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Abstract. We propose a Conditional Random Field (CRF) model for
structured regression. By constraining the feature functions as quadratic
functions of outputs, the model can be conveniently represented in a
Gaussian canonical form. We improved the representational power of the
resulting Gaussian CRF (GCRF) model by (1) introducing an adaptive
feature function that can learn nonlinear relationships between inputs
and outputs and (2) allowing the weights of feature functions to be de-
pendent on inputs. Since both the adaptive feature functions and weights
can be constructed using feedforward neural networks, we call the result-
ing model Neural GCRF. The appeal of Neural GCRF is in conceptual
simplicity and computational efficiency of learning and inference through
use of sparse matrix computations. Experimental evaluation on the re-
mote sensing problem of aerosol estimation from satellite measurements
and on the problem of document retrieval showed that Neural GCRF is
more accurate than the benchmark predictors.

Keywords: Gaussian conditional random fields, neural networks, graph-
ical models

1 Introduction

Learning from structured data is a frequently encountered problem in geoscience
[1, 2], computer vision [3, 4], bioinformatics [5, 6], and other areas where exam-
ples exhibit sequential [7, 8], temporal [9, 10], spatial [11], spatio-temporal [12,
13], or some other dependencies. In such cases, the traditional unstructured su-
pervised learning approaches could result in a weak model with low prediction
accuracy [14]. Structured learning methods try to solve this problem by learning
to simultaneously predict all outputs given all inputs. The structured approaches
can exploit correlations among output variables, which often results in accuracy
improvements over unstructured approaches that predict independently for each
example. The benefits of structured learning grow with the strength of depen-
dency between the examples and the data size.

In structured learning there is usually some prior knowledge about relation-
ships among the outputs. Those relationships are application-specific and, very
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often, they can be modeled by graphical models. The advantage of the graph-
ical models is that one can make use of sparseness in the interactions between
outputs and develop efficient learning and inference algorithms. In learning from
structured data, the Markov Random Fields [2] and the Conditional Random
Fields (CRF) [7] are among the most popular models. Originally, CRFs were de-
signed for classification of sequential data [7] and have found many applications
in areas such as computer vision [3] and computational biology [6].

Using CRF for regression is a less explored topic. Continuous Conditional
Random Fields (CCRF) [8] is a ranking model that takes into account relation-
ships among ranks of objects in document retrieval. With minor modifications,
it can be used for structured regression problems. The Conditional State Space
Model (CSSM) [15], an extension of the CRF to a domain with continuous mul-
tivariate outputs, was proposed for regression of sequential data. CSSM is an
undirected model that makes no independence assumptions between outputs,
which results in a more flexible framework. In [4] a conditional distribution of
pixels given a noisy input image is modeled using the weighted quadratic factors
obtained by convolving the image with a set of filters. Feature functions in [4]
are specifically designed for image de-noising problems and are not readily appli-
cable in regression. The Gaussian CRF for structured regression problems with
feature functions constrained to quadratic form was introduced in [1]. The Sparse
GCRF [10] is a variant of the GCRF model that incorporates l1 regularization
in optimization function, thus enforcing sparsity in GCRF parameters. GCRF
has recently been successfully utilized in a variety of real world applications. In
the computational advertising field, GCRF significantly improved accuracy of
click through rate estimation by taking into account relationship among adver-
tisements [11]. An extension of GCRF to the non-Gaussian case using the copula
transform was used in forecasting wind power [16]. In combination with decision
trees, GCRF was successfully applied to short-term energy load forecasting [17],
while in combination with support vector machines it was applied on automatic
recognition of emotions from audio and visual features [18]. A tractable fully
connected GCRF, which captures both long-range and short-range dependen-
cies, was developed in [19] and was successfully applied on image de-noising and
geoscience problems.

