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ABSTRACT
In many remote sensing applications it is important to use 
multiple sensors to be able to understand the major spatio-
temporal distribution patterns of an observed phenomenon. A 
particular remote sensing application addressed in this study is 
estimation of an important property of atmosphere, called Aerosol 
Optical Depth (AOD). Remote sensing data for AOD estimation 
are collected from ground and satellite-based sensors. Satellite-
based measurements can be used as attributes for estimation of 
AOD and in this way could lead to better understanding of spatio-
temporal aerosol patterns on a global scale. Ground-based AOD 
estimation is more accurate and is traditionally used as ground-
truth information in validation of satellite-based AOD 
estimations. In contrast to this traditional role of ground-based 
sensors, a data mining approach allows more active use of 
ground-based measurements as labels in supervised learning of a 
regression model for AOD estimation from satellite 
measurements. Considering the high operational costs of ground-
based sensors, we are studying a budget-cut scenario that requires 
a reduction in a number of ground-based sensors. To minimize 
loss of information, the objective is to retain sensors that are the 
most useful as a source of labeled data. The proposed goodness 
criterion for the selection is how close the accuracy of a 
regression model built on data from a reduced sensor set is to the 
accuracy of a model built of the entire set of sensors. We 
developed an iterative method that removes sensors one by one 
from locations where AOD can be predicted most accurately using 
training data from the remaining sites. Extensive experiments on 
two years of globally distributed AERONET ground-based sensor 
data provide strong evidence that sensors selected using the 
proposed algorithm are more informative than the competing 
approaches that select sensors at random or that select sensors 
based on spatial diversity.  

Categories and Subject Descriptors
J.3 [Computer Applications]: Physical Sciences and Engineering 
– Earth and atmospheric sciences. 

General Terms
Algorithms, Measurement, Experimentation. 

Keywords
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1. INTRODUCTION 
Aerosols, minute particles suspended in the atmosphere 
originating from natural and man-made sources, have become one 
of the main topics in climate research studies [8]. They have 
significant effect on health [14], vegetation, precipitation [17] and 
global climate [4]. Aerosols were identified as a central 
component missing from general circulation models (GCMs) that 
simulate climate changes [10]. After accounting for the aerosol 
effects, model-simulated climate changes have become more 
realistic [11] and an agreement between GCMs and real 
observations has been significantly improved.  

The main optical property of aerosols is Aerosol Optical Depth 
(AOD) [13]. AOD is a measure of the visual or optical thickness 
of an aerosol layer. The process of predicting AOD using ground 
[5] or satellite [9] based observations is known as AOD retrieval. 
Ground based observations are mostly obtained by AErosol 
RObotic NETwork (AERONET) [5] which is a global remote 
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Figure 1. Global distribution of AERONET sites. 
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sensing network of radiometers that measure AOD several times 
per hour from specific geographic locations. AERONET 
instruments provide accurate estimation of local aerosol 
abundance, but they have low spatial coverage which limits their 
applicability in understanding global aerosol properties. On the 
other hand, satellite observations provide global coverage on a 
daily basis, but are less accurate because the signal that a satellite 
instrument receives is a mixture of reflected radiation by both the 
Earth’s surface and the aerosol layer [7]. Accuracy of satellite-
based AOD retrieval is one of the major limiting factors 
influencing simulation-based climate change studies [13]. 

The operational AOD retrieval algorithms are typically manually 
tuned by domain scientists [16]. While this guarantees that the 
retrievals are based on sound physical principles, it also creates 
problems when there is an opportunity to use ground truth data to 
improve the algorithm. In contrast to domain-driven methods for 
AOD retrieval that use a network of sensors installed on ground 
for validation purposes only, a data-driven approach is using them 
directly to train an algorithm for AOD retrieval from satellite 
observations. This approach is possible when a data set is 
available that consists of satellite observations and collocated 
ground-truth measurements from AERONET radiometers. Given 
such data, a regression model can be constructed that predicts the 
ground-truth labels from the satellite observations. In our previous 
studies to retrieve AOD from satellite observations, a predictor 
was trained on satellite observations spatially and temporally 
collocated with AERONET retrievals [18]. It has been shown that 
such a statistical approach could improve the accuracy of 
retrievals significantly as compared to the operational domain-
based methods. Clearly, this improvement comes from the 
utilization of highly accurate ground-based measurements directly 
in the prediction model.  

