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A Data-Mining Technique for Aerosol Retrieval
Across Multiple Accuracy Measures

Vladan Radosavljevic, Slobodan Vucetic, and Zoran Obradovic

Abstract—A typical approach in supervised learning is to select
an accuracy measure and train a predictor that maximizes it. This
can be insufficient in remote-sensing applications where predic-
tor performance is often evaluated over multiple domain-specific
accuracy measures. Here, we test the hypothesis that predictors
can be trained to maximize performance over multiple accuracy
measures. To do this, we evaluate several metalearning algorithms
on the problem of aerosol optical depth (AOD) retrieval. The mul-
tiple accuracy measures included mean squared error, correlation,
relative squared error, and fraction of satisfactory predictions. The
proposed metalearning algorithms have a two-layer architecture,
where the first layer consists of multiple neural networks, each
trained using a different accuracy measure, and the second layer
aggregates decisions of the first layer predictors. To evaluate AOD
predictors, we used nearly 70 000 collocated data points whose
attributes were radiances, solar and view angles, and terrain eleva-
tion from MODerate resolution Imaging Spectrometer (MODIS)
instrument satellite observations and whose target AOD variable
was obtained from the ground-based AEROsol robotic NET-
work (AERONET) instruments. The data were collected at 221
AERONET locations over the globe in the period between 2005
and 2007. AOD prediction accuracies of neural networks were
compared to the recently developed operational MODIS C005
retrieval algorithm and to several other data-mining methods.
Results showed that neural networks are better at reproducing
the test data than the operational retrieval algorithm and that
predictors obtained by metalearning are robust over multiple
accuracy measures.

Index Terms—Aerosol retrieval, metalearning, neural networks.

I. INTRODUCTION

A DATA-MINING approach for classification and regres-
sion in remote sensing is based on learning a relationship

between remotely sensed observations and the ground truth.
The success of the resulting predictor is measured by its
accuracy. Standard accuracy measures such as mean squared
error (MSE) in regression are often selected due to their wide
appeal and convenience. However, in many remote-sensing ap-
plications, standard accuracy measures can be hard to interpret
or even misleading. In addition, domain scientists are often
interested in multiple aspects of the predictor performance that
are evaluated in various ways.

Ideally, one would like to have a predictor that provides
good performance with respect to multiple accuracy measures.
The complication is that predictors which perform well on
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one measure may not perform well on other measures. An
important challenge is to train a predictor where the objective
is not optimal performance on a single measure but robust
performance across several measures.

An illustrative example of such a problem in remote sensing
is aerosol optical depth (AOD) retrieval. Aerosols are minute
particles suspended in the atmosphere originating from natural
and man-made sources. AOD, as reported by surface and space-
based passive remote sensing, is a measure of aerosol light
extinction integrated vertically through the entire atmosphere.
A regression model that retrieves AOD can be trained on a
data set that consists of the satellite observations as inputs and
ground-based AOD measurements as outputs. To demonstrate
the need for multiple evaluation measures, let us analyze the
accuracy of NASA’s currently operational MODerate resolution
Imaging Spectrometer (MODIS) retrieval algorithm (C005) [1].
A scatter plot of C005 AOD retrieval versus ground-based
AOD retrieval in a period of three years from 2005 to 2007
over the whole globe is shown in Fig. 1. The solid line rep-
resents the perfect agreement with AEROsol robotic NETwork
(AERONET), while the dashed lines represent boundaries of an
area within which retrievals are acceptable to domain scientists.
Large absolute errors are more tolerable when retrieving large
AOD than when retrieving small AOD. Therefore, a fraction
of data points inside the bounded area (FRAC) is a suitable
accuracy measure. MSE measure is also used for AOD retrieval
assessment, but it is not as informative because of the following:
1) The retrieval error increases with AOD; 2) the distribution
of AOD is skewed toward small values; and 3) there are many
outliers. In addition to FRAC and MSE, domain scientists are
also interested in the relative squared error (RSE) that considers
larger absolute errors more tolerable when retrieving large AOD
than when retrieving small AOD.

To construct a model that is accurate with respect to FRAC,
MSE, and RSE, we propose to train an ensemble of neural
networks, each with a different relative error measure, and com-
bine their predictions. We explored three methods of combining
ensemble predictions and compared them to neural network
models optimized for a single accuracy measure as well as to
the operational MODIS AOD retrieval algorithm C005.