To improve expressive power of GCRF, we propose a Neural GCRF (NGCRF)
regression model where CCRF and GCRF can be considered as special cases.
In addition to using the existing unstructured predictors, the proposed NGCRF
allows training of additional unstructured predictors simultaneously with other
NGCRF parameters. This idea is motivated by the Conditional Neural Fields
(CNF) [20, 5] proposed for classification problems to facilitate modeling of com-
plex relationships between inputs and outputs. Moreover, weights of NGCRF
feature functions are themselves allowed to be nonlinear functions of inputs. In
this way, NGCRF is able to capture non-homogeneous relationships among out-
puts and account for differing uncertainties in the unstructured predictors. We
will show that learning and inference of NGCRF can be conducted efficiently
through sparse matrix computations.
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2 Gaussian conditional random fields

Let us denote as x = (x1, . . . xM ) an M -dimensional vector of observations and
as y = (y1, . . . yN ) an N -dimensional vector of real-valued output variables. The
objective is to learn a non-linear mapping f : RM → RN that predicts the
vector of output variables y as accurately as possible given all inputs x. A CRF
models a conditional distribution P (y|x), according to the associated graphical
structure

P (y|x) =
1

Z(α,β,x)
eφ(α,β,y,x), (1)

with energy function

φ(α,β,y,x) =

N∑
i=1

A(α, yi,x) +
∑
j∼i

I(β, yi, yj ,x), (2)

A(α, yi,x) - association potential with parameters α,

I(β, yi, yj ,x) - interaction potential with parameters β,

i ∼ j - yi and yj are connected by an edge in the graph structure,

and the normalization function Z(α,β,x) defined as

Z(α,β,x) =

∫
y

eφ(α,β,y,x)dy. (3)

The output yi is associated with vector of observations x = (x1, . . . xM ) by a
real-valued function called the association potential A(α, yi,x), where α is a
K-dimensional set of parameters. In general, A takes as input any appropri-
ate combination of attributes from vector of observations x. To model inter-
actions among outputs, a real valued function called the interaction potential
I(β, yi, yj ,x) is used, where β is an L dimensional set of parameters. Interac-
tion potential represents the relationship between two outputs and in general
can depend on inputs x. Different applications can impose different interaction
potentials. The larger the value of the interaction potential, the more related the
two outputs are.

In CRF applications, A and I could be conveniently defined as linear com-
binations of a set of fixed features in terms of α and β, as in [7]

A(α, yi,x) =

K∑
k=1

αkfk(yi,x),

I(β, yi, yj ,x) =

L∑
l=1

βlgl(yi, yj ,x).

(4)

The use of feature functions is convenient because it allows us to model arbitrary
relationships between inputs and outputs. In this way, any potentially relevant
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feature function could be included to the model and the learning algorithm can
automatically determine their relevance.

Models with real valued outputs pose quite different challenges with respect
to feature function complexity than in the discrete-valued case. Discrete valued
models are always feasible, because Z is finite and defined as a sum over finitely
many possible values of y. On the contrary, to have a feasible model with real
valued outputs, Z must be integrable. Proving that Z is integrable in general
might be difficult due to the complexity of association and interaction potentials.

2.1 Feature functions

Construction of appropriate feature functions in CRF is a manual process that
depends on prior beliefs of a practitioner about what features could be useful.
The choice of features is often constrained to simple constructs to reduce the
complexity of learning and inference from CRF.

If A and I are defined as quadratic functions of y, P (y|x) becomes a mul-
tivariate Gaussian distribution such that learning and inference can be accom-
plished in a computationally efficient manner.

In the following, we describe the feature functions that led to Gaussian CRF.
Let us assume we are given K unbiased unstructured predictors, Rk(x), k =
1, . . .K, that predict single output yi taking into account x (in a special case,
only corresponding xi can be used as x). To model the dependency between the
prediction and output, we use quadratic feature functions

fk(yi,x) = −(yi −Rk(x))2, k = 1, . . .K. (5)

These feature functions follow the basic principle for association potentials in
that their values are large when predictions and outputs are similar. To model
the correlation among outputs, we use the quadratic feature function

gl(yi, yj ,x) = −el(i, j,x)(yi − yj)2,

el(i, j,x) =

{
wl(i, j,x), (i, j) ∈ Gl

0, (i, j) /∈ Gl,
(6)

which imposes that outputs yi and yj have similar values if they are connected
by an edge in the graph Gl. wl(i, j,x) represents the weight of an edge (i, j)
in graph Gl. It should be noted that using multiple graphs Gl can facilitate
modeling of different aspects of correlation between outputs (for example, spatial
and temporal).

