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Uncertainty Analysis of Neural-Network-Based
Aerosol Retrieval

Kosta Ristovski, Slobodan Vucetic, and Zoran Obradovic

Abstract—Neural networks have the ability to represent and
learn complex regression functions and are very suitable for
retrieval of geophysical parameters from remotely sensed data.
Neural networks trained to minimize the mean square error are
able to estimate the conditional expectation of target variables.
In many remote sensing applications, it is also critical to pro-
vide estimates of prediction uncertainty. In this paper, we eval-
uate an approach that, in addition to training a neural network
for retrievals, also trains a neural-network-based estimator of
retrieval uncertainty. The uncertainty estimator is built under
the assumption that uncertainty is a function of input variables.
The methodology was evaluated on aerosol-optical-depth retrieval.
The data set consists of 38 238 collocated Moderate Resolution
Imaging Spectrometer (MODIS) satellite instrument and Aerosol
Robotic Network ground-based instrument measurements col-
lected over the entire Earth during two years (in 2005–2006).
The results indicate that a neural network ensemble is more
accurate than the operational MODIS retrieval algorithm called
Collection 5 and that the retrieval uncertainty of the ensemble can
be estimated with satisfactory accuracy.

Index Terms—Regression, remote sensing, uncertainty.

I. INTRODUCTION

A EROSOLS, small particles emanating from natural and
man-made sources, have been recognized as the largest

source of uncertainty for understanding the Earth’s radiative
budget [1]. Aerosol retrieval is very important for climate
research, weather forecasting, environmental monitoring, and
understanding the impact of pollution on human health [2].
Aerosol optical depth (AOD), which measures the amount of
depletion that a beam of solar radiation undergoes as it passes
through the atmosphere, is one of the most important properties
of atmospheric aerosols.

Multiple satellite and ground-based sensors have been de-
ployed for remote sensing of aerosols. In this paper, we are
proposing a machine learning procedure that exploits multi-
source observations from satellite and ground-based sensors.
We consider aerosol-related data collected by highly accu-
rate ground-based Aerosol Robotic Network (AERONET)
instruments and by Moderate Resolution Imaging Spectrom-
eter (MODIS) instruments aboard Terra and Aqua satellites.
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MODIS retrievals made by the operational algorithm called
Collection 5 (C005) are reported together with quality assur-
ance (QA) confidence (QAC) flags ranging from three (high
confidence) to zero (low or no confidence). QAC is a useful
qualitative measure of retrieval uncertainty, which can be a
significant limitation in some applications [3].

A statistical retrieval approach can be treated as regression,
where the goal is to learn a functional relationship between
MODIS observations and true AOD that is assumed to equal
AERONET retrieval. Experimental results provide strong ev-
idence that neural-network-based AOD retrieval is more ac-
curate than the physically based C005 operational algorithm
[4]. However, neural networks, in their basic form, could not
estimate the retrieval uncertainty. An alternative Gaussian pro-
cess [5] approach has the ability to provide the conditional
distribution and, thus, the uncertainty estimation. However, the
use of this approach is limited for AOD retrieval due to high
computational costs stemming from inversions of very large
matrices.

To enhance the neural-network-based AOD retrieval, an ap-
propriate uncertainty estimation model is needed. A method
for neural network uncertainty assessment with application to
remote sensing was studied in [6] and [7]. It was based on
the assumption that targets are corrupted by Gaussian noise
with zero mean and constant variance. In AOD retrieval, the
noise variance is heteroscedastic (not constant) and depends
on surface properties, aerosol microphysics and distribution,
and viewing geometry. In this paper, we model retrieval error
by Gaussian distribution with zero mean and input-dependent
variance. It is worth noting that a Bayesian method for re-
gression learning with input-dependent noise was proposed in
[8]. However, this method requires calculating large Hessian
matrices and their inverses during training of neural networks
and is therefore prohibitively time consuming for large-scale
applications in remote sensing. As an alternative, a bootstrap-
based technique that is tractable for large data sets was proposed
in [9]. In this paper, we will apply this approach to provide
uncertainty estimation of neural-network-based retrievals. In
the experimental section, we will study how correlated the
uncertainty estimates are with the actual prediction errors. We
will also study the relationship between QAC values from
MODIS C005 retrieval algorithm and neural network retrieval
accuracy and uncertainty estimation.

