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Abstract. Spatial processes may be sampled by point sampling or by aggregate sampling.
-If aggregate samples are collected over a regular grid and used to represent the central
point of each aggregation area, the aggregate sampling functions as a low-pass filter and
may eliminate aliasing during spatial estimation. To assess potential accuracy
improvemefts, a numerical procedure for calculating the estimation error variance was
developed. Analysis of point and block sampling techniques for kriging and inverse
distfhce interpolation showed that for the same sampling density, block sampling provides
better estimation. To achieve the same error levels, over 30%-50% more point samples
were required than block samples. Furthermore, interpolation of block sampled data
resulted in lower error variability and surfaces with more visual appeal.

-

1. Introduction

Representations of most spatial processes are based onsam-
pling at sparse and discrete locations. Remote sensing and
machine-mounted sensors can provide very dense or essen-
tially continuous sampling, but the applicability of these pro-
cedures is still limited for most biological and physical pro-
cesses. Traditional sampling ¢an be used to collect point

- samples or aggregate samples. For point sampling a single
sample or multiple samples from a very small spatial extent are

* collected per location. Sample analysis yields the true value of

the underlying spatial attribute plus any analytical error at each
location [Starks, 1986]. The term aggregation sampling is used
to describe situations where samples are extracted from a
larger area and averaged to represent that area or its central
point. Examplgs of spatial aggregation techniques include
block sampling in soil science [Webster and Burgess, 1984],
throughfall sampling in hydrology [Hill et al., 1999), marine
surveys [Pennington and Volstad, 1991], and regionalized data
in economics [Anselin, 1988]. .

One of the primary purposes of sampling is to collect data
for spatial interpolation procedures. The correctness of an
interpolated surface depends on several factors such as the
sampling design and density [Burgess et al., 1981; Olea, 1984;
Rouhani, 1985; Bogaert and Russo, 1999] and the interpolation
procedure [Laslett et al., 1987, Weber and Englund, 1992]. In-
terpolation procedures include geostatistical-based kriging
[Krige, 1951; Cressie, 1993] and deterministic methods such as
inverse distance interpolation [/saaks and Srivastava, 1989] and
splining [Hutchinson and Gessler, 1994].

The type of sampling, point or aggregated, may also play an
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important role. Generally, point sampling should provide more
accurate spatial estimation near sampling locations, while ag-
gregation sampling should allow better overall estimation at
the expense of losing some of the accuracy near sampling
locations. Signal processing theory can help in analyzing this
difference more formally. If one collects aggregate samples
over a regular grid and uses the data to represent the central
point of the aggregation area (hereafter referred to as block
sampling), block sampling can be regarded as point sampling
of filtered underlying spatial process since the within-cell ag-
gregation functions as a low-pass filter.

The possible benefits of low-pass filtering are explained by
the sampling theorem [Proakis and Manolakis, 1996]. In a
two-dimensional case the theorem implies that a square sam-
pling grid with spacing D = 1/2F is sufficient for perfect
reconstruction of a two-dimensional signal with a maximum
spectral bandwidth of . In practice, the sampling theorem is

only a guide, since an ideal reconstruction procedure assumes ...

an infinite spatial domain and so exists just in theory. Con-
nected with the sampling theorem is the problem of aliasing
[Proakis and Manolakis, 1996]. Every frequency component of
a signal above 1/2D (half the sampling frequency), also called
the cutoff frequency, converts to noise after its reconstruction.
To prevent this, signals are typically low-pass filtered (anti-
aliased) prior to sampling to cancel out the part of the signal
above the cutoff frequency and prevent it from becoming
noise. From this perspective the low-pass filtering resulting
from block sampling may be desirable. Anti-aliasing filters
used in signal processing are near perfect with respect to cut-
ting off all components of a signal with frequencies above
1/2D. Such filters are not applicable to block sampling since
their coetficients follow fairly complex functions, while practi-
cal block sampling patterns correspond to filters with few equal
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coefficients. Therefore block sampling is a crude approxima-
tion of an optimal anti-aliasing filter.

If the benefits of block sampling suggested by signal process-
ing theory result in improved spatial estimation, block sam-
pling may be a way to reduce sample analytical costs while
maintaining prediction accuracy or to achieve better prediction
accuracy without increasing costs. Concerns over sampling and
analysis costs often result in less than optimal sampling densi-
ties, which lead to poor spatial estimates in disciplines such as
agriculture [Mallarino et al., 1999]. Thus the objective of this
paper is to determine if data aggregation can improve spatial
estimation by kriging and inverse distance interpolation as
compared to traditional point sampling. We present both es-
timation accuracy and economic analyses. In addition, we ex-
amined (1) the influence of different covariogram models on
spatial estimation and (2) the influence of sampling density on
kriging and inverse distance interpolation.