2.2 Multivariate Gaussian model

Conditional distribution P (y|x) for the CRF model in Eq. (1), which uses
quadratic feature functions defined in the previous section, can be represented
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as a multivariate Gaussian distribution. The resulting energy function of the
GCRF model can be written as

φ = −
N∑
i=1

K∑
k=1

αk(yi −Rk(x))2 −
∑
i,j

L∑
l=1

βlel(i, j,x)(yi − yj)2. (7)

The energy function is a quadratic function in terms of y. Therefore, P (y|x) can
be transformed to a Gaussian form by representing φ as

φ = −1

2
(y − µ)TΣ−1(y − µ). (8)

To transform P (y|x) to Gaussian form we determine Σ and µ by matching Eq.
(7) and (8)

Σ−1i,j = 2

{∑K
k=1 αk +

∑N
n=1,n6=j

∑
l βlel(i, n,x), i = j

−
∑
l βlel(i, j,x), i 6= j,

(9)

µ = Σb, (10)

where b is a vector with elements

bi = 2

K∑
k=1

αkRk(x). (11)

If we calculate Z using the transformed exponent, we obtain

P (y|x) =
1

(2π)N/2|Σ|1/2
e−

1
2 (y−µ)

TΣ−1(y−µ). (12)

Therefore, the resulting conditional distribution is Gaussian with mean µ and
covariance Σ. We observe that Σ is a function of parameters α and β, and
interaction potential graphs Gl, while µ is also a function of inputs x. The
resulting CRF is the Gaussian CRF (GCRF). In order for the model to be
feasible, the conditional distribution has to be well defined. This means that we
have to ensure that the precision matrix Σ−1 is positive semi-definite [1], which
we will address in the following sections.

3 Neural Gaussian CRF

In this section we propose a new Neural Gaussian CRF model, which enhances
GCRF and increases its representational power.

3.1 Neural GCRF Model

First, motivated by the recently proposed Conditional Neural Fields [20, 5], we
introduce the adaptive feature function defined as
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fa(yi,x) = −(yi −Ra(w,x))2, (13)

where Ra(w,x) is a function of weights w that can be trained simultaneously
with other GCRF parameters. In this way, Ra(w,x) can be trained directly
with the goal of maximizing the log-likelihood such that it complements the
existing predictors Rk. In this paper, we will assume that predictor Ra(w,x) is
a feedforward neural network.

Second, as defined in Eq. (4), Gaussian CRF assigns weights α and β to the
feature functions. Considering that feature functions for the association potential
are defined as squared errors of unstructured predictors, the role of weights α
and β is to measure their prediction uncertainty. Since it is likely that the quality
of different predictors changes with x, we enhance GCRF such that parameters
αk and βl are replaced with the uncertainty functions αk(θk,x) and βl(ψl,x),
where θk and ψl are the parameters. We allow using feedforward neural networks
for the uncertainty functions. By using the adaptive feature and uncertainty
functions, we have

A(θ, yi,x) = −
K∑
k=1

αk(θk,x)(yi −Rk(x))2 − αa(θa,x)(yi −Ra(w,x))2,

I(ψ, yi, yj ,x) = −
L∑
l=1

βl(ψl,x)(yi − yj)2.

(14)

In this way, αk(θk,x) models the varying degree of importance of predictor
Rk over different conditions. Similarly, βl(ψl,x) models varying importance of
correlation between outputs. As a result, Σ from Eq. (9) becomes dependent
on inputs, thus allowing for error heteroscedasticity. Conditional distribution of
the enhanced GCRF is Gaussian as in Eq. (12). Since both adaptive feature and
uncertainty functions are assumed to be feedforward neural networks, we call
the resulting model the Neural GCRF (NGCRF).

Let us analyze the feasibility condition for the NGCRF model. In order for the
model to be feasible, the precision matrixΣ−1 has to be positive semi-definite. A
common approach used in practice [21] is to enforce sufficient condition given by
Gershgorin’s circle theorem [22], which says that a symmetric matrix is positive
definite if all diagonal elements are non-negative and if the matrix is diagonally
dominant.

Definition 1. A square matrix Σ−1 is diagonally dominant if the absolute value
of each diagonal element is greater than the sum of absolute values of the non-
diagonal elements in corresponding row |Σ−1i,i | >

∑
j 6=i |Σ

−1
i,j |,∀i.