However, ground based stations are often located without a 
rigorous statistical design. Decisions are typically based on 
practical circumstances (e.g. overrepresentation in urban regions 
and industrialized nations) and according to domain experts’ 
assumptions about the importance of specific sites. Furthermore, 
the total number of sensor sites depends on financial constraints. 
Costs related to equipment, location, and the availability of 
trained staff often dictate the number of sites and their global 
distribution. As shown in Figure 1, AERONET sites are not 
uniformly distributed over the globe. The highest density is within 
the U.S. and Europe. On the other hand, continental Asia, Africa, 
and Australia are poorly covered. Given these circumstances, the 
aims of our study are to evaluate performance of the current 
design of AERONET sensor network and to apply data mining 
techniques to assist in future modifications of the sensor network.  

In a tribute to the ongoing economic crisis, a specific scenario 
considered in this paper assumes that there is a pending budget 
cut for maintenance of the existing AERONET sites. The 
objective is to shut down a fraction of the AERONET sites while 
making sure that the utility of the remaining sites is as high as 
possible. In this paper, we make a simplifying assumption that 
operational costs for each AERONET site around the globe are 
equal.  

Common to most selection techniques originating from the spatial 
statistics is a tendency to overlook the time dimension of data 
collected by the sensor network. In this paper, for the problem of 
selecting a subset of data collection sites, we consider series of 

observations and propose to optimize AERONET sensor selection 
based on the concept of retrieval accuracy. The intuition behind 
our proposal is straightforward. Each AERONET site provides a 
time series which can be used in training a regression model to 
retrieve future AOD. Sites that can be removed are those whose 
observations are best predicted by the model built on data from 
the remaining sites. The performance of the proposed approach is 
compared with the random site selection and with the classical 
selection principle of selecting spatially dispersed sites.  

2. METHODOLOGY  
2.1 Data Fusion 
Given a data set that consists of satellite observations and 
AERONET AOD measurements, a regression model can be 
trained to use satellite observations as attributes and predict the 
labels which are AERONET AODs. For that reason, satellite 
observations need to be collocated and merged with AERONET 
measurements. 

In this study we consider data from MODerate resolution Imaging 
Spectrometer (MODIS), an instrument aboard NASA’s Terra and 
Aqua satellites. Instruments mounted on Terra observe the Earth 
during morning whereas those mounted on Aqua observe the 
Earth during afternoon. In this study, we use data only from Terra 
satellite. 

MODIS has high spatial resolution (pixel is as small as 
250x250m2) and achieves global coverage daily. On the other 
hand, AERONET sites, situated at fixed geographical locations, 
acquire data at intervals of 15 min on average. This gives rise to 
the need for both spatial and temporal data fusion (Figure 2). The 
fusion method involves aggregating MODIS pixels into blocks of 
size 50x50 km2 and spatially collocating them with an AERONET 
site. The MODIS observations are said to be temporally 
collocated with the corresponding AERONET AOD retrievals if 
there is a valid AERONET AOD retrieval within 30 minutes of 
the satellite overpass. The data collocated in this way can be 
obtained from the official MODIS website of NASA [6].  

Figure 2. Spatio-temporal collocation of MODIS and 
AERONET data. A is an AERONET site with AOD retrieved 

within a short time before and after the satellite overpass 
(circle dots). The square regions are MODIS observations in a 

proximity of site A at the satellite overpass time.  
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2.2 Regression Model 
Let us assume we have access to data from a set of N AERONET 
sites S = {Si, i = 1, 2, …N}. At site Si there is a sequence {(Xit, 
yit)} of multivariate radiance observations Xit collected from a 
satellite instrument spatio-temporally collocated with the 
corresponding ground-based AERONET AOD values yit. To be 
able to accurately retrieve AOD from MODIS measurements we 
are using all labeled data from sensor set S to train a regression 
model f aimed to estimate target AOD values. Typically, the 
following data-generating model is assumed 

),0(~,)( 2σεε Ν+= XfY , (1) 

where ε is Gaussian additive noise with constant variance σ2.