II. METHODOLOGY

In remote sensing and many other data-rich domains,
data sets frequently contain observations of differing quality.
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Recently, there has been an increasing interest [10], [11] in
methods that assess data quality and then learn a prediction
model based on the assessment. In aerosol retrieval, informa-
tion about the quality of MODIS observations is available in
advance through QAC flags. Our goal is to understand how data
quality affects neural-network-based retrieval and to analyze
uncertainty estimations of such models.

A. Problem Setup and Preliminaries

Let us assume that we are given a data set D = {(xi, yi), i =
1, 2, . . . , N}, where xi is a vector of input variables derived
from MODIS observations and yi denotes the AOD values
retrieved by collocated AERONET retrievals. A standard re-
gression model trained from D assumes that the target y is
related to input vector x as

y(x) = f(x) + ε(x) (1)

where ε(x) is a random variation of y around regression func-
tion f(x). The noise is typically assumed to be Gaussian with
zero mean and constant variance σ2

n. As discussed in the in-
troduction, the constant variance assumption is not appropriate
for aerosol retrieval. Instead, the noise variance is modeled as a
function of inputs σ2

n(x). Given the Gaussian noise assumption,
we can rewrite (1) as

P (y(x)|f(x)) ∼ N
(
f(x), σ2

n(x)
)
. (2)

The noise variance σ2
n(x) is unknown, and it has to be learned

from data. Another unknown quantity is the regression function
f(x). Let us denote by m(x) the estimate of f(x) learned from
the data. If the learning algorithm is a universal approximator,
such as neural networks, a common assumption is that m(x)
is an unbiased estimate of f(x) and that we can represent
P (f(x)|m(x)) as the Gaussian distribution

P (f(x)|m(x)) ∼ N
(
m(x), σ2

m(x)
)

(3)

where σ2
m(x) is the model variance that also has to be learned

from the data. Given distributions (2) and (3) and assuming that
the noise components f(x)−m(x) and ε(x) are independent,
we can represent target distribution as

P (y(x)|m(x)) =P (y(x)|f(x)) · P (f(x)|m(x))

P (y(x)|m(x)) ∼N
(
m(x), σ2(x)

)
σ2(x) =σ2

m(x) + σ2
n(x) (4)

where σ2(x) is the target variance given the prediction m(x)
and is a sum of noise variance and model variance. Distribution
(4) allows us to both provide the prediction in the form of m(x)
and estimate the prediction uncertainty in the form of input-
dependent target variance σ2(x). In summary, to be able to
provide prediction and prediction uncertainty, one should learn
m(x), σ2

n(x), and σ2
m(x) from data set D. In the following

section, we will describe a previously proposed [9] robust
learning procedure that achieves this objective.

B. Bootstrap Approach for Regression and
Uncertainty Estimation

In [9], an approach was proposed to first train an ensemble
of neural network predictors and use it to provide prediction
function m(x) and estimate model variance σ2

m(x). Then, a
separate neural network is trained to estimate heteroscedastic
noise variance σ2

n(x). The details are as follows.
The neural network ensemble consists of b neural networks,

each trained on a different bootstrapped sample from the train-
ing data set D. The ith neural network mi(x) is trained from
data set Di which has N examples sampled with replacement
from the original training set D. We note that Di contains in
average only 63% of the original examples which are included
in the bootstrapped data set.

The b neural networks are averaged to provide the prediction
function m(x) as

m(x) = (1/b)

b∑
i=1

mi(x). (5)

Owing to the availability of an ensemble of predictors, the
model variance can be estimated as

σ2
m(x) = (1/(b− 1))

b∑
i=1

(mi(x)−m(x))2 . (6)

Estimating noise variance σ2
n(x) is a nontrivial problem. It

has been solved in [9] by introducing a separate neural network
mn(x) trained to estimate

l2(x) = max
(
0, r2(x)− σ2

m(x)
)

(7)

where r(x) is the residual of the bootstrap committee defined
as r(x) = y(x)−m(x). Value l(x) serves as a proxy for
noise ε(x) whose variance needs to be estimated. Neural net-
work mn(x) is trained using data set Dn = {(xi, l

2(xi)), i =
1, 2, . . . , N}, obtained from the original training data set D.