The paper is organized as follows. Section 2 provides a
review of spatial statistics, the statistically based estimation
procedure of kriging, and the nonstatistical procedure of in-
verse distance interpolation, as well as more formal treatment
of point and block sampling. In section 3 we propose a proce-
dure for the analysis of the influence of block sampling on
spatial iterpolation that includes (1) fast generation of artifi-
cial spatial layers satisfying desired covariograms and (2) au-
tomatic estimation of covariograms of aggregated spatial data
from known covariograms of original spatial data. Finally, the
experimental results and discussion are presented in Section 4.

. . . ]
2. Preliminaries

Data points close together in space are often more alike than
those that are far apart. Nonstatistical spatial estimators, such
as inverse distance interpolation, implicitly use this notion of
spatial continuity and often prove very successful at gredicting
data values at nonsampled locations. Alternatively, spatial sta-
tistics model spatial continuity. From these models a statistical
spatial estimation procedure called kriging has been devel-
oped. This section summarizes background information for
spatial statistics, kriging, and inverse distance interpolation
needed in the rest of the paper. Also, point and block sampling
are formally presented. i

2.1.- Spatial Continuity and Covariogram

In this paper it is assumed that spatial data over a given
region, denoted {z(s), s € D}, are a realization of a second-
order stationary and isotropic random process, {Z(s), s €
D}, where D is a fixed subset of R? covering the region.
Second-order stationarity implies that Z(s) has constant mean
with covariance that. satisfies

Cov [Z(sy), Z(sd)] = Czz(si = 82) = Czz(h), (1)
s, s, €D, h € R?,

where C,(h) is the covariogram. In the rest of the paper we
assume, without loss of generality, that the mean of Z(s) is zero.
A scaled version of the covariogram, pzz(h) = Czz(h)/Czz(0),
defines an autocorrelation function called the correlogram.
The process is isotropic if the covariogram depends only on the
distance between points,

Caz(sy — 83) = Czllsi — $ofl2) = Czz(h), (2)
s, S, €D, h=0,

where h is the Euclidean distance between s, and s..

To guarantee the validity of statistical spatial estim:=on
which demands positive variance of any linear combinat = of
random variables from Z(s), a covariogram (or correlcz:m)
model should be positive-definite,

Var ( > A,Z(s,)) =5 S AACasi—s) =0, 3)
i i J

Covariance C(h) can be expressed as
C(h) = cyd(h) + ¢, d(h; R), 4)

where ¢(h; R) is a positive-definite function, 8(h) is a Dirac
function, c,, is the nugget effect, ¢, + ¢, is the sill, and R is the
range. Checking positive definiteness of covariogram (or cor-
relogram) models is a cumbersome procedure [Chung. 1963;
Christakos, 1984], and as a result just a few functio®®, ¢(h: R),
that are known to be positive-definite are used in practice.
Some of the most popular are

Spherical
‘1 - 1.5h/R + 0.5(h/R)*>, O0=h<R
¢(h; R) = .
0, otherwise,
Exponential
(-2), osn=r
expl|l — % /> <=h<
(h; R) = R (5)
0, otherwise,
Gaussian
(12), omn=r
exp| — 571/, =h<
. smm =1 TV R
0, otherwise.

When common models do not properly fit observed covari-
ance, it is necessary to check the positive definiteness of alter-
native models. Using Bochner’s theorem [Bochner, 1955], it is
possible to check the positive definiteness of Czz(h) in the
spectral domain. The Fourier transform of C,(h) for a sec-
ond-order stationary process Z (s) is defined as a real function

Szz(w) = j Czz(h)e /™ dh, (6)
R2

where (w, h) = wh, + wyh, ina two-dimensional case and
S () is called the power spectrum of Z (s) [Papoulis, 1991].
If the power spectrum S z(h) is positive [Yao and Journel,
1998], C~(h) is positive-definite. The fast Fourier transform
(FFT) can be used as a discrete approximation ot a Fourier
transform allowing computationally efficient transformations
between spatial and spectral domains [Brigham. 1988]. The
FET for a two-dimensional case is computed as

Szz(my, my)

Ki—-1 Kx—-1
=S 3 Calky, ko) exp [=2mj(kym + kand | (D)
k=0 k2=0

where C,4(k,, k,) and Szz(m,, m,) are properly tiseretized
functions C,(h) and S,z (w), respectively. Extending Boch-
ner’s theorem to the discretized case [Yao and Joumel, 1998],
if C,,(k,, k5) is positive-definite, S, (m . m3) s a positive
real function and vice versa.
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2.2. Ordinary Kriging