Neural networks are often a regression model of choice in data-
driven retrieval of atmospheric properties [1, 12]. In our previous 
work, neural networks have been trained to predict AERONET 
AOD over continental US [3] and whole globe [15] using 
attributes derived from satellite data. Comparing to the domain-
based AOD retrievals, neural network AOD predictions were 
significantly more accurate. 

The assumption of constant variance is a basic requirement in 
constructing a model. In many cases there is no reason to suspect 
that the error variance is not constant. However, our inspection of 
residual plot f(X) – Y as a function of f(X) provides evidence that 
this assumption is violated at a certain AERONET sites. At Figure 
3 we notice that in our application variance σ2 is not constant, but 
is proportional to f(X).  

Variance stabilizing transformations of target variable are often 
useful in these cases [2]. The strength of transformation depends 
on its curvature. Square root and logarithmic transformations are 
popular in practice. In square root transformation, a regression 
model that predicts Z = √Y is trained and the prediction is 
provided as ,ˆˆ 2ZY =  while in logarithmic transformation Z = 
log(Y) and ).ˆexp(ˆ ZY =  Square transformation is considered as a 
relatively mild [2] comparing to the logarithmic and is often 
applied when variance of residuals increases linearly with 
predicted variable.  In the experimental section we compared both 
of them with the standard approach that does not transform the 
target variable. 

2.3 Selection of Informative AERONET Sites 
Let us assume that a mission objective is to close down a fraction 
(33% or 66% in our experiments) of AERONET sites as to reduce 
ground-based data collection costs. Given such a budget cut 
situation, question of our interest is how to select M (<N) of the 
currently available N AERONET sites such that this subset 
captures as much information as possible compared to the entire 
set S. The goodness criterion for a selection is accuracy of a 
regression model built on labeled data from the retained sites.  

Intuitively, it appears that the selection of sites that are spatially 
dispersed would be a better choice than a random elimination. 
Such a spatial selection might be aided by domain experts — they 
would prefer to keep representative sites around the globe that 
cover a variety of meteorological and environmental conditions. 
However, regardless of the experts’ effort, spatial representatives 

selected this way may not be optimal with respect to the quality of 
the resulting regression model f.  

The sites selected by a domain expert are likely to be spatially 
diverse. To approximate the decision-making process of domain 
experts, for benchmarking purposes we use the spatial selection 
strategy based on spatial distance among sites. In the first step two 
sites that are closest to each other are determined. One of them 
whose removal better preserves global coverage is excluded from 
the set S. To decide which one is going to be removed, we are 
consulting the nearest neighbors of those two sites. The site which 
has the closer second nearest neighbor is removed. This procedure 
is iteratively repeated until the desired number of M sites is 
reached.  

Our proposed strategy for selection of M sites out of N is 
accuracy-based. At the first step, the regression model f is trained 
on the data from the entire set of AERONET sites. At successive 
steps, every location is taken out and a model is built on data from 
the remaining sites. By Ŷ we denote AOD retrieval obtained by a 
model trained on whole dataset and by Ŷ(i) AOD retrieval obtained 
by a model trained on S\Si sites that exclude examples from site Si.  
The intuition is that if AODs from site Si can be estimated with a 
model which has not seen that site, then site Si can be considered 
as redundant and therefore can be removed. To quantitatively 
define redundancy, we measure the difference in AOD retrieval 
accuracy between the model trained on the whole dataset and 
model trained on a dataset without examples from site Si. The 
difference in retrieval accuracy is measured at data from site Si as 
a sum of squared differences in retrieved AODs computed over all 
points from site Si

∑ −=
t

i
tii yySSE 2)( )ˆˆ(  (2) 

A site that is removed is the one with the smallest SSE as its AOD 
is the easiest to estimate given data from the remaining sites.  
Once a site is removed the proposed procedure is repeated. It 
continues by comparing the reduced models to the model built on 
the entire data, where data from the most recently excluded site 
are used for calculating SSE based loss. 