As can be seen from (7), the model variance σ2
m(x) is

needed to obtain l2(x) value. To provide unbiased estimates
of noise variance, out-of-sample examples have to be used. An
example from the training set is an out-of-sample example for a
particular neural network if it has not been used for its training.
This is a consequence of sampling with replacement applied
for making bootstrap replicates. Assuming that example xa did
not appear in k out of the m replicates, the corresponding k
neural networks in the committee can use that data point as
a test example. Taking into account outputs of these k neural
networks, estimates of the mean and model uncertainty for out-
of-sample example xa can be calculated in similar way as in (5)
and (6) and used for estimation in (7). As the noise is modeled
with Gaussian distribution, the additional neural network for
noise variance estimation is trained to minimize negative log
likelihood L using

L = −
N∑
i=1

log

(
1√

2πm2
n(xi)

exp

(
− l2(xi)

2m2
n(xi)

))
. (8)
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C. Accuracy Measures

To compare accuracies of C005 versus the bootstrap com-
mittee, we use the standard accuracy measures: the coefficient
of determination (R2), correlation (CORR), and the root mean
square error (mse) (rmse). In addition, we also use a domain-
specific accuracy measure called fraction of successful predic-
tions (FRAC) [12] and the average negative log-predictive
density (NLPD) used previously to estimate success of un-
certainty prediction [13]. The FRAC and NLPD accuracy
measures are defined in this section.

1) Fraction of Successful Predictions (FRAC): AOD pre-
dictions are considered sufficiently good [14] if they fall within
the region specified by

|yi −m(xi)| ≤ 0.05 + 0.15yi. (9)

FRAC is defined as the percentage of successful predictions

FRAC = (I/N) · 100% (10)

where N is the total number of points and I is the number of
points that satisfy (9).

2) Average NLPD: The average NLPD [13] of the true
targets on n data points is a measure calculated as

NLPD=(1/n)

n∑
i=1

[
log σ(xi) + (yi −m(xi))

2 /
(
2σ2(xi)

)]
(11)

where m(xi) and σ2(xi) are the mean and variance of the target
distribution for point xi. NLPD is sensitive to the quality of
both prediction and uncertainty estimation. Smaller values of
NLPD correspond to better quality of the estimates.

III. DATA SET

MODIS sensors aboard Terra and Aqua satellites observe
reflected solar radiation through multiple spectral bands [15]
and provide almost daily global coverage with high spatial res-
olution [16]. The operational MODIS retrieval algorithm called
C005 is an inverse operator derived from a forward-simulation
model according to the domain knowledge of aerosol physical
properties. During the retrieval process, the C005 algorithm
tests how well the observed data meet certain criteria specified
by domain scientists, using the QA plan [17], [18]. The result is
reported as the QA flag. QA flags are designed not only to report
success or failure of criteria being used in retrieval but also to
estimate the data quality. The QAC flag, used in this study, is
derived from QA values. It has four possible values, QAC ∈
{0, 1, 2, 3}, with QAC = 3 indicating high-quality retrievals
and QAC = 0 indicating very low quality retrievals.

AERONET sites are located at fixed locations over the globe
and acquire data every 15 min. Level 2.0 AERONET AOD re-
trievals have estimated uncertainties of around ±0.01 [19], and
thus, they are often considered as ground truth for validation of
MODIS AOD retrievals. Alternatively, as is done in this paper,
AERONET retrievals can be used as target variables during
training of statistically based retrieval algorithms.

TABLE I
LIST OF ATTRIBUTES COLLECTED FROM MODIS

TABLE II
NUMBER OF DATA POINTS ON YEARLY BASIS COLLECTED

FROM MODIS AND GROUPED BY QAC FLAGS

TABLE III
DISTRIBUTION OF DATA POINTS OVER CONTINENTS

GROUPED BY QAC FLAG

TABLE IV
DISTRIBUTION OF DATA POINTS WITH DIFFERENT QACs

AT DIFFERENT MAGNITUDES OF AOD

The data set has been obtained after a spatiotemporal col-
location of the two sources of data [20]. Spatial collocation
is achieved creating a grid of 5 × 5 MODIS retrievals with
an AERONET site placed in the middle. The data are said to
be temporally collocated if AERONET AOD observation is
obtained within 30 min of the satellite overpass. Our resulting
data set contains 38 238 observations from MODIS collocated
with 93 AERONET sites over the whole globe during the period
of two years (in 2005–2006). Each of the 93 sites has more than
15 high-quality (QAC = 3) points per year. Fourteen satellite-
based attributes listed in Table I have been used together with
QAC flags for AOD retrieval and uncertainty estimation. To get
a better insight into the distribution of QAC flags, in Table II,
we summarize its temporal distribution, in Table III its spatial
distribution, and in Table IV its distribution with respect to
AERONET AOD values.