II. ACCURACY MEASURES FOR AOD RETRIEVAL

There are many possible measures that could be used to as-
sess AOD retrieval accuracy. Given vector t = [t1, t2, . . . , tN ]
of N target values (i.e., true AOD values) and vector y =
[y1, y2, . . . , yN ] of the corresponding predictions, the standard
MSE is defined as

MSE =
1
N

N∑
i=1

(yi − ti)2. (1)
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Fig. 1. Scatter plot of retrieved versus true AOD. Ideal retrievals are repre-
sented by a solid line, while dashed lines correspond to boundaries of a region
of acceptable retrievals.

A related measure to MSE is the coefficient of determination
(R2), which is defined as

R2 = 1 −
(

N∑
i=1

(yi − ti)2
)/(

N∑
i=1

(t̄ − ti)2
)

(2)

where t̄ represents the mean value of vector t. The R2 value
describes a fraction of the variance that the predictor success-
fully explains. The highest R2 is one, while the R2 of the model
that simply predicts the target variable mean is zero. The R2 of
some poor predictors can even be negative.

Another related measure, which is insensitive to the cor-
rectable bias, is the correlation coefficient (CORR)

CORR =

(
N∑

i=1

(yi − ȳ)(ti − t̄)

)
/⎛
⎝
√√√√ N∑

i=1

(yi − ȳ)2

√√√√ N∑
i=1

(ti − t̄)2

⎞
⎠ (3)

where ȳ represents the mean of y.
We also consider several domain-specific measures. Geosci-

entists showed both theoretically and empirically that, taking
into consideration the physical limitations of current satellite
aerosol remote sensing, the desired absolute AOD retrieval
error should be between 0.05 and 0.1 for small AOD and that
it could increase to 15%–20% × AOD for large AOD [1] or
better. Thus, the AOD retrieval can be considered successful if
the absolute error is

|yi − ti| ≤ 0.05 + 0.15ti. (4)

We define the fraction of successful predictions (FRAC) as

FRAC =
I

N
× 100% (5)

where I is the number of predictions that satisfy relation (4).

TABLE I
C005 VERSUS AERONET GLOBAL AOD RETRIEVAL

ACCURACY IN 2005–2007

Domain-specific RSE is defined as

RSE =
1
N

N∑
i=1

(
yi − ti

0.05 + 0.15ti

)2

. (6)

RSE values less than one indicate that AOD retrievals are
satisfactory. The closer the RSE is to zero, the better is the
performance of a predictor. A related measure of accuracy is the
relative coefficient of determination(R2

r), which is defined as

R2
r = 1 −

(
N∑

i=1

(
yi − ti

0.05 + 0.15ti

)2
)

/(
N∑

i=1

(
t̄r − ti

0.05 + 0.15ti

)2
)

(7)

where t̄r =
∑

witi/
∑

wi, wi = (0.05 + 0.15ti)−2,
represents the weighted mean of vector t. R2

r is derived
according to the general definition of a coefficient of
determination [2]. The highest R2

r is one, while R2
r of the

model that predicts the target weighted mean is zero.
The values of four accuracy metrics for the operational AOD

retrieval algorithm called C005 whose scatter plot is shown in
Fig. 1 are shown in Table I. C005 has an excellent performance
based on CORR. However, R2 tells us that there is a significant
portion of variance which C005 was unable to explain. Further-
more, domain-specific R2

r accuracy is small, which indicates
lower than desired performance. Finally, the FRAC measure
shows that more than 35% of retrievals fall outside the target
agreement envelope.

III. ADAPTIVE COST FUNCTION

Neural networks are typically trained by minimizing MSE.
This cost function treats all errors equally regardless of the
target value. As discussed in the introduction, earth scientists
prefer small relative errors rather than small absolute errors
in situations where the uncertainty scales as the magnitude
of the measured quantity. Hence, the MSE function is not
the most appropriate cost function for this application. As a
more general choice, we introduce a function defined as the
relative error (RELa,b) between retrieved and ground truth
AODs

RELa,b =
1
N

N∑
i=1

(
yi − ti
a + bti

)2

(8)

where a and b are positive user-defined parameters. Here, the
level of penalization of retrieval errors can be controlled by
tuning parameters a and b. Note that REL1,0 is equivalent to
MSE, while REL0.05,0.15 is equal to RSE.
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We employ RELa,b as a cost function for training neural net-
works. When a is small, bti is dominant, and so, the emphasis
is on reducing the error of retrieving small AOD. When a is
large, errors for small and large AOD have similar importance.
Sensitivity of a neural network optimization to ti also depends
on parameter b—for a large b, the network becomes more
sensitive to the errors made when retrieving small AOD.