The problem of spatial estimation is to estimate the values of
z(s), within some region D, given the values z(s,), z(s;), ...,
z(s, ), observed at n known spatial locations, where z(s) is a
realization of an underlying random process Z(s). Ordinary
kriging [Krige, 1951; Matheron, 1971] is the best linear unbiased
estimator under the assumption that Z(s) is second-order sta-
tionary with known second-order statistics. In practice, the
assumption of second-order stationarity is sometimes violated,
and there are kriging approaches for these situations [Cressie,
1993]. In ordinary kriging, Z(s,), where s, € D, is expressed
as a weighted sum of values from sampling locations Z(s;),

2(sg) = 2, Az(s),

i=1

3=t . ®)

with the coefficients A; chosen to minimize the error variance,

o?(se) = Var [Z(s) — Z(So)]

= Var | Z(sg) — 2 )\,'Z(S,-)~

i=1

= Cz7(0) + 2, 2, AACzz(hy) = 2D, ACzz(hy),  (9)

‘ ]

where h;; = s; — s; and h;, = s; — s,,. Therefore covariogram
estimation must precede kriging. The expression for weights A,
can be derived through the use of Lagrange multipliers
[Matheron, 1971; Davis and Grivet, 1984] and is

A= Ces L2ECTO (10)
e’'Cle -
where A is a vector of weights, e is a vector of ones, C is a
covariance matrix with elements C,,(h;), and c is a vector
with elements C,(h;o). ) _
Usually, only points in a certain neighborhood of s, are used
in the estimation of Z(s,) instead of all n sample points. The
benefits of this are twofold: The calculation of coefficients X is
faster without much loss in estimation accuracy; kriging is

allowed if stationarity can be assumed over small regions.

2.3. Inverse Distance Interpolation

The other type of spatial estimator considered in our anal-
ysis is inverse distance interpolation. It does not require sta-
tistical analysis and covariogram fitting, which allows for very
fast estimations at unknown locations. Although it does not
achieve statistically optimal estimation like kriging, errors from
inverse distance interpolation are reported to be fairly similar
to that of kriging and sometimes, surprisingly, even better
[Weber and Englund, 1992]. These features make the inverse
distance method popular among practitioners. The estimated
value z(sy) at an unknown location s, is calculated as a linear
combination of values at known locations according to (8) with
weights A; calculated as

1/d%

= (11)

i

> 1/dh,
j=1

where d,;, = ||s; — s, is distance between s; and s,, while p
is an arbitrarily chosen parameter. Observe that for p = 0, the

()

Figure 1. Open surfaces are the areas where soil cores are
taken and aggregated to form a single sample for (a) point
sampling and (b) block sampling.

inverse distance estimator is a simple mean estimator, and for
p = o itis equivalent to the nearest-neighbor estimator. In
practice, p is typically chosen to be in the interval [1/2, 2], with
larger values assigning larger weight to the closest samples and
with p = 2 being the most popular choice. If Z(s) is second-
order stationary, (9) can be used to estimate the error variance
of the inverse distance estimator. Similar to ordinary kriging,
use of a moving neighborhood instead of a global one can be
beneficial for inverse distance interpolation.

2.4. Point and Block Grid Sampling

In point sampling, samples are taken at the intersections of
an imaginary grid laid over the surface. We denote point sam-
pled data as {z(s;)},i = 1, 2, ..., n, where s; is the location
of sample i. In block sampling, multiple subsamples are taken
within each block (encompassing each grid intersection) and
combined to form one aggregate sample for analysis. We de-
note block sampled data as {y(s;)}, i = 1, 2, ..., m, where
s; is the location of the center of block i.

In practical applications of point sampling, as shown in Fig-
ure la, several subsamples are sometimes taken within a very
small area around each sampling location instead of taking just
one sample. This procedure can decrease the nugget effect and
can therefore result in better spatial estimation. Since in our
analysis we assume that the nugget effect in the spatial data is
zero, both types of point sampling are equivalent. In Figure Lb
we show an example of block sampling on a regular square
grid, preferable under assumptions of second-order stationar-
ity and isotropy [Olea, 1984], with squared aggregation area of
the side equal to the sampling distance.
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Assuming a uniform block sampling pattern, block sampled
data {y(s,), s, € D} represent a finite sample from the
random process Y(s) obtained by low-pass filtering the original
random process Z(s),

Y(s) = Z(s)*b(s), (12)

where b(s) is a deterministic linear filter corresponding to the
block sampling pattern. In general, block sampling can corre-
spond to continuous or discrete filtering. In continuous block
sampling, Y(s) can be expressed analytically as

Y(s) = f Z(s — s;)b(s;) ds.;. (13)
SiER?

