outliers in the training
data, the standard MSE function was not the most ap-
propriate choice because the training procedure would
be dominated by the outliers and it would be difficult
to find a stable solution. To overcome this problem we
used MSRE as a cost function. As discussed in Section
3.2, this function is less sensitive to the outliers.

Third, prediction models compete for the cells based
on the prediction error, which has to be defined. To
avoid the possibility that outliers could dominate the
competition procedure, we used average MSRE error
over the cell to determine the winning model. The
model that achieves minimal MSRE was considered
the winner. Finally, the neural network predictors
were built on the discovered spatio-temporal partitions.
Those networks had to be trained using the standard
MSE cost function, since networks trained with MSRE
as a cost function tend to underestimate large AOD
values.



The competition procedure was applied on the
explained training data from between April 2003 and
November 2004. The learned spatio-temporal partitions
were evaluated on the test data between December 2004
and November 2005. The results for the different K and
T values are presented in Table 6.

Based on the results from Table 6, we can conclude
that the proposed competition-based spatio-temporal
data partitioning approach resulted in large accuracy
improvements. The best results were obtained for cell
size of six months (T" = 6), where one interval covered
winter-spring months and another summer-fall months,
and for spatio-temporal partitioning that results in two
specialized predictors (K = 2).

The resulting spatio-temporal partitions are shown
in Figure 6. From Figure 6, we can see that during the
winter-spring months the whole U.S. was assigned to the
same partition, while during the summer-fall months
some U.S. sites moved to the other partition. Also,
AERONET sites in Africa did not change their assign-
ment during the year. It is interesting to mention that
average AOD in the gray partition is 0.13 with standard
deviation 0.12 while average AOD in white partition is
0.29 with standard variation 0.35. Although it might
appear that the competition procedure discovered par-
titions based on the average AOD values, the standard
deviation suggests that the underlying process is more
complicated.

4.8 Comparison of C4, C5 and data-driven
predictors. We compared our specialized predictors
to the recently developed C5 algorithm. As it is
described in Section 3.4, data from the first eight
months of 2005 were extracted because during that time
period both C4 and C5 predictions are available. We
tested our best predictor that consisted of two neural
networks specialized for two spatio-temporal subsets
from Figure 6. The results are presented in Table 7. C5
significantly outperformed C4 on all accuracy measures.
The specialized neural networks were more accurate in
predicting AOD than the operational C5 algorithm for
all 5 of the accuracy measures.

The improvement in the AOD prediction can be
seen in Figure 7, where comparative scatter plots of C5
vs. AERONET AOD and AOD predicted by specialized
neural networks vs. AEROENT AOD are presented.
By inspecting these plots, we can conclude that the
specialized neural networks were equally successful for
both small and large AOD. The higher accuracy of
the proposed method in predicting small AOD can be
seen in the zoomed-in plots in Figure 7. The bias in
predicting small AOD values was significantly reduced
using the proposed method as compared to C5.

(b) two partitions for summer-fall months

Figure 6: Spatio-temporal partitions obtained by com-
petition procedure.

Table 7: Predictors vs. AERONET AOD accuracy

AOD prediction accuracy

Predictor MSE R? CORR  MSRE FRAC
C4 0.031  0.55 0.84 4.52 48%
C5 0.020 0.70 0.88 1.93 63%
Neural Network
0.014 0.81 0.90 1.50 68%

local predictors

5 Conclusion.

Our previously reported results provide strong evi-
dence that it is possible to develop a global data-driven
AOD predictor which is as accurate as the operational
knowledge-based AOD predictor [13]. In an effort to fur-
ther improve accuracy of data-driven AOD prediction
we explored benefits of learning an ensemble consist-
ing of multiple regression models specialized for specific
spatio-temporal data subsets.

In our experiments on three years of integrated
AERONET and MODIS data, AOD prediction accu-
racy has not improved when training specialized data-
driven models on knowledge-based partitions used by
Ch-algorithm. However, the competition-based spatio-
temporal data partitioning proposed in this study re-
sulted in large accuracy improvements. The resulting
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Figure 7: Scatter plots of C5 vs. AERONET (left panels) and specialized neural networks AOD predictions
vs. AERONET (right panels); bottom panels zoomed scatter plots; solid line ideal prediction, dashed lines

boundaries of acceptable error.

ensemble of specialized AOD predictors was a lot more
accurate than both the global data-driven predictor and
an ensemble of data-driven predictors trained on C5
partitions. Accuracy improvements were observed for a
range of spatio-temporal partitioning parameter choices
considered and for various accuracy measures.

The most accurate results were obtained when (1)
the data from each AERONET location were first
grouped in disjoint temporal cells of length equal to
six months. In this manner, half of the cells from
each location corresponded to winter-spring months
and another half to summer-fall months; and (2) two
specialized neural network predictors were competing
for the cells using the proposed procedure.
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