IV. ENSEMBLES WITH ADAPTIVE COST FUNCTIONS

Minimization of the RELa,b cost function, with a =
0.05 and b = 0.15, directly leads to the optimization of
domain-specific measures mentioned in the introduction—
maximization of FRAC and minimization of RSE. However, a
neural network trained in this way would have decreased MSE
accuracy. We are interested in the construction of a model that
is accurate with respect to all accuracy measures.

REL0.05,0.15-optimized neural networks will be more accu-
rate when AOD is small, while MSE-optimized networks will
work better when AOD is large. However, the problem arises
because it is not known in advance whether the AOD value is
small or large. If we used the model which has the ability to
decide whether the AOD value is large or small, the accurate
retrieval of medium-level AOD values would still be a problem.
More specifically, such a model would either overestimate or
underestimate AOD depending on whether it was “classified” as
large or small, respectively. To solve this problem, we propose
the following two-stage approach.

1) Constructing an ensemble of 2K neural networks among
which K networks are specialized in retrieving small
AOD, while the remaining K are specialized in retrieving
large AOD. This is achieved by using different values
of parameters a and b. Since the distribution of AOD
is skewed to the small AOD, by design, all component
networks are trained to penalize errors at small AOD.
However, the intensity of this penalization varies per
component network.

2) Combining the outputs of the component networks to
obtain an integrated AOD retrieval.

The architecture of the proposed system is shown in Fig. 2.
All first-stage component networks are trained using the same
data set. OS1, OS2, . . . , OSK corresponds to networks special-
ized for smaller AOD, while OL1, OL2, . . . , OLK corresponds
to networks specialized for larger AOD. Those outputs are inte-
grated at the second stage using one of the following methods.

A. Integration by Averaging

Here, the final AOD prediction is obtained as a simple
average of OS and OL neural networks. We will refer to this
approach as AVERAGE.

B. Integration by a Meta Neural Network

Here, predictions of OS and OL neural networks are used
to train a second-stage meta neural network. The meta neural
network is optimized to minimize REL0.05,0.15. We will refer
to this two-stage structure as META.

Fig. 2. Architecture of the proposed two-stage ensemble for AOD retrieval.

C. Integration by a Gating Neural Network

In the GATING approach, the first-stage networks are linearly
combined according to the weights assigned by a gating net-
work. A gating neural network is built as a binary classifier that
predicts whether AOD is small or large. If the gating network
OG predicts a large AOD (i.e., OG is close to one), larger
weights are assigned to the OL neural networks specialized for
retrieving large AOD. On the other hand, OG close to zero gives
larger weights to OS networks. Finally, OG near 0.5 means that
large and small AODs are likely equal, and weights of OS and
OL are equal. To avoid bias, the sum of all the weights is set to
one. The final AOD retrieval is computed as

y =
K∑

i=1

(
OG

K
OLi +

1 − OG

K
OSi

)
(9)

where OLi and OSi are outputs of the first-stage networks.
To train the gating network, we assign large and small labels

to AOD values. Domain knowledge suggests that AOD values
that are less than 0.15 should be considered small [1]. To have
balanced training data, instead of using 0.15, we use the median
AOD value of 0.13 as the threshold. AOD values larger than the
threshold are considered as large, while the remaining ones are
considered as small.

V. EXPERIMENTS

A. Data Set

MODIS, aboard NASA’s Terra and Aqua satellites, is one of
the major instruments for satellite-based AOD retrieval [3]. The
MODIS instrument provides global coverage with a high spatial
resolution and moderately accurate AOD retrieval. AERONET
is a global network of about 250 ground-based instruments
that observe aerosols [4]. AERONET instruments are densely
situated in industrialized areas and are sparsely located else-
where. AERONET AOD retrieval is often very accurate and
is considered as ground truth when validating MODIS AOD
retrieval quality.

The modalities of MODIS- and AERONET-based AOD re-
trieval are very different. MODIS achieves an almost complete
global coverage daily, while AERONET retrievals are provided
many times every day but only over selected locations. The
collocation of the AERONET and the MODIS data involves
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aggregating MODIS observations into blocks of 50 km × 50 km
around each AERONET site. The MODIS AOD retrievals
are said to be temporally collocated with the corresponding
AERONET AOD retrievals if there is a valid AERONET AOD
retrieval within a one-hour window centered at the satellite
overpass time. The data collocated in this way are obtained
from the official MODIS Web site of NASA [1].

To avoid potential problems with outliers in ground truth
data, we considered AERONET Level 2.0 observations since
they were cloud screened and manually verified. For our study,
we collected 68 935 collocated observations distributed glob-
ally over 221 AERONET sites from 2005 to 2007.