In discrete block sampling, which is of more practical interest,
a small finite number of subsamples are averaged, and there-
fore b(s) is a discrete function. Thus Y(s) can then be ex-
pressed as :

= 2 Z(s — s)b(s),

i=1

Y(s) (14)
. where m is the number of subsamples taken within the block
and ¥ b(s;) = 1 as the subsample aggregation is a simple
averaging of Z(s) over a block. If all subsamples are weighted
equally, all filter coefficients b(s;) are the same, b(s;) = 1/mg.

3. Calculating Estimation Error Variance

To analyze the influence of data aggregation and sampling
density on spatial estimation, a proper procedure for the cal-
culation of estimation error variance is needed. When inter-
‘polating point sampled data taken from an original process,
Z(s), the estimation error variance, oa(s,), where s, € D,
depends only on the applied estlmatlon method and can be
expressed as

ok(se) = Var [Z(so) — Z(s0)], (15)

which for both kriging and inverse dlstance mterpolatxon can
be calculated using (9). - f

The estimation error variance with block sampled data can
be expressed as : s

o3(s0) = Var[Z(se) — ¥(s0)]

= Var [Z(So) - z A; (SO)Y(St)} (16)
i=1 .
‘where Y(s,) is the spatial estimation of the filtered process
Y(so), and A,(so), i = 1, ..., n, are the coefficients obtained
for the estimation of point s,. Since Y(s) can be considered as
a linear unbiased estimator of Z(s) and ¥(s,) is also a linear
unbiased estimator of Y(s,), from (16) it follows that

03(50) = C22(0) = 2 D, A(80)Czyls; — o)

i=1

+ 2 > A(s)A () Ciylsy — 8 — ),

i=1 j=1

(17

where Cy is the cross covariance of processes Z(s) and Y(s)
and C, is the covariance of the filtered process Y(s). Both
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C,y and C . can be expressed as convolutions of the covari-
ance of the original process Z(s) and a linear filter b(h)
[Papoulis, 1991],

Cuy(h) = C,(h)*b(—h),

(18)

Cyy(h) = Cyy(h)*b(—h)*b(h).

As can be seen, (17) resembles (9), and therefore procedures
for the calculation of o7 (s,) and o3(s,) are similar. The only
difference is that (17) requires using C,, and C,,, and in
section 3.1 we discuss different methods for their calculation.
Since some of our comparisons of point and block sampling are
based on generated layers, in section 3.2 we present an efficient
method for generating spatial layers with desired covario-

grams.

3.1. Calculating Cross Covarlance C,y
and Covariance C,,

If b(h) is a continuous filter, (18) can be solved analytically
using (13). However, except for the case of simple radial filters,
analytical solutions can be difficult to compute. If the problem
is transformed to the Fourier domain, convolution can be
performed by simple multiplication. In this approach, C and
Cyy can be calculated as

Czy(h) = F7{Szz(w) Hy(w)},
Cy(h) = Fﬂl{Szz(wHHb(w)lz},

where H,(w) is the Fourier transform of filter 5(h) and F "
represents the inverse Fourier transform. However, this ap-
proach involves the calculation of Fourier integrals, which can
also be difficult.

Therefore, for most practical cases, numerical approxima-
tion of C, and C using (14) is an acceptable solution. For
the experiments presented in section 4, C,, Czy, and Cy
were calculated along a regular grid with N X N = 161 X 161
points spanning an area of size (—2D, 2D) X (—2D, 2D),
where D is sampling distance. Applying (14) in the case of
sparse block subsampling requires O(N?my) operations for
C,y and O(N?m3%) operations for Cy. If the block subsam-
pling is dense, mz = O(N), and the calculation of CZ, and
Cyy requires O(N?) arid O(N*) operations, respectively.

In cases with dense block subsampling, numerical approxi-
mation of (19) using an FFT can be more efficient. Since an
FFT of K elements takes O(K log K) operations [Brigham,
1988], O(N? log N) operations would be needed for both C .
and Cy,, which is a significant improvement for large N.
While FFT-based covariance estimation has been successfully
used to automatically compute covariance tables from avail-
able spatial data [Yao and Journel, 1998], we used (14) in our
experiments for calculating both C,, and C.