3. EXPERIMENTAL RESULTS  
3.1 Dataset 
There are several levels of AERONET AOD measurements [5]. 
To avoid potential problems with outliers in ground truth data, 
AERONET Level 2.0 observations were considered since they 
were cloud screened and manually verified.  

Table 1. List of attributes collected from the collocated 
satellite observations  

Attribute 
index 

Description 

1-4 
Mean radiation in 50 x 50 km2 blocks at seven 
wavelengths 

5-9 
Std. deviation of radiation in 50 x 50 km2

blocks at seven wavelengths 

10-13 Ancillary attributes (view angles, elevation)  
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For our study we collected MODIS Terra observations collocated 
with AERONET Level 2.0 points. We extracted satellite-based 
attributes that are used as inputs to knowledge based retrieval 
algorithms. The radiances at four wavelengths were taken from 
the MODIS range 440nm – 2100nm, as these are sufficient to 
describe aerosol properties [16]. An average and standard 
deviation of radiances of pixels in 50x50 km2 blocks were then 
estimated. Attributes are listed in Table 1. Along with radiances 
we also extracted ancillary attributes. Information about geometry 
is characterized by solar and sensor angles. As surface elevation 
affects estimated AOD, it was also included in the set of attributes 
and has been extracted from AERONET data. 

By convention, AOD is reported at the 550nm wavelength. Since 
AERONET sites do not provide AOD value at that particular 
wavelength, we performed a standard linear interpolation in the 
log scale of AERONET AOD measurements at 440nm and 670nm 
to estimate AOD at 550nm [16]. 

Data we collected are distributed over entire globe at 217 
AERONET sites (Figure 1) during years 2005 and 2006. To 
assess efficiency of the proposed methods, we performed training 
on 2005 data and used 2006 data for testing. However, during that 
time period measurements from AERONET sites were not 
uniformly distributed, neither temporally or spatially. There were 
many more points from June to August than from January to May. 
Also, at some cloudy locations it was not possible to measure 
AOD and those locations contained a small number of data points. 
To maintain uniformity of the training dataset, in each training 
session we randomly selected 30 sites in year 2005 as the initial 

set S. Only 70 randomly chosen observations from each of those 
AERONET site were retained and remaining ones were removed. 
Finally, the training set consisted of 2,100 data points distributed 
over 30 AERONET sites each containing 70 collocated 
observations. As the test set, we randomly sampled 50 points from 
each site in 2006. Sites with less than 50 valid observations were 
excluded. The constructed test set contained 3,500 data points 
distributed over 70 AERONET sites each having 50 collocated 
observations. It is worth mentioning that among 70 test sites, 30 
were the same as in the training set, while 40 sites were not seen 
during training. To evaluate the proposed approach, we report R2

accuracy on the test set.  

3.2 Determining an Appropriate AOD 
Transformation 
To validate the assumption that error variance is not constant and 
that empirically selected square root transformation is the most 
appropriate one, we performed the following experiment. Thirty 
sites in 2005 were chosen randomly. Three regression models, one 
with data preprocessed by the square root transformation (NNSQ), 
one with data preprocessed by the log transformation (NNLG) and 
the other without the transformation (NN), were trained on the 
selected dataset and compared on the test set. As a regression 
model we used a neural network with ten hidden neurons trained 
to optimize standard Mean Square Error (MSE) function.   