Theorem 1. If the values of functions α and β in Eq (14) are always greater
than 0, then the precision matrix Σ−1 that corresponds to NGCRF model defined
by association and interaction potentials in Eq. (14) is diagonally dominant and
hence positive definite.
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Proof. For each i, the absolute value of a diagonal element Σ−1i,i of precision

matrix Σ−1 can be represented as

|Σ−1i,i | =|
K∑
k=1

αk(θk,x) +
∑
j 6=i

L∑
l=1

βl(ψl,x)|

=

K∑
k=1

αk(θk,x) +
∑
j 6=i

L∑
l=1

βl(ψl,x),

(15)

where we use the fact that values of α and β are always greater than 0. Similarly,
the absolute value of each off-diagonal element Σ−1i,j equals

|Σ−1i,j | = |
L∑
l=1

βl(ψl,x)| =
L∑
l=1

βl(ψl,x). (16)

Then, for each i we have

|Σ−1i,i | −
∑
j 6=i

|Σ−1i,j | =
K∑
k=1

αk(θk,x) > 0. (17)

which proves the theorem. ut

Therefore, one way to ensure that the NGCRF model is feasible is to impose
the constraints α > 0 and β > 0, which is analytically tractable [8, 1], but is
known to be conservative [21]. To analyze the effect of constraining α > 0,
we will assume that the interaction potential is not used (output variables
are assumed to be conditionally independent). The prediction for each yi be-
comes a weighted average of the unstructured predictors, where weights are
positive values with their sum equal to 1. This constrains the range of outputs
to yi ∈ [min(Rk(x)),max(Rk(x))], which has negligible effect on NGCRF since
we assumed that unstructured predictors are unbiased. In [21] it was empirically
verified that constraint β > 0 reduces parameter search space more and more
with decreasing sparsity and increasing number of parameters in beta functions.
This leads to limited improvements when using NGCRF with constraint β > 0
on more dense graphs.

3.2 Learning and Inference of NGCRF

Learning The learning task is to choose values of parameters θ, ψ and w to
maximize the conditional log-likelihood on the set of training examples D =
{(xt,yt), t = 1 . . . T}

(θ̂, ψ̂, ŵ) = argmax
θ,ψ,w

(L(θ,ψ,w))

where L(θ,ψ,w) =

T∑
t=1

logP (yt|xt).

(18)
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By setting α and β to be greater than 0, learning becomes a constrained opti-
mization problem. To convert it to unconstrained optimization, we adopt a tech-
nique used in [8, 1] that applies the exponential transformation of the functions
to guarantee that their values are positive. We apply an exponential transfor-
mation on α and β

αk =euk(θk,x), for k = 1, . . .K,

αa =eua(θa,x),

βl =evl(ψl,x), for l = 1, . . . L.

(19)

where uk and vl are differentiable functions with respect to parameters θk and
ψl.

All the parameters are learned by a gradient-based optimization. To apply
the gradient-based method for learning, we need to find the gradient of the
conditional log-likelihood. The derivatives of L with respect to θ, ψ, and w are

∂L
∂θk

=
∂L
∂αk

∂αk
∂uk

∂uk
∂θk

,

∂L
∂ψl

=
∂L
∂βl

∂βl
∂vl

∂vl
∂ψl

,

∂L
∂w

=
∂L
∂Ra

∂Ra
∂w

.

(20)

The gradient of L with respect to θ and ψ has three components. The first
components are ∂L/∂αk and ∂L/∂βl. The expression for ∂L/∂αk is

∂L
∂αk

=− 1

2
(y − µ)T

∂Σ−1

∂αk
(y − µ) + (

∂bT

∂αk
− µT ∂Σ

−1

∂αk
)(y − µ)

+
1

2
Tr(Σ

∂Σ−1

∂αk
).

(21)

To calculate ∂L/∂βl, we use ∂b/∂βl = 0 and obtain

∂L
∂βl

=− 1

2
(y + µ)T

∂Σ−1

∂βl
(y − µ) +

1

2
Tr(Σ

∂Σ−1

∂βl
). (22)

From Eq. (19), the second components are ∂αk/∂uk = αk and ∂βl/∂vl = βl.
The third components depend on the chosen functions uk and vl. The gradient
of L with respect to w depends on the functional form of Ra. Since Σ−1 does
not depend on Ra, ∂L/∂Ra becomes

∂L
∂Ra

= 2αa
T (y − µ). (23)

We observe that an update for the adaptive model Ra is proportional to the
difference between true output and the mean of the NGCRF model. This means
thatRa will be updated only if NGCRF is not able to predict the output correctly
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Algorithm 1 Learning of NGCRF Parameters

Input: x, Rk(x), y.
1. Initialize θk, ψl.
2. Estimate θk, ψl by applying gradient based approach and Eq. (21) and (22),
without taking into account Ra.
3. Initialize θa.
4. Learn predictor Ra using Eq. (23).
repeat

Apply gradient based optimization to estimate all parameters.
until Convergence

and Ra will be updated more aggressively when the error is larger. This justifies
our hypothesis that Ra will work as a complement of the existing non-structured
models.