(19)

3.2. Fast Generation of Spatial Layers

Stationary Gaussian fields meeting a specified covariance
model can be generated using a moving averages method
[Journel, 1974; Oliver, 1995]. To generate a Gaussian random
field, covariance should be expressed as the convolution of a
function and its transpose, C,,(h) = g*g”. A spatial layer
z(s) with covariance function C,,(h) and mean 0 can be
generated by the convolution of g with a two-dimensional station-
ary random field with a Dirac covariance measure x(s) as

z(s) = f g(s —s")x(s") ds’. (20)
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Generated data are usually discrete nodes on a grid, so the
integral in (20) is replaced by a sum. In this case, assigning
random numbers from a Gaussian distribution to the nodes of
a grid can generate the discrete random field x(k,, k2).

The main problem with this approach is calculating g(s),
and it is usually reduced to two steps [Oliver, 1995]: (1) calcu-
lating the Fourier transform of the covariance function de-
noted by S(w) and (2) calculating the inverse Fourier trans-
form of VS (w) to obtain g(s). An analytical solution for g(s)
that represents a corresponding moving average filter has been
derived by Oliver [1995] for exponential and Gaussian isotropic
two-dimensional covariance models. After this step, dis-
cretized values of g(s), denoted g(ky, k), can be used to
generate the desired layer from x(ky, k3). _

Here we propose a computationally efficient FFT-based pro-
cedure that finds the coefficients of a moving average filter
g(k,, k;) and allows the generation of Gaussian layers with
any valid covariance C(h), including anisotropic ones. Given a
grid distance D and a square of K* grid nodes, our procedure
for generating a layer with desired covariance C(h) is as fol-
lows: (1) Assign K? randomly chosen values from a Gaussian
distribution with mean 0 and variance 1 to the grid thus form-
ing x(k,, k), where ky, k, = 1,2, ..., K. To speed up the
procedure in the following steps, K should be a power of 2. (2)
Calculate the FFT of the desired and properly discretized
two-dimensional covariance C(k,, k;) to obtain its power
spectrum S(mq, m,), where m,, m, = 1, 2, ..., K. Since

C(h) is positive-definite, S(m;, m.) will be real and positive..

(3) Find the coefficients of the discrete moving average filter
g(ky, k) by calculating the inverse FFT of VS(my, m;). (4)
Apply filter g(k,, k) to random layer x(k,, k,) to obtain
z'(ky, k3). (5) Finally, scale z'(k,, k,) to derive layer
z(ky, k,) with specified mean and variance. (6) Depending on
the size of filter g(s), boundary points of the generated layer
z(s) should be removed, since their spatial variability will be
slightly higher than desired. Our approach was to remove all
points at distances less than desired range R from the edges of
the generated layer. A comparison of the correlogram of a
simulated layer ‘and the desired correlogram (spherical with
parameters D= 1 m, K = 256, and range R = 25 m) is
shown in Figure 2. '

4. _Expg;"im'ents and Discussion '
_ The following assumptions were used for all experiments:
(1) The two-dimensional process describingispatial variability

1
------- Correlogram of simulated layer
- 0.8t ——— Desired spherical correlogram
é 3
g 0.6 \
O p
= \
9
g 0.4 p
(3]
5
© 02
/"“--.-.~'-'—~-~-
0 e’
0 10 20 30 40 50

Distance [m]

Figure 2. Theoretical spherical covariogram with R = 25 m,
¢o = 0,andc, = 1 and the covariogram of a generated layer.

Figure 3. Sixteen neighboring samples were used to estimate
points within a block.

was second-order stationary and isotropic. (2) The sampling
grid was regular and square. (3) Both kriging and inverse
distance interpolation were performed using the nearest 16
samples to estimate the unknown location as shown in Figare
3. The use of local samples instead of all samples is more
robust to nonstationarity and is computationally faster. (4) The
nugget effect was assumed to be zero. The nugget effect can be
considered as the sum of measurement error and microscale
processes [Cressie, 1993], causing estimation error that cannot
be avoided by any kind of interpolation. In our experiments the
goal was to compare different estimation and sampling tech-
niques, and adding a nugget effect would distract from the
analysis.

According to these assumptions we have used (9) and (17) to
compute the estimation error variance o*(s;), where
s; € block, for 1600 regularly spaced points within an inner
square, block, of size D X D from Figure 3, where D is the grid
distance. Therefore, as mentioned in section 3.1, to apply (9)
and (17), Czz, Czy, and Cyy should be calculated along a
regular grid with N X N = 161 X 161 points spanning an
area of size (—2D, 2D) X (2D, 2D). Averaging the 1600
values allowed us to accurately estimate the average error
variance for a grid block, 7. Also, using o*(s;), we were able
to compare the performance of the estimators across a block.