This procedure was repeated ten times for different sets of 30 
randomly selected sites. We report R2 accuracy achieved on the 
fixed test set covering the 70 sites during 2006. To estimate 
sensitivity of constructed models to distribution of the initial 30 
sites, we report mean, standard deviation, median and minimum 
and maximum of R2 in those ten iterations. The results are 
presented in Table 2. These results provide strong evidence that 
the neural networks trained to predict AOD squared root (NNSQ) 
are more accurate than those trained to predict raw AOD (NN) or 
log-AOD (NNLG). Additionally, the presented results reveal that 
retrieval accuracy is sensitive to the choice of the initial set of S
sites. Although each time the selected 30 sites were globally 
distributed covering all parts of the world, in some cases accuracy 
dropped significantly. A possible explanation could be that some 
of those sites have noisy data that negatively influence model 
performance. 

Table 2. R2 statistics on 2006 data for neural network models 
without (NN) and with log (NNLG) or square root (NNSQ) 

transformed output each built on ten different sets of 30 
randomly selected sites using 2005 data. 

R2

Model 
Mean Std Median Min Max 

NN 0.659 0.086 0.671 0.459 0.742 

NNLG 0.664 0.091 0.703 0.444 0.721 

NNSQ 0.746 0.042 0.754 0.644 0.789 
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Figure 3. Variance stabilizing effect of square root transformation. Error variance as a function of a) predictions without 
transformation b) predictions with log transformation c) predictions with square root transformation
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To better illustrate the effect of the square root transformation, at 
Figure 3 we show variance of prediction errors as a function of 
predictions. As can be seen, if the transformation is not used, the 
error variance is large when large AODs are predicted. On the 
other hand, when the strong log-transformation is used, the error 
variance is large when small AODs are predicted. Finally, when 
square root transformation is used, error variance is practically 
constant and does not depend on the value of predicted AOD. 
Thus, minimizing MSE assuming constant variance (as in (1)) is 
justified for the square-root transformed AOD.  

To get better insight how transformations influence prediction 
accuracy, we analyzed a series of AOD retrievals at AERONET 
site ‘BSRN_BAO_Boulder’ (40ºN, -105ºW). Sensor platform is 
on the rooftop of the building which is located on the high plains 
about 15 miles east of Boulder, CO, USA. Surrounding farmers’ 
fields make satellite AOD retrieval easier in some yearly seasons. 
Satellite retrievals are more accurate over green regions which are 
often considered as dark [16] and therefore do not have an 
influence on observed radiation. AOD data from this AERONET 
site along with AOD retrievals of NN, NNLG and NNSQ are 
presented in Figure 4a, 4b and 4c respectively. By visual 
inspection of those plots we can see that if AERONET instrument 
from this site measures small AOD then model NN retrieves large 

AOD whereas both NNLG and NNSQ manage to retrieve small 
AOD. Although it looks that NNLG and NNSQ achieve similar 
accuracy comparing to AERONET AOD, by inspecting R2 which 
is 0.72 for NNSQ, 0.54 for NNLG and -0.1 for NN we conclude 
that NNSQ is more accurate than NNLG and NN.   

To explore how the proposed square root transformation 
influences prediction accuracy at some extreme situations we 
analyzed AOD predictions of the least accurate NN, NNLG and 
NNSQ neural networks. We observed that the largest retrieval 
errors were made on the site ‘Izana’ (28.3ºN, -16.5ºW) which is 
located on the island of Tenerife, Spain, at elevation of 2360m 
above sea level. The sensor platform is placed on the top of a 
mountain plateau. The sky is usually free of clouds and as a result 
is extremely clean and suitable for radiation measurements and 
calibrations. AOD data from this AERONET site along with AOD 
retrievals of NN, NNLG and NNSQ are presented in Figure 5a, 5b 
and 5c respectively. We can see that AERONET instrument from 
this site most of the time measures small AOD while all three 
models NN, NNLG and NNSQ predict large AOD. However, 
models NNLG and NNSQ trained on transformed data manage to 
make smaller predictions than NN.  
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Figure 4. AERONET AOD at site ‘BSRN_BAO_Boulder’, along with AOD retrievals by a) NN, b) NNLG and c) NNSQ models built 
on data from 30 sites  
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Figure 5. AERONET AOD at site ‘Izana’, along with AOD retrievals by a) NN, b) NNLG and c) NNSQ models built on data from 
30 sites  
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Based on these results, we used NNSQ predictor in the following 
experiments. 