To ensure convergence, the iterative procedure presented in Algorithm 1 [23,
20] is used for learning model parameters according to update formulas derived
earlier in this section. To avoid overfitting, which is a common problem for
maximum likelihood optimization, we added regularization terms for α, θ, β, ψ
to the log-likelihood. In this way, we penalize large outputs of α and β as well
as large weights θ and ψ.

Inference The inference task is to find the outputs y for a given set of observa-
tions x and estimated parameters α̂ and β̂ such that the conditional probability
P (y|x) is maximized. The NGCRF model is Gaussian and, therefore, the max-
imum a posteriori estimate of y is obtained as the expected value µ of the
NGCRF distribution

ŷ = argmax
y

P (y|x) = µ = Σb, (24)

while Σ is a measure of uncertainty of the point estimate.

3.3 Complexity

If the size of the training set is N and the learning takes I iterations, the straight-
forward matrix computation results in O(IN3) time to train the model. The
main cost of computation is matrix inversion, since during the gradient-based
optimization we need to find Σ as an inverse of Σ−1. However, this is the worst
case performance. Since matrix Σ−1 is typically very sparse (it depends on the
imposed neighborhood structure), the training time can be decreased to O(IN2)
by using sparse matrix apparatus or even to O(IN) if we do not consider in-
teraction potential [21]. During inference, we need to compute µ, which takes
O(N) time. As we eventually need to calculate the trace of the matrix, only
the elements that correspond to the main diagonal should be stored. Therefore,
memory requirements depend only on the imposed neighborhood structure.
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4 Experiments

To demonstrate the strength of the NGCRF model, we applied it on two real-
world structured regression applications. The experimental results indicate that
NGCRF improves prediction accuracy by efficiently utilizing information from
structured data.

4.1 The NGCRF Model for Document Retrieval

In this application the objective is to retrieving the most relevant documents with
respect to the given query. In order to make a comparison to the GCRF method,
we replicated the experimental setup from [8]. We obtained query-document
data from OHSUMED dataset from LETOR [24], which is a standard data
source used in document retrieval research (the same dataset was used in [8]).
The OHSUMED dataset contains search queries, where each query is associated
with a number of relevant documents. There are 106 queries, 348,566 documents
and a total of 16,140 query-”relevant document” pairs. From the NGCRF per-
spective, each query-”set of relevant documents” represents an example (x,y).
Each component of y represents a relevance of the corresponding document to
a query, while x contains extracted features. Features x were used to construct
K = 25 unstructured predictors Rk(x) that predict document relevance for a
given query. The outputs of unstructured predictors are available in OHSUMED
(more details are in [24]). OHSUMED considers three levels of relevance - highly,
partially and not relevant (each component in y can take values 2, 1, or 0 respec-
tively). In addition, OHSUMED contains information about similarity between
documents i and j, w(i, j,x), which was determined based on similarity of their
contents. Having this setup, the goal is to estimate relevance of each document
in the database for a given query.

Benchmark methods As benchmark methods we use the following (all pa-
rameters were set using a small validation set)

Unstructured retrieval by neural network (NN) We trained NN with five hid-
den units to predict relevance of documents for a given query. The inputs to NN
were outputs of unstructured predictors.

Structured retrieval by baseline GCRF We trained GCRF to predict rele-
vance of documents. As unstructured predictors we used Rk, which are readily
available in OHSUMED. GCRF also utilized relationship among documents by
incorporating weights w(i, j,x) from OHSUMED into the interaction potential.

Structured retrieval by GCRF+NN We trained a GCRF model using unstruc-
tured predictors Rk from OHSUMED and pre-trained NN. We call this model
GCRF+NN.

RankSVM State-of-the-art retrieval method [25], which predictions are avail-
able as a part of OHSUMED.
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Fig. 1. Comparison of retrieval performance in terms of precision when top-n docu-
ments are retrieved.