4.1. Influence of Covariogram Models

First, we examined the influénce of grid distance on the
error variance of kriging and inverse distance interpolation for
point sampled data. Exponential, spherical, and Gaussian co-
variograms, all with range R = 100 m, nugget effect zero, and
sill one were examined. Error variances were examined for grid
distances D = 20, 40, ..., 300 m. Normalized average error
variances of kriging over a block 52/C,z(0) are shown in
Figure 4a as a function of grid density. Observe that instead of
D we report D/R, which is invariant to scaling of D and R, and
that 52/C 5z(0) is, in fact, equal to 1 — r?, with r* denoting
the coefficient of determination of spatial estimation.

Similar normalized average error variances resulting from
inverse distance interpolation with p = 2 are shown in Figure
4b. For a given D/R the estimation error variance of the
exponential covariogram was the largest, while the estimation
error variance of the Gaussian covariogram was the smallest
for both kriging and inverse distance interpolator. This is be-
cause, for the same range, the exponential covariogram has the
weakest spatial dependence, and the Gaussian covariogram
has the strongest spatial dependence. It is important to observe

that error variance of both kriging and inverse distance inter-
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JEigure 4. Influence of grid distance on the error variance of
“(a) kriging and (b) inverse distance interpolation with p = 2
obtained for exponential, spherical, and Gaussian covario-
grams.

polation is significant for D = R, which in practice is often
assumed as an acceptable sampling density.

4.2. ~ Comparison at Different Sampling Densities

“ Error variances of kriging and inverse distance interpolators
with p = 0.5, 1, and 2 for a spherical covariogram, which is
the model most often used in practice, are compared in Figure
5. lcﬁlsistent with theory [Cressie, 1993] and given our statis-
tical assumptions, kriging performed better than inverse dis-
tance interpolation for all sampling densities. For inverse dis-

1.2
8 4l
&
8
z 0.8+
E
%‘ 0.6}
T o4 '
E o Solid - Kriging
2 Dash Dot-  Inv. Dist, p=0.5
0.2 Dash - Inv. Dist, p=1
Dot - Inv. Dist, p=2
0
0.5 1 1.5 2 25 3
Grid Distance / Range
Figure 5. Estimation error variance comparison of kriging

and inverse distance interpolators withp = 0.5, 1, and 2 as a
function of (grid distance/range).
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tance interpolation, larger p values were better for dense
sampling, while p = 0.5 or | produced better results thanp =
2 when D/R was greater than 1.5. The use of inverse distance
interpolation with p = 2 (inversc distance squared) is very
popular although these results show that the interpolated val-
ues are very unreliable when data are undersampled, which is
common with real-life data. Furthermore, the results indicate
that statistical range analysis can be beneficial for determining
the proper power p for inverse distance interpolation.

It has been observed that in some cases, inverse distance
interpolation can produce better estimates than kriging [Weber
and Englund, 1992]. Given the small difference between the
best inverse distance interpolator and kriging shown in Figure
S, it is possible that errors in covariogram estimation might

. cause these observations. There is considerable literature

[Diamond and Armstrong, 1984] examining the influence of
covariogram estimation using sampled data. Generally, each
error in the estimation of the true parameters of the covario-
gram causes an increase in the estimation error variance. Thus,
for certain grid densities and coefficient p, the inverse distance
interpolator can be the best interpolator if there are errors in
covariogram estimation caused by sparse sampled data.

4.3. Comparison of Point and Block Sampled Data
at Different Grid Densities

To examine block sampling, the following aggregation pat-
terns were considered: (1) In dense within-block sampling a
large number of subsamples are taken equally spaced and
separated by D/40 within a whole block of size D X D.
Practically, this represents almost continuous averaging over a
block. (2) In sparse within-block sampling just nine subsamples
are taken within a block of size D X D at ad hoc locations as
shown in Figure 6.

Sparse within-block sampling can potentially be applied to
many sampling situations without adding much cost as com-
pared to point sampling, while dense within-block subsampling
corresponds to continuous aggregate sampling. One-dimen-
sional transects of the spectral characteristics of the proposed
block sampling pattern assignments are shown in Figure 7.
These. patterns were compared to the optimal anti-aliasing
filter that cancels out all frequencies of the underlying spatial
signal above 1/2D. Frequency responses were calculated for
distance D = 100 m. As can be seen, neither of the aggrega-
tion patterns was a successful approximation of the optimal
anti-aliasing filter.