IV. EXPERIMENTAL RESULTS

A. Experimental Design

To build an ensemble of neural networks for AOD predic-
tion, we used hundred feedforward neural networks with a
single hidden layer of ten neurons. Overfitting was avoided by
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TABLE V
ACCURACIES FOR MODELS TRAINED AND TESTED ON THE DATA WITH DIFFERENT QUALITIES

Fig. 1. (a) Scatter plot of site-specific fractions of successful predictions: Ensemble versus C005 (b) averaged prediction errors of a neural network ensemble
and (c) averaged retrieval uncertainties by our method.

monitoring the mse on the separate validation data. To prevent
overly long training time, the training process was stopped if the
number of training epochs reached 300. The additional neural
network for uncertainty estimation had five hidden neurons, and
it was trained to minimize the negative log likelihood from (8).

The accuracy was estimated using one-site-out validation.
Specifically, data from all AERONET sites except one were
used as a training set while the predictor was tested on the
remaining site. This procedure was repeated 93 times, such that
each of the AERONET sites was used once as the test set.
Test predictions for all 93 rounds were pooled together and
used to calculate accuracy. To be able to establish statistical
significance of obtained accuracies, we repeated each of the
one-site-out-validation experiments ten times. In this way, we
obtained ten accuracies, and we report their mean and standard
deviation.

B. Analysis of Retrieval Accuracy

We evaluated two types of neural network ensembles for
AOD prediction: One trained using all available training data,
and another trained using only high-quality training data with
QAC = 3. In Table V, we summarize the accuracies of the
two ensembles and C005 retrieval algorithm on high-quality
(QAC = 3) and low-quality (QAC < 3) test data. For statis-
tical comparison of accuracies, we used the one-tailed t-test
with 5% significance level. As expected, all three predictors
have significantly higher accuracy on higher quality data. Both
neural network ensembles are significantly more accurate than

C005 on both high- and low-quality test data and over all
studied accuracy measures. It is worth noting that the ensemble
trained including low-quality data is significantly more accurate
on low-quality test data, while the one trained on high-quality
data is significantly more accurate on high-quality test data.
This result shows that QAC quality flag is indeed a very useful
qualitative measure of retrieval uncertainty.

To illustrate the difference between neural network ensem-
bles and C005, in Fig. 1(a), we compare average FRAC
accuracies on each of the 93 AERONET sites. Neural networks
were more accurate on 64 of the 93 sites. It could also be
seen that FRAC accuracy on majority of AERONET sites is
relatively high, while there are several sites where the FRAC
accuracy is significantly lower. For further insight, in Fig. 1(b),
we show the spatial distribution of rmse accuracies at 93
AERONET sites (rmse is proportional to the circle size). It
can be seen that the four sites with the lowest accuracy (the
largest circles) are in regions poorly covered by ground-based
stations. We observe that the largest discrepancies between
neural network ensembles and C005 algorithm are in Mexico
City (C005 is more accurate) and Mauna Loa in Hawaii (C005
is less accurate). Both sites will be discussed in the next section.

C. Analysis of Uncertainty Estimation

In this section, we will present retrieval uncertainty analy-
sis on high-quality data (QAC = 3), showing that there are
sizeable differences in retrieval uncertainty among such data.
This is an important result because such differences are not
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TABLE VI
SITES AT WHICH THERE IS UNDERESTIMATION OF UNCERTAINTY

Fig. 2. Prediction accuracy measured as the fraction score for equal-width
bins of 1000 points sorted from lower to higher uncertainty.

detectable using QAC flag. The results presented here corre-
spond to a neural network ensemble trained on high-quality
(QAC = 3) data. In Fig. 1(c), we show the site-averaged
uncertainties at 93 sites, where the smaller circle means smaller
average uncertainty. Comparing rmse and uncertainties from
Fig. 1(b) and (c), we can see that they follow very similar
pattern. The correlation of site-averaged estimated retrieval
uncertainties and rmse is impressive, i.e., 0.74, which indicates
the success of retrieval uncertainty estimation.

However, it is also worth noting that, at several sites, there
is a large difference between rmse and estimated uncertainty.
These sites are presented as red circles in Fig. 1(b) and (c) and
are listed in Table VI. Interestingly, all of these sites are also
among the six sites stated in Fig. 1(a), where accuracy is very
low.