The NGCRF model We trained the NGCRF model where unstructured pre-
dictors were Rk, α was a function of unstructured predictors, β a function of
similarity between documents, and adaptive NN was a function of Rk.

Evaluation In our experiments, for each method we averaged results over 5 fold
cross validation data sets provided in OHSUMED. As an evaluation measure, we
used precision@n, which represents a percentage of relevant publications in top-
n publications retrieved (n = 1 . . . 5 in our experiments). To fetch top-n relevant
publications we retrieved those publications which corresponded to the n largest
predictions. In Figure 1 we see that NN and GCRF+NN outperform baseline
GCRF, which can be explained by the ability of NN to capture nonlinearity in
feature space. Furthermore, if we allow NN to be adaptive, we see that NGCRF
outperforms all other alternatives. We see that NGCRF is comparable to state-
of-the-art retrieval method RankSVM, which is specifically designed for ranking
problems (while NGCRF has general applicability) and which also used Rk and
w(i, j,x) as its inputs.

4.2 The NGCRF Model for AOD Prediction

We evaluated the proposed Neural GCRF model on a high impact regression
problem from remote sensing, namely, prediction of aerosol optical depth (AOD)
in the atmosphere from satellite measurements. AOD is a measure of aerosol
light extinction integrated vertically through the atmosphere. AOD prediction
is important because one of the main challenges of today’s climate research is to
characterize and quantify the effect of aerosols on Earth’s radiation budget [26].
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We considered data from MODIS, an instrument aboard NASA’s Terra satel-
lites [27]. We used ground-based data obtained from the AERONET [28], which
is a global remote sensing network of radiometers that measure AOD several
times per hour at specific geographic locations. The data can be obtained from
the official MODIS website of NASA [29].

We extracted satellite-based attributes that are used as inputs to domain-
based deterministic prediction algorithms [27]. In addition, we extracted infor-
mation about the location of each data point (longitude and latitude) and a
quality of observation (QA) assigned to each point provided by domain scien-
tist. Data quality index was provided at four levels from the lowest quality QA=0
to the highest quality QA=3. We collected 28,374 data points distributed over
the entire globe at 217 AERONET sites during the years 2005 and 2006.

Benchmark methods Here we list benchmark methods that we compared
NGCRF to.

Deterministic prediction algorithm C005 The primary benchmark for com-
parison with our CRF predictors was the most recent version of the MODIS
operational algorithm, called C005 [27]. This is a deterministic algorithm that
retrieves AOD from MODIS observations relying on the domain knowledge. It
is based on the inversion of physical forward models developed by the domain
scientists.

Statistical prediction by a neural network As a baseline statistical algorithm
we used a neural network model trained to predict AERONET AOD from all
MODIS attributes excluding location and quality flag. It has been shown previ-
ously that neural networks achieve comparable accuracy to C005 on the AOD
prediction problem [30]. The neural network has a hidden layer with 10 nodes
and an output layer with one node. In nested 5-cross-validation experiments we
trained 5 neural networks. When tested on 2006 data, we used a single network
trained on the entire training set.

Structured prediction by GCRF The aerosol data are characterized by strong
spatial and temporal dependencies that a CRF is able to exploit by defining in-
teractions among outputs using feature functions. Given a data set that consists
of satellite observations and ground-based AOD measurements, a statistical pre-
diction model (Ra) can be trained to use satellite observations as attributes and
predict the labels which are ground-based AODs. The deterministic AOD pre-
diction models (DP ) are based on solid physical principles and tuned by domain
scientists. To model the association potential, i.e the dependency between the
predictions and output AOD, we introduce the following two feature functions,

f1(yi,xi) =− (yi −DP (xi))
2,

fa(yi,xi) =− (yi −Ra(xi))
2.

(25)

To model the interaction potential we introduce feature function

g1(yi, yj ,x) = −(yi − yj)2. (26)
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Table 1. RMSE and FRAC of C005, NN, GCRF and NGCRF on data with four
quality flags.