To test the ability of the block sampling patterns to function
as anti-aliasing filters, the estimation error variance on point

® : ® o
®
® ® ® D
®
& oY
< >
D

Figure 6. Block sampling pattern for sparse within-block
sampling with nine subsamples.
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sampled data and both dense and sparse within-block sampled
data was compared. The estimation error variance o*(s;) was
computed for 1600 regularly spaced points s; within a block,
and the corresponding normalized average error for block
sampled data was computed using the procedure described in
section 3. The kriging error variance for spherical, exponential,
and Gaussian underlying spatial processes with range R = 100
m using point and block sampled data is shown in Figure 8.
Results using inverse distance interpolation with p = 2 are
shown in Figure 9.

Even though the analyzed block sampling patterns are crude
approximations of optimal anti-aliasing filters, both block sam-
pling patterns resulted in lower prediction errors than point
sampling. Furthermore, the difference between dense within-
block sampling and sparse (nine subsamples) within-block
sampling was fairly small indicating that a sparse within-block
sampling technique may be practical.

The block size of D X D used in the experiments is the
optimal size suggested by theory. However, it might happen
that size D is too large for a given application. In the following
experiment we analyzed the influence of different block sizes
on estimation error. In Figure 10 we plot the estimation error
variance of kriging on dense within-block sampled data with
the block size varying from zero (point sampling) to 1.4D X
1.4D using a spherical covariogram and sampling density D
equal to the range R. In accordance with the theory the best
estimation was achieved with block sizes between 0.8D X
0.8D and D X D, although all block sizes in the examined
range were superior to point sampling. Therefore, if a block
size of D X D is considered too large, a smaller block size can
still result in improved estimation over point sampling.

4.4. Economic Analysis

While block sampling results in lower prediction errors as
compared to point sampling, more effort is required to collect
a single block sample because multiple subsamples must be
collected to form each block sample. Thus, on a per sample

basis, block sampling -would be more expensive than point -

sampling. However, to obtain a given error level (a horizontal
line-across Figure 8 or 9), more point samples are required
than block samples so the point sampling procedure would
result in higher sample analysis costs. For example, to obtain a
kriging error variance of 60% with a spherical covariogram,
point samples must be collected on an 81 m grid, while block
samples based on nine subsamples could be collected on a 95 m

-------- Dense within blgck

°2’ 0.8 wen Sparse within block
-2 ——Optimal anti-aliasing
& osf ’
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o 05 1 15 2 25 3 35 4

Frequency/2D

Figure 7. Frequency responses of block sampling patterns as
a function of standardized frequency f/2D.
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Figure 8. Kriging estimation error variance on point sam-
pled data and block sampled data satisfying (a) spherical, (b)
exponential, and (c) Gaussian correlograms.

grid (Figure 11). Table 1 presents the grid distances needed to
achieve different levels of accuracy, together with the ratio of
the number of samples needed with point versus the two types
of block sampling (sparse. and dense) for the same accuracy
computed as a equal to (block sampling grid distance)?/(point
sampling grid distance)?.

The overall costs to obtain a given error level for the two
methods is a function of analysis costs and sample collection
costs. As indicated in Table 1, to achieve a predetermined
error level within a range 6%/Czz(0) € [0.2, 0.8], kriging
requires over 30% more point samples than block samples with
sparse within-block sampling and over 55% more point sam-
ples than block samples with dense within-block sampling.
Consequently, block sampling based on nine subsamples is
economically preferable if the costs of collecting the eight
additional subsamples needed to form one block sample are
less than 30% of the analytical expenses per sample.
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sampling. The covariogram is spherical with a range of 100 m
and a nugget effect of 0.

From the presented analysis of block sampling it is clear that
its advantage over point sampling comes from discarding the
highly variable part of the spatial information before kriging
through aggregating subsamples within a block. It has also
been indicated that the proposed dense and sparse within-
block sampling are crude approximations of the optimal anti-
aliasing filtering which would provide perfect cancellation of
the highly variable part of the spatial data. As indicated in
Figure 10, aggregating soil cores within an area smaller than
what was used for block sampling also discards some highly
variable information before kriging and results in an estima-
tion error variance between that obtained from point and op-
timal-sized block sampled data. Thus, if traveling expenses are
too high, a similar economic analysis can be performed to
determine the optimal aggregation area for a given application.