3.3 Selection of Informative Sites 
We are considering a scenario when current operational 
AERONET sites have to be reduced by 33% or 66%. In all 
experiments, we started from a set of 30 AERONET sites and 
applied the proposed method and the two alternatives (spatial and 
random selection) to identify a subset of 20 or 10 AERONET sites 
to be retained. The NNSQ models were trained on labeled data 
from 2005. To test the goodness of the identified subset we tested 
the NNSQ models on 70 sites from 2006 (as described in Section 
3.1).  

The R2 results averaged over 10 repetitions are presented in Figure 
6. We noticed that in some cases R2 drops significantly when 
spatial and random selection strategies are used. Therefore, we 
also report median values of R2 after 10 repetitions (Figure 7). In 
our experiments, the proposed accuracy-based selection achieved 
consistently better results than the alternatives. Also, accuracy of 
the proposed site reduction method did not change much even 
after removing 20 of the 30 AERONET sites. Interestingly, on 
average, the spatial selection strategy performed slightly worse 
than the random selection strategy. 

Let us now consider the effect of the proposed sites reduction 
method on predictions at the site ‘BSRN_BAO_Boulder’ 
analyzed previously (Figure 4). Time series of AOD retrievals at 
this site for a single placement of 30 training sites are presented in 
Figure 8. NNSQ model trained on a reduced dataset was able to 
retrieve ground-truth AOD slightly less accurately than the model 
trained on data from all 30 sites. In terms of R2 accuracy, NNSQ
trained on a reduced dataset achieved R2 = 0.64 while NNSQ
trained on non-reduced dataset achieved R2 = 0.72 at the site 
‘BSRN_BAO_Boulder’. The conclusion is that accuracy-based 
reduction retains most of the accuracy of the model built on non-
reduced dataset.  

In Figure 9 we illustrate site reduction for one initial placement of 
30 AERONET sites. Spatial-based selection of AERONET sites 
nicely covers whole globe but it is not necessarily optimal for 
data-driven AOD retrieval problem as we already noticed (Figure 
6). On the other hand, some regions of the world were 
underrepresented when an accuracy-based principle was applied 
(Figure 9e). The accuracy was retained to a certain extent 
although no site from East US or from middle Asia was selected.  

4. DISCUSSION  
In this work we presented a method for the reduction of a number 
of AERONET sites such that the remaining sites are as 
informative as possible. The goodness criterion for a site selection 
is the accuracy of a regression model built on the labeled data 
from the selected sites. We analyzed three different approaches for 
site selection. A common-sense approach used as a benchmark 
was a random selection of sites. An approach based on spatial 
distance among the sites was also considered. Sites were selected 
such that their spatial coverage was maximized. As an alternative 
that takes into account the actual measurements from ground-
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Figure 6. Mean R2 values in ten iterations for different 
initial sets of 30 AERONET sites. 
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initial sets of 30 AERONET sites.  
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based AERONET sensors and satellite-based MODIS 
instruments, we proposed an accuracy-based selection approach. 
For this, a regression model was first trained on the labeled data 
from an entire set of sensors. After that, at successive steps, every 
location is excluded to check if AOD from that location can be 

predicted accurately by the model trained on labeled data from the 
remaining sites. The intuition was that if AODs from that site can 
be retrieved fairly well with a model which has not seen that site, 
then the ground-based measurements at that site can be considered 
as redundant. 
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Figure 9. a) Initial set of 30 AERONET sites b) spatial-based reduction to 20 sites c) accuracy-based reduction to 20 sites d) spatial-
based reduction to 10 sites e) accuracy-based reduction to 10 sites. 
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According to presented results we conclude that the proposed 
accuracy-based sites reduction method is superior to spatially-
based and random selection alternatives. In this report we did not 
address the question of determining the optimal number of sites to 
reduce the entire set in order to maintain a desired accuracy. This 
problem is addressed in our work in progress.  
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