C005 NN GCRF+NN NGCRF

RMSE 0.123 0.112 ± 0.002 0.105 ± 0.0006 0.102 ± 0.0008
FRAC 0.65 0.68 ± 0.03 0.71 ± 0.005 0.74 ± 0.007

This interaction potential will reflect correlation between spatio-temporal data
examples i and j (closer examples are given larger weight). The learned param-
eter β represents the level of spatio-temporal correlation of neighboring outputs
(large β indicates that spatio-temporal correlation is large). We partitioned data
into four subsets corresponding to quality flags QA=0, 1, 2, and 3. We deter-
mined eight a parameters corresponding to C005 and NN predictions over these
subsets. To model interaction potential we defined spatial-temporal neighbors as
a pair of observations where temporal distance temporalDist(i, j) is less than 7
days and spatial distance spatialDist(i, j) is less than 50km. This choice is based
on previous studies of aerosol dynamics by geoscientists. We multiply feature g
with weights w(i, j,x), that are products of Gaussians

w(i, j,x) =

{
e
− spatialDist(i,j)

2

2σ2s
− temporalDist(i,j)

2

2σ2t , i ∼ j
0, otherwise

(27)

where σs = 50 and σt = 10 were determined using a small validation set.

The NGCRF model Here we use similar attributes as in the previous section
but in the spirit of the proposed NGCRF model. Instead of defining manual
partitions of the dataset, we use all observations as inputs to the α functions.
We define α as an exponential function of linear combinations of observations.
To incorporate potential bias, one observation is a vector with all ones.

αk(θ,x(i)) = e
∑
θtx

(i)
t , (28)

where x
(i)
1 is a vector with all ones, x

(i)
2,3,4,5 are quality flags. As an adaptive

model Ra we used NN defined in previous sections. Its weight αa follows the
definition in Eq. (28).

To model spatio-temporal correlation, we use spatial and temporal distance
between i and j as two observations for the β function. Similar to Eq. (28) we
define β as

β(ψ,x(i,j)) = e
∑
ψlx

(i,j)
l , (29)

where x
(i,j)
1 is a vector with all ones, x

(i,j)
2 represents spatial distance between i

and j and x
(i,j)
3 represents their temporal proximity.
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Evaluation To evaluate proposed methods, we trained the models on 2005 data
and used 2006 data for testing. There are many possible measures that could be
used to assess AOD prediction accuracy. Given vector t = (t1, t2, . . . tN )T of N
outcome values and vector y = (y1, y2, . . . yN )T of the corresponding predictions,
we measure the root mean squared error (RMSE). We also report accuracy on
the domain specific measure called the fraction of successful predictions (FRAC)
that penalizes errors on small AOD more than errors on large AOD [27]

FRAC =
I

N
× 100%, (30)

where I is the number of predictions that satisfy |yi − ti| ≤ 0.05 + 0.15ti.

RMSE error of the four models is presented in Table 1, where smaller num-
bers mean more accurate predictions. FRAC accuracy of these four models is
also shown in Table 1, where larger numbers correspond to better predictions.
We can see that in our experiments NN was more accurate than the operational
C005 algorithm. GCRF showed an improvement in accuracy over both NN and
C005 by taking advantage of a combination of models and spatio-temporal cor-
relation in data. NGCRF achieves even better accuracy by utilizing nonlinear
weights, an adaptive statistical model, and learning instead of assuming the level
of correlation between points. Although NGCRF is a non-convex approach, it
has only slightly larger variance in predictions than GCRF+NN.

The obtained results provide strong evidence that adaptive structured learn-
ing approaches can be successfully applied to AOD prediction, where even a
small improvement of prediction accuracy results in huge uncertainty reduction
in many geophysical studies that rely on AOD predictions [26].

5 Conclusion

Structured learning, as a fairly new research area in machine learning, has great
success in classification, but its application on regression problems has not been
explored sufficiently. In this article we proposed a method to adaptively combine
the outputs of powerful non-structured regression models such as neural networks
and a variety of correlated knowledge sources into a single prediction model by
utilizing possible correlation among outcome variables. It is worth pointing to
differences between our NGCRF model and the GCRF model proposed in [4].
The GCRF in [4] models a conditional distribution of pixels given a noisy input
image using the weighted quadratic factors obtained by convolving the image
with a set of filters. GCRF is designed for image de-noising problems, while
NGCRF can be applied to general regression problems. By taking a closer look
at GCRF we find that features in Eq. (5) and (6) are represented in GCRF,
while GCRF does not model the adaptive component of NGCRF in Eq. (13).
The proposed NGCRF is also readily applicable to other regression applications,
where there is a need for knowledge integration and exploration of structure in
outputs.
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