To get a further insight into the proposed uncertainty esti-
mation method, we analyzed AOD retrievals of high-quality
data versus the corresponding FRAC scores. It is expected
that AOD retrievals with small uncertainty estimates have
higher FRAC than AOD retrievals that have larger uncertainty
estimates. Therefore, we sorted AOD retrievals according to
uncertainty estimates in ascending order and then split them in
equal-width bins (groups) of 1000 points. For each bin, FRAC
was measured and shown in Fig. 2. It can be seen that FRAC
had a decreasing trend with uncertainty except within the first
bin. The first (leftmost) bin in Fig. 2 had a lower fraction value
because it had a large fraction of data points from Mexico City
site.

We compare AOD prediction and uncertainty estimate on
all 38 238 data points from our data set in Fig. 3(a). It can
be observed that prediction uncertainty grows with the value
of AOD prediction. We defined three regions based on the
relationship between uncertainty and prediction: the middle
region denoted as II in Fig. 3(a), the small region denoted as
III at the bottom, and the small region denoted as I at the top.
Region I contained points for which uncertainty estimate was
unusually high and had 2825 points. Region III contained points

Fig. 3. (a) Scatter plot of prediction versus uncertainty. (b) Temporal distribu-
tion of all data points with QAC = 3. (c) Temporal distribution of points from
the black region in (a). (d) Temporal distribution of points from the red region
in (a).

for which uncertainty estimate was unusually low and had
3656 points.

Our analysis revealed two sites where uncertainty estimates
were unusually large. Those were Mauna Loa and Izana, which
had almost all points within the red region in Fig. 3(a). Further
analysis found that uncertainty at those sites is dominated by
the model uncertainty, which was at the highest level among all
93 sites. As performed experiments were conducted by leave-
one-site-out cross-validation protocol, the high model uncer-
tainty suggests that those two sites are different from the other
sites. Indeed, after investigating literature about these two sites,
we found that both are located on high elevations, on islands
(Mauna Loa in Hawaii; Izana-Tenerife in Spain), and that they
serve for calibration of AERONET instruments.

Temporal distributions of high-quality data over the studied
two-year period are shown in Fig. 3(b)–(d). Days of the year are
labeled horizontally as 1–365 and correspond to the January
01 to December 31 period, and bins represent the number of
high-quality data points (QAC = 3) observed within the period
covered by the bin. Temporal distribution of all high-quality
data points is shown in Fig. 3(b). Points corresponding to the
bottom part of Fig. 3(a) [denoted as III in Fig. 3(a)] belong to
different sites around the world, but most of them are observed
in summer. However, we found that points corresponding to the
upper region of Fig. 3(a) [denoted as I in Fig. 3(a)] are evenly
distributed over seasons, as shown in Fig. 3(d).

NLPD values at most sites vary in the range from −1.8 to
−2.9, depending mostly on AOD retrieval errors. By NLPD
analysis, we found that Mexico City is an outlier (NLPD =
8.52). This is a very high elevation site (2268 m), and elevation
is an important input attribute of our AOD retrieval model. We
observed that neural network ensemble tends to predict small
AOD at high elevation sites. Other sites with high elevations
are BSRN BAO Boulder (1604 m), Mauna Loa (3397 m), and
Izana (2268 m). The average AOD values at these sites are very
small (less than 0.1). That is why Mexico City is an outlier, and
so, it is a difficult site for neural network AOD retrieval as sites
with similar AOD properties were not seen in the training set.
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V. CONCLUSION

We have shown that data quality is very important not
only for neural-network-based AOD retrieval but also for good
uncertainty estimation of such retrievals. Leave-one-site-out
experiments using two years of collocated satellite and ground-
based observations were performed over the entire Earth in
such a way that retrievals are made on locations not seen
during training. This allowed us to evaluate how accurate neural
network ensembles are in AOD retrieval, to compare their
accuracy with that of the operational MODIS C005 retrieval
algorithm, and to determine the quality of retrieval uncertainty.
Committees of neural networks for AOD retrieval were more
accurate than the operational C005 algorithm. The obtained
uncertainty estimates were found to be reasonably accurate.
This very promising result shows that it is possible to com-
plement AOD retrievals with accurate quantitative estimates of
retrieval uncertainty. The uncertainty analysis presented in this
paper provides multiple opportunities to further improve our
understanding of global properties of aerosols and to allow
more informed use of AOD retrievals in the subsequent cli-
matology studies. We also reported some shortcomings of
the statistically based retrieval algorithms, as evident from
AERONET site in Mexico City. Similarly, we found that data
points collected at AERONET sites Mauna Loa and Izana are
very different from other AERONET sites. Potential solutions
for further improvements that we are currently investigating
are aimed at an appropriate integration of the physically and
statistically based AOD retrieval methods.
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