4.5. Sensitivity to Distance From Sampling Locations and
Visualization of Kriging on Point and Block Sampled Data
In addition to the possible economic advantages of block
sampling over point sampling, there is also an important dif-
ference between the two sampling techniques in point-by-point
estimation error variance within a block. As mentioned in the
introduction, point sampling provides better estimation of
points close to the sampling locations, while block sampling
sacrifices some of the accuracy at these locations to improve
estimation at points that are farther away from sampling loca-

Table 1. Normalized Grid Distances (Grid Distance/Range)
for Point and Two Types of Block Sampling Needed to
Achieve Different Levels of Kriging Estimation Error
Variance and the Ratio of the Number of Samples Needed
for Point Sampling Versus Two Types of Block Sampling

Normalized Grid Distance/Range a
Estimation
Error Sparse Dense Sparse Dense
Variance Point Block Block Block Block
0.2 0.31 0.36 0.41 1.35 1.75
0.3 0.44 0.53 0.58 1.45 1.74
0.4 0.58 0.66 0.72 1.29 1.54
0.5 0.69 0.79 0.86 1.31 1.55
0.6 0.81 0.95 1.02 1.38 1.58
0.7 0.95 1.14 1.25 1.44 1.73
0.8 1.13 1.43 1.61 1.60 2.05
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Figure 12. Kriging error variance for point sampled data and

two types of block sampled data (dense and sparse) along a

line AB from Figure 3 at sampling density D = R.

tions. In Figure 12 we compare kriging error variances,
0%(so)/C zz(0), on point sampled and the two types of block-
sampled data (dense and sparse) with a spherical covariogram
along a line AB from Figure 3. As can be seen, both types of
block sampling lead to smoother kriging error variance over
the whole spatial area as compared to point samplmg Al-
though the overall estimation error variance, & 2/C »4(0), is a
good measure of the confidence of spatial estimation from
sampled data, there are applications where the variability of
estimation error can be important such as combining data
interpolated from low-resolution samples with data derived
from high-resolution sampling.

Finally, we show the results of a kriging experiment on a
generated layer. A layer satisfying an exponential correlogram
with range 250 m and nugget effect 0 was generated using the
method described in section 3.2. These correlogram parame-
ters were derived from: data collected for soil nitrate N mea-
sured in a potato f field in southeast Idaho with the exception
that the: nugget was, ‘set to 0. The smulated layer consisted of
81 X 81 points on a 10X 10m square grid. We simulated point
and block sampling with nine cores at four different sampling
densities: 40, 60, 100, and 200 m. Ordinary kriging with a global
neighborhood was performed on the sampled data. The coef-
ficient of determination r? of kriging on point sampled data
and block sampled data with nine cores at four sampling den-
sities versus the original data is reported in Table 2.

As can be seen, kriging on block sampled data was superior
to point-sampled data at all four sampling densities, as consis-

“tent with previous results. Figure 13 shows the original layer

and the layers obtained by kriging on point and sparse within-
block sampled data at a sampling distance of 100 m. Aside

Table 2. Kriging Estimation Results on Point and Block
Sampled Data for Different Sampling Densities for a
Representative Soil Fertility Scenario

Sampling r? for Block
Distance, Number of r* for Point Sampling
m Samples Sampling (Nine Cores)
40 441 0.801 0.850
60 196 0.709 0.777
100 81 0.577 0.675
200 25 0.268 0.435

(a)

B W 3 8 8

8o &

Figure 13. (a) Orlgmal layer and kriged layer on (b) point
and (c) block sampled data with sampling frequency of 100 m.

from the smaller interpolation error when block sampled data
are used, the estimated layer using block sampled data has
better visual appeal, allowing better insight into the spatial
variability of the underlying spatial signal.

5. Conclusions

Spatial data available in practice are true or aggregated
values extracted from an underlying spatial process. Data ag-
gregation can be considered as spatial data filtering, which
allows using the power spectrum representation obtained by
Fourier transformation and an application of the sampling
theorem in the analysis of sampling influence. Experiments to
examine the influence of different covariogram models on spa-
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tial estimation and to compare kriging and inverse distance
interpolation at different sampling densities provided useful
insight into the capabilities of these spatial prediction methods.
Kriging outperformed inverse distance interpolation, but the
margin was not large. The study on the influence of two sam-
pling techniques, called point and block sampling, on kriging
and inverse distance interpolation showed that block sampling
provides better estimation at the majority of sampling densities
-and that in applications such as soil sampling it could be more
economical than point sampling. An additional practic#¥8-
vantage of block sampling not considered in this study is that it
is likely to provide more accurate estimation of the covario-
gram needed for kriging, resulting in a larger margin between
kriging error on point and block sampled data.

In the broader context, block sampling can be regarded as a
sampling technique that provides information on the charac-
teristics of an underlying spatial process averaged across re-
gions around sampling locations within the area of interest.
Our analysis shows that increasing the aggregation region
when block sampling up to a radius equal to half of the sam-
pling distance is used leads to more accurate spatial estimation
than with data obtained from an equal number of point sam-
ples. Further research is needed to determine the optimal
sampling radius for various application types using the pro-
posed ‘analysis procedure. ™~ 7 7 :
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