We extracted satellite-based attributes by consulting inputs
to the MODIS operational retrieval algorithm. The radiances
at four wavelengths were taken from the MODIS range 440–
2100 nm, as these are sufficient to describe aerosol properties.
We used average and standard deviation of radiances within
50 km × 50 km as attributes. We also used solar and sensor
angles and surface elevation. C005 retrieves AOD at 550 nm.
Since AERONET instruments do not provide AOD values at
that wavelength, we performed linear interpolation in the log
scale of AERONET AOD at 440 and 670 nm [1].

B. Evaluation Methods

Spatial–temporal cross-validation was applied in all experi-
ments. First, we split AERONET locations into five subsets Ai,
i = 1, . . . , 5, and created data sets Di, i = 1, . . . , 5, each with
data points from one of the AERONET subsets. Then, we split
each Di into D56

i , containing data from 2005 and 2006, and D7
i ,

containing data from 2007. We reserved one of the D56
i data

sets for testing and merged data from the remaining four data
sets D56

j , j �= i, for training. The trained predictor was tested
on three data sets:

(TEST1) D56
i —data collected in 2005 and 2006 at the locations

unobserved during training;
(TEST2) {D7

j , j �= i}—data collected in 2007 at the locations
observed in 2005 and 2006;

(TEST3) D7
i —data collected in 2007 at the locations unob-

served during training.

The procedure was repeated five times, for values j =
1, . . . , 5, and the average accuracy over the five runs was
reported. It is expected that TEST3 is the most challenging for
prediction.

C. Benchmark Methods

1) Operational Retrieval Algorithm C005: The primary
benchmark for comparison with our predictors was the most
recent version of the MODIS operational algorithm called
C005. The operational algorithms that retrieve AOD from
MODIS observations rely on the domain knowledge of aerosol
properties and are based on lookup tables representing the most
common atmospheric conditions.

2) Single Neural Networks: As a baseline data-mining al-
gorithm, we used single neural networks trained to predict
AERONET AOD from MODIS attributes. Two different sin-
gle neural network models were evaluated. The first net-
work is trained by minimizing a standard MSE cost function
(SingleMSE), while the second network minimized our novel

TABLE II
SATELLITE-BASED VERSUS AERONET AOD RETRIEVAL ACCURACY ON

TEST3 (UNSEEN LOCATIONS AND UNSEEN TIME)

RELa,b measure (SingleREL). Parameters a and b were fixed
to a = 0.05 and b = 0.15.

3) Simple Ensembles of Neural Networks: We also com-
pared the proposed methods to two ensemble algorithms. Each
ensemble consisted of ten neural networks. The outputs of these
ten networks were used as inputs to the second-level neural
network. In the EnsembleMSE approach, all networks were
trained using MSE cost function. In EnsembleREL, the cost
function for all networks was REL0.05,0.15.

4) Ensemble of Networks Specialized for Low and High
AOD: In the DIFFREG approach, K = 5 neural networks
were trained using a portion of the training data with small
AOD, while another K networks were trained using data with
large AOD. To permit smooth transition in attribute space,
overlapping between two training data sets was allowed. Small
AOD was defined as AOD < threshold + ε, while large AOD
was defined as AOD > threshold − ε, where ε was 0.05. All
networks were trained to minimize MSE, and the two sets
of networks were integrated using the gating neural network
described in Section IV-C.

D. Results on TEST3

Ensemble neural networks having 13 inputs and 10 neurons
in a single hidden layer and 1 in the output layer were used in
all experiments. The sigmoid activation function was used in
hidden neurons, while the linear activation function was used
for the output neuron.

The average accuracies of the proposed AVERAGE, META,
and GATING predictors and of six benchmark algorithms using
R2, CORR, R2

r , and FRAC measures are shown in Table II.
These results were obtained on the most challenging TEST3
data. We note that the averaging of the coefficient of determi-
nation measure over five different cross-validation experiments
might be misleading since those measures depend on standard
deviation of a particular test set. However, the variation of R2

in five sets used in these experiments was negligible, and so, we
decided to also report the average R2.

1) Operational Retrieval Algorithm C005: C005 accura-
cies are shown in the first row of Table II. As discussed in
Section II, C005 has an excellent performance based on CORR,
but R2 accuracy reveals that it was not able to explain a
large portion of variance. Also, domain-specific R2

r and FRAC
measures indicate that C005-based retrievals are of insufficient
accuracy.
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2) Single Neural Networks: SingleMSE and SingleREL ac-
curacies are shown in rows 2 and 3 in Table II. Both single
neural networks achieve closer agreement with AERONET than
the MODIS C005 values, based on all four metrics shown in
Table II. However, their performance was quite different over
individual accuracy measures: SingleMSE was more accurate
with respect to R2 and CORR, while SingleREL was a better
choice with respect to R2

r and FRAC measures.
3) Simple Ensembles of Neural Networks: EnsembleMSE

and EnsembleREL accuracies are listed in rows 4 and 5 of
Table II. Both predictors outperformed C005 in all accuracy
measures. Also, they were more accurate than single neural
networks. However, neither ensemble achieved consistently
high performance on all four measures: EnsembleMSE achieved
better accuracy than EnsembleREL with respect to R2 and
CORR, while EnsembleREL was better according to R2

r and
FRAC measures.

4) Ensemble of Specialized Neural Networks: DIFFREG
accuracies are listed in row 6 of Table II. This benchmark
method was quite unsuccessful, with accuracies below Sim-
pleMSE and just slightly better than C005.

5) Ensembles With Adaptive Cost Neural Networks: In
AVERAGE, META, and GATING predictors, five neural net-
works of the ensemble were specialized for the retrieval of
small AOD. This was achieved by using the RELa,b cost
function, with a = 0.05 and b changing from b = 0.03 to b =
0.15 in steps of 0.03. Another five networks in the ensemble
were specialized for the retrieval of large AOD by using a = 1
and b changing from b = 0.03 to b = 0.15 in steps of 0.03.

Results for AVERAGE, META, and GATING adaptive cost
ensembles are presented in the last three rows of Table II.
All three predictors were robust across all accuracy mea-
sures. GATING ensemble with a second-level gating neural
network was slightly more accurate than the alternatives. On
standard measures (R2 and CORR), GATING was as good
as the most successful benchmark method on these mea-
sures (EnsembleMSE), and it had similar accuracy with the
best benchmark method (EnsembleREL) on domain-specific
measures (R2

r and FRAC). This result shows that it is pos-
sible to simultaneously achieve high accuracy on dispa-
rate measures using a two-level ensemble neural network
architecture.

E. Results on TEST1 and TEST2

Accuracies on TEST1 and TEST2 experiments were fully
consistent with TEST3 results shown in Table II. These results
are omitted due to lack of space, but supplementary tables
with complete TEST1 and TEST2 results are provided at
www.ist.temple.edu/~zoran/research/measures.pdf. Our exper-
iments showed that, if a certain method was more accurate
than an alternative method on TEST3, it was most often also
more accurate on TEST1 and TEST2. In particular, in all three
tests, the GATING method was the most accurate over all four
measures. The results of the GATING method over three types
of tests are compared in Table III.

Experiments over three types of tests showed that all methods
were most accurate when tested on data at unobserved time

TABLE III
GATING VERSUS AERONET AOD ACCURACY ON DIFFERENT TEST

SETS. TEST1: UNOBSERVED LOCATION AND OBSERVED TIME.
TEST2: OBSERVED LOCATION AND UNOBSERVED TIME. TEST3:

UNOBSERVED LOCATION AND UNOBSERVED TIME

but over previously seen locations (TEST2). Predicting AOD
at unseen locations during the same two years (TEST1) was
a more challenging objective but not as difficult as predicting
AOD at unseen locations and in an unseen year (TEST3).
These results suggest that, in our data, temporal correlation
was stronger than spatial correlation and that both kinds of
correlation could be exploited to improve the quality of AOD
retrievals.

VI. CONCLUSION

To provide a predictor that is accurate over the standard
and domain-specific accuracy measures, we have proposed
developing an ensemble of neural networks with adaptive cost
functions. In the proposed ensembles, some neural networks
were specialized in predicting small AOD, while others were
specialized in predicting large AOD. Instead of relying on
MSE minimization criterion for neural network training, we
have proposed using the relative error RELa,b, which can
be considered as a generalization of MSE. In experiments
over the entire globe during the period of three years from
2005 to 2007, the proposed ensemble achieved R2 and CORR
accuracies as high as an ensemble relying on standard MSE
optimization, while it significantly improved domain-specific
R2

r and FRAC accuracies. In addition, AOD prediction us-
ing the proposed ensemble produces AOD values signifi-
cantly closer to those of AERONET than the MODIS C005
results.

Our statistical models were trained and evaluated using
data collected at AERONET sites. Uncertainty analysis of
such retrievals at other locations is a topic of our work in
progress, and results on this aspect will be reported in a separate